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Abstract

In the 3eld of fuzzy modelling, the exclusive consideration of the modelling error leads to problems concerning the
handling of high-dimensional applications and the interpretability of the resulting rule base. To solve those problems, a
statistically motivated fuzzy rule test is proposed. It decides if a fuzzy IF=THEN statement is a relevant rule or not. In
this way, the problem of 3nding a good rule base can be reduced to the problem of 3nding good, relevant rules. c© 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

Applying data-based fuzzy modelling methods to industrial applications, the following two points must be
considered:
• There are often many possible input variables resulting in enormous search spaces and rule bases.
• On the part of industrial operators, interpretable results are desired that allow insight.
A fuzzy rule test, which decides on the basis of the available learning data whether a fuzzy IF=THEN statement
represents a locally important aspect of the dependency between the input and output variables, can help on
both accounts:
• A fuzzy rule test allows the enormous problem of 3nding a complete fuzzy rule base to be broken down

to the much smaller problem of 3nding single fuzzy rules for incremental collection (Fig. 1) [14,18]. The
search space of single fuzzy rules is signi3cantly smaller than the search space of complete fuzzy rule
bases, and also increases at a signi3cantly lower rate with the number of input variables. Thus, many more
input variables can be handled in a given amount of computing time. Furthermore, a fuzzy rule test can
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Fig. 1. Embedding of the rule test in the fuzzy modelling process.

determine whether several input situations can be covered by one fuzzy rule instead of several distinct
rules, allowing the 3nal fuzzy rule base to be made as small as possible [11].

• A fuzzy rule test allows a fuzzy rule base to be built exclusively out of locally reasonable rules that
can be interpreted by the industrial operators and responsible managers. The interpretability encourages
the acceptance of new components and facilitates adjustment to change. Many fuzzy modelling methods
presented in the literature consider only the input=output behaviour, which often results in fuzzy rules that
are not locally reasonable.

Depending on the 3eld of application, a fuzzy rule test can have diFerent intentions, for example:
• It is intended that a fuzzy rule represents a relevant dependency between the input situation in the premise

and the output in the conclusion for the purpose of a causal relation.
• It is intended that a fuzzy rule has a good hit rate.
• It is intended that a fuzzy rule predicts the mean value.
Normally, those intentions are inconsistent. For example, the rule ‘If Peter does not eat up, it will not be
sunny tomorrow’ will have a good hit rate of about 80% if the conclusion is true, irrespectively of the premise
in 80% of the days. However, it does not represent a causal relation.

Here, a fuzzy rule test is developed that pursues the 3rst point, that is, 3nding relevant rules for the
purpose of causal relations. As its task is to separate the relevant from irrelevant fuzzy rules, it is called
a fuzzy relevance test. In order to handle contradictory learning data, the aim is to pro3t from statistical
methods.

A relevance test for crisp rules, based on the computation of con3dence intervals, has been introduced
by Kiendl and Krabs [10]. This concept is presented in Section 2. For fuzzy modelling, the formula of the
crisp relevance test can be algorithmically extended to the use of fuzzy values (Section 3). This approach
has the advantage that it is immediately available and the computing time is not higher as in the crisp
case. However, the statistical veri3cation is no longer applicable, and it is questionable how the results can
be interpreted. Thus, a fuzzy approach has been developed (Section 4) in which con3dence intervals are
computed by two diFerent methods. The results of the algorithmic extension and the two fuzzy approaches
are illustrated and compared (Section 5). As a conclusion, each approach is assigned a special 3eld of
application.
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2. Crisp relevance test

A statement of the following form is to be examined:

IF S THEN C

S represents an input situation, C an output event. The input situation, resp. the output event is true or not
true. The corresponding characteristic functions IS and IC take the value 1 if the input situation, resp. the
output event is true and the value 0 if the input situation, resp. the output event is not true:

IS(X (k)) =
{

1: S is true for the data sample dk ;
0: S is not true for the data sample dk ;

IC(Y (k)) =
{

1: C is true for the data sample dk ;
0: C is not true for the data sample dk :

X = (X1; X2; : : :) is the vector with the input variables. Y is the output variable. The premise and the conclusion
refer to the same data sample dk = (x1(k); x2(k); : : : ; y(k)) = (x(k); y(k)). It includes the realizations of X (k),
Y (k) belonging together, for example the observations at the date k.

Example. X1 is the heating temperature, X2 is the outdoor temperature, Y is the room temperature. There are
3ve data samples (n= 5) with d1 = (50oC;−10oC; 14oC), d2 = (35oC;−5oC; 12oC), d3 = (25oC;−2oC; 8oC),
d4 = (20oC;−5oC; 5oC), d5 = (25oC;−10oC; 3oC). A possible IF=THEN statement is: IF ((heating temperature
is lower than 30oC) ∧ (outdoor temperature is lower than 0oC)) THEN (room temperature is under 10oC).
This corresponds to: IF (X1¡30oC∧X2¡0oC) THEN (Y¡10oC). The characteristic functions are de3ned by

IS(X (k)) =
{

1: X1(k)¡ 30oC ∧ X2(k)¡ 0oC;
0: else

IC(Y (k)) =
{

1: Y (k)¡ 10oC;
0: else:

For the 3ve data samples, the following values result: IS(x(1)) = 0, IS(x(2)) = 0, IS(x(3)) = 1, IS(x(4)) = 1,
IS(x(5)) = 1, IC(y(1)) = 0, IC(y(2)) = 0, IC(y(3)) = 1, IC(y(4)) = 1, IC(y(5)) = 1.

The probability that the output event is true (IC(Y (k)) = 1) is p=P(C). The conditional probability that
the output event C is true under the condition that the input situation S is true (IC(Y (k)) = 1|IS(X (k)) = 1) is
p� =P(C|S). The more these two probabilities diFer the more the IF=THEN statement can be seen as relevant.

As these probabilities are not known, they are estimated on the basis of the data samples dk by the relative
frequencies:

p̂ =
m
n

and p̂� =
m�
n�

with

n := number of data samples dk ;

m :=
n∑
k=1

IC(Y (k));

n� :=
n∑
k=1

IS(X (k));

m� :=
n∑
k=1

(IS(X (k)) ∧ IC(Y (k))):
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Fig. 2. Con3dence limits for n=100, m=50, n� = 20 and m� = 18
calculated by the crisp relevance test.

Fig. 3. Con3dence limits for n=100, m=50, n� =20 and m� =
0; 1; 2; : : : ; 20 calculated by the crisp relevance test.

For X (1); : : : ; X (n) independent, identically distributed (i.i.d.) and Y (1); : : : ; Y (n) i.i.d., it can be proved that
p̂ and p̂� are consistent and uniformly minimal-variance unbiased estimators.

IS(X ) resp. IC(Y ) are Bernoulli distributed with the parameter p� resp. p. On this basis, con3dence intervals
can be calculated for p and p� with the Pearson–Clopper values [7]. They cover the probabilities p and p�
each with a given probability 1 − � (con3dence coeMcient).

As only one side of the con3dence intervals is interesting in each relevance test, one or the other of the
one-sided con3dence intervals I o := [0;po], I u� := [pu

� ; 1] or I o� := [0;po
� ], I

u := [pu; 1] is calculated.
In the case,

p̂¡ p̂� ∧po¡pu
�

the statement ‘IF S THEN C’ is a positive relevant rule. In the case

p̂¿ p̂� ∧pu¿po
�;

the negative statement ‘IF S THEN @C’ is a negative relevant rule [9]. In all other cases, it is true that

[pu;po] ∩ [pu
�;p

o
�] �= ∅

and thus no relevant rule can be extracted.
After the relevance test, the relevant rules can be assigned a rating index [13,14].

Example. There are 100 data samples (n= 100). The output event C is true in 50 of the 100 data samples
(m= 50), so that p̂= 0:5. The input situation S is true in 20 of the 100 data samples (n� = 20). In 18 of the
20 data samples the output event C is true (m� = 18), so that p̂� = 0:9. As p̂¡p̂�, the interval limits po and
pu
� must be calculated. With a con3dence coeMcient of 0.95, one gets po = 0:586 and pu

� = 0:717. The result
is visualized in Fig. 2. The statement ‘IF S THEN C’ is a positive relevant rule as the con3dence intervals
do not intersect. The results for all possible values of m� (0; 1; 2; : : : ; 20) are visualized in Fig. 3.
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3. Algorithmic extension of the crisp relevance test

If the input situation and the output event are described by fuzzy sets [22], they can either be true or not
true, but also can be true to a certain degree, normally between 0 and 1. Thus, the characteristic functions
IS(X (k)) and IC(Y (k)) are substituted by the membership functions:

�S(X (k)) ∈ [0; 1] and �C(Y (k)) ∈ [0; 1]:

In the case of fuzzy input situations and fuzzy output events, the formulae of the crisp relevance test can
be extended algorithmically from integer to real values. This extension is statistically not justi3ed as the
�S(X ) resp. �C(Y ) are no longer Bernoulli distributed. Nevertheless, one achieves a type of interpolating
solution that calculates the correct statistical values in the special case of crisp fuzzy sets (characteristic
functions).

Then, the estimators are given by

p̂ =
m
n

and p̂� =
m�
n�

with

n := number of data samples dk ;

m :=
n∑
k=1

�C(Y (k));

n� :=
n∑
k=1

�S(X (k));

m� :=
n∑
k=1

(�S(X (k)) ∧ �C(Y (k))):

The ‘∧’ operator can be realized by one of the numerous fuzzy AND operators [16]. Most reasonably, it
should be the one that is also used to calculate �S(x(k)) from the individual degrees of activation of the
diFerent input values xi(k).

The real values m; n� and m� are inserted in the formulae of the crisp calculation of the con3dence intervals,
though the formulae are only de3ned for integer values of m; n� and m�. As an example, Fig. 4 shows the
resulting interpolation between the crisp values for the interval limit pu

� .

4. Fuzzy relevance test

It can immediately be questioned whether the above extension of the crisp algorithm actually gives mean-
ingful results. Therefore, a relevance test for fuzzy rules has been developed, using a statistical approach. It
examines rules of the form

IF S THEN C

where S represents a fuzzy input situation described by the membership function �S(X ) and C a fuzzy output
event described by the membership function �C(Y ).

In accordance with the methodology of the crisp relevance test, adequate probabilities and estimators must
be de3ned 3rst (Section 4.1). Afterwards, a method for calculating the con3dence intervals must be de-
veloped. In contrast to the crisp case, as the distributions of �S(X ) resp. �C(Y ) are not known, an exact
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Fig. 4. Interpolating values of the algorithmic extension (represented by small circles ‘·’) and crisp values (represented by big
circles ‘•’), examplarily shown for the interval limit pu

� : • · · · • n� = 20 (m� = 0; 0:25; 0:5; 0:75; 1; 1:25; : : : ; 20); · · · n� = 32:5
(m� = 0; 32:5

80 ;
2·32:5

80 ; 3·32:5
80 ; : : : ; 32:5), • · • n� = 40 (m� = 0; 0:5; 1; 1:5; 2; : : : ; 40), • • • n� = 80 (m� = 0; 1; 2; 3; : : : ; 80).

parametric calculation of the con3dence intervals is not possible. Nevertheless, two diFerent approaches can be
made [21]:
• a non-parametric calculation,
• an asymptotic calculation.
In Section 4.2, the 3rst approach is pursued by using a Bootstrap method for the calculation of the con3dence
intervals. In Section 4.3, the second approach is pursued by using the central limit theorem and the Fieller
method.

4.1. Probabilities and estimators for fuzzy events

Zadeh [23] de3nes the probability of a fuzzy event A by

P(A) =
∫
A
f(z) dz =

∫
R
�A(z)f(z) dz = E[�A(Z)];

where Z is the random variable, f(z) the density of Z; �A(Z) the membership function for the fuzzy event
A; and E[·] the expected value.

Other authors have been keen to take this suggestion [2,20]. In [20] it is proved that the KolmogoroF
axioms of a probability are ful3lled for 3nite event spaces.

On this basis, the probability of the fuzzy output event C is

P(C) = E[�C(Y )]:

The conditional probability of the fuzzy output event C under the fuzzy situation S is

P(C|S) =
P(C ∩ S)
P(S)

=
E[�C∩S(Y; X )]
E[�S(X )]

=
E[�C(Y ) ∧ �S(X )]

E[�S(X )]
with P(S) �= 0:

As the ‘∧’ operator, only the algebraic product

�C(Y ) ∧ �S(X ) = �C(Y )�S(X )
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makes sense in the 3eld of probabilities, as it is the only operator that can ful3l the following two statistical
equations [1]:
1. P(C ∩ S) + P( PC ∩ S) =P(S),
2. P(C ∩ S) =P(C)P(S) if C and S are independent fuzzy events
The complement is de3ned by � PC(Y ) = 1 − �C(Y ).

An estimator for the probability P(C) is [1,2]

p̂ =
1
n

n∑
k=1

�C(Y (k)) =
m
n
:

An estimator for the probability P(C|S) is

p̂� =
∑n

k=1 (�C(Y (k))�S(X (k)))∑n
k=1 �S(X (k))

=
m�
n�
:

For �C(Y (1)); : : : ; �C(Y (n)) i.i.d. and �S(X (1)); : : : ; �S(X (n)) i.i.d. it can be proved that p̂; m� and n� are
consistent and unbiased estimators [21]. They can be interpreted as average degrees of membership.

Comparing these estimators with those of the algorithmic generalization of the crisp relevance test for fuzzy
values; it can be seen that the formulae of the estimators are identical, if the algebraic product is chosen as
the ‘∧’ operator.

4.2. Bootstrap fuzzy relevance test

The Bootstrap methods are resampling methods suggested by Efron [3–5]. Among other applications,
they can serve to calculate con3dence intervals. The name Bootstrap is derived from one of the tales
of Baron von MQunchhausen, who is said to have pulled himself out of a swamp by his bootstraps. For
the relevance test, the non-parametric Bootstrap method BCa (bias-corrected and accelerated) [4,8] is
used.

From the n data samples dk = (x1(k); x2(k); : : : ; y(k)) represented by (d1; d2; : : : ; dk ; : : : ; dn); w random sam-
ples of the size n (called Bootstrap samples) are drawn with replacement:

(d∗(1)
1 ; d∗(1)

2 ; : : : ; d∗(1)
n );

(d∗(2)
1 ; d∗(2)

2 ; : : : ; d∗(2)
n );

...

(d∗(w)
1 ; d∗(w)

2 ; : : : ; d∗(w)
n ):

For each Bootstrap sample, the estimators for P(C) and P(C|S) are calculated:

p̂∗(1); p̂∗(1)
� ;

p̂∗(2); p̂∗(2)
� ;

...

p̂∗(w); p̂∗(w)
� :
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The Bootstrap replications p̂∗(1); : : : ; p̂∗(w) and p̂�
∗(1); : : : ; p̂�

∗(w) are sorted in ascending order. Then, the limits
of the one-sided con3dence intervals are the following:

pu = p̂∗(gu) (= the guth smallest value of p̂∗(1); : : : ; p̂∗(w));

po = p̂∗(go) (= the goth smallest value of p̂∗(1); : : : ; p̂∗(w));

pu
� = p̂∗(g�u)

� (= the g�uth smallest value of p̂∗(1)
� ; : : : ; p̂∗(w)

� );

po
� = p̂∗(g�o)

� (= the g�oth smallest value of p̂∗(1)
� ; : : : ; p̂∗(w)

� )

with

gu := trunc(�u(w + 1));

go := trunc(�o(w + 1));

g�u := trunc(��u(w + 1));

g�o := trunc(��o(w + 1));

trunc(v) := whole-numbered part of v:

The � values are calculated by the distribution function  of the standard normal distribution:

�u =  
(
ẑ0 +

ẑ0 + z(�)

1 − â(ẑ0 + z(�))

)
;

�o =  
(
ẑ0 +

ẑ0 + z(1−�)

1 − â(ẑ0 + z(1−�))

)
;

��u =  
(
ẑ�0 +

ẑ�0 + z(�)

1 − â�(ẑ�0 + z(�))

)
;

��o =  
(
ẑ�0 +

ẑ�0 + z(1−�)

1 − â�(ẑ�0 + z(1−�))

)
;

where z(�) and z(1−�) are, respectively, the �-; (1 − �)-quantile of the standard normal distribution; 1 − � is
the con3dence coeMcient; ẑ0 and ẑ�0 are the bias parameters; and â and â� are the acceleration parameters.

The bias parameters are calculated by the following quantiles of the standard normal distribution

ẑ0 = z

( r
w

)
;

ẑ�0 = z

( r�
w

)

where r is the number of Bootstrap replications p̂∗(·) that are lower than p̂, and r� the number of Bootstrap
replications p̂∗(·)

� that are lower than p̂�.
The acceleration parameters are calculated by

â =
∑n

l=1 (p̂(−) − p̂(l))3

6[
∑n

l=1 (p̂(−) − p̂(l))2]3=2
;

â� =

∑n
l=1(p̂

(−)
� − p̂(l)

� )3

6[
∑n

l=1(p̂
(−)
� − p̂(l)

� )2]3=2
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where p̂(l) and p̂(l)
� are the estimators on the basis of the lth Bootstrap sample (d1; : : : ; dl−1; dl+1; : : : ; dn); p̂

(−)

:= 1
n

∑n
l=1 p̂

(l), and p̂�
(−) := 1

n

∑n
l=1 p̂�

(l).
The BCa con3dence intervals are second-order accurate [17].
In this context, a fundamental disadvantage of the Bootstrap method is the necessary computing time,

as a minimum number of Bootstrap samples for the calculation of con3dence intervals is w= 1000 [5].
Consequently, for high values of n and a high number of IF=THEN statements the method is not practicable.

Diagrams such as Fig. 3 are not possible for the Bootstrap method as the results are dependent on concrete
data samples. Results are calculated for an example in Section 5.

4.3. Asymptotic fuzzy relevance test

The conventional distribution functions are not adequate for �S(X ) and �C(Y ). The beta distribution comes
nearest, as it has values between 0 and 1. However, it ignores that �S(X ) and �C(Y ) are partly discretely
(0; 1) and partly continuously (]0; 1[) distributed. Nevertheless, one could calculate con3dence intervals for
E[�C(Y )], which is distributed according to the sum of beta distributed variables. However, the resulting
distribution of the quotient E[�C(Y )�S(X )]=E[�S(X )] cannot be derived easily, so that con3dence intervals
for the conditional probability cannot be calculated.

Another possibility is to assume forthwith a distribution for E[�C(Y )] instead of for �C(Y ). According to
the central limit theorem [7], the distribution of the sum of any distributed variables converges to a normal
distribution for n converging to in3nity, so it can be shown that the following is valid:

1
n

∑n
k=1(�C(Y (k)) − E[�C(Y (k))])√

VAR[�C(Y (k))]

√
n n→∞∼ N(0; 1)

where n is the number of data samples dk ; VAR[·] the variance, and N(0; 1) the standard normal distribution.
An approximation to a normal distribution can already be obtained for smaller values of n. Experiments

with diFerent process data have shown that the approximation is suMciently close for more than 40 data
samples.

As a conclusion, pu and po can be calculated asymptotically for E[�C(Y )] for Y (1); : : : ; Y (n) i.i.d. by

pu = max
{

0;
m
n
− tn−1;1−�√

n
SC

}
;

po = min
{
m
n

+
tn−1;1−�√

n
SC; 1

}

with

n := number of data samples dk ;

tn−1;1−� := (1 − �) quantile of the t distribution with (n− 1) degrees of freedom;

1 − � := con3dence coeMcient;

SC :=

√√√√ 1
n− 1

n∑
k=1

(
�C(Y (k) − m

n

)2
(estimator for standard deviation);

m :=
n∑
k=1

�C(Y (k)):
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For the conditional probability, the calculation is more diMcult because of the quotient. According to the
central limit theorem, m� and n� are asymptotically and normally distributed. The Fieller method [6] can then
be applied for X (1); : : : ; X (n) i.i.d. and Y (1); : : : ; Y (n) i.i.d.

The following asymptotic con3dence limits result from this approach:

pu
� = max


0;

m�n�
n

− t2n−1;1−�SCS; S

n2
�

n
− t2n−1;1−�S

2
S

−

√√√√(m�n�
n2 − t2n−1;1−�

n
SCS; S

)2

−
((m�

n

)2
− t2n−1;1−�

n
S2
CS

)((n�
n

)2
− t2n−1;1−�

n
S2
S

)

(n�
n

)2
− t2n−1;1−�

n
S2
S




po
� := min



m�n�
n

− t2n−1;1−�SCS; S

n2
�

n
− t2n−1;1−�S

2
S

+

√√√√(m�n�
n2 − t2n−1;1−�

n
SCS; S

)2

−
((m�

n

)2
− t2n−1;1−�

n
S2
CS

)((n�
n

)2
− t2n−1;1−�

n
S2
S

)

(n�
n

)2
− t2n−1;1−�

n
S2
S

; 1




with

n := number of data samples dk ;

m� :=
n∑
k=1

�C(Y (k))�S(X (k));

n� :=
n∑
k=1

�S(X (k));

S2
CS :=

1
n− 1

n∑
k=1

(
�C(Y (k))�S(X (k)) − m�

n

)2
;

S2
S :=

1
n− 1

n∑
k=1

(
�S(X (k)) − n�

n

)2
;

SCS; S :=
1

n− 1

n∑
k=1

(
�C(Y (k))�S(X (k)) − m�

n

)(
�S(Y (k)) − n�

n

)
;
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tn−1;1−� := (1 − �) quantile of the t-distribution with (n− 1) degrees of freedom;

1 − � := con3dence coeMcient:

It can be shown that the result for the unconditional probability is a special case of the result for the conditional
probability with S =' and �' = 1 [21].

A main diFerence from the crisp relevance test is that the quantities m; n; m�; n� are not suMcient to cal-
culate the con3dence intervals. The estimated variances S2

C; S
2
S ; S

2
CS ; SCS; S are also necessary. Thus, for one

combination of m; n; m�; n� an in3nite number of values for the con3dence limits is possible.
For the unconditional probability, the smallest con3dence intervals are achieved for S2

C = 0. Then, the
con3dence limits are pu =po = p̂. The largest con3dence intervals are achieved if �C(Y (k))∈{0; 1} and
�S(X (k))∈{0; 1} are valid for all values of k. Then, the variance S2

C becomes maximum. So, the range of
values for the con3dence limits of p is given by

max

{
0;
m
n
− tn−1;1−�√

n(n− 1)

√
m− m2

n

}
6pu6

m
n

m
n
6po6min

{
m
n

+
tn−1;1−�√
n(n− 1)

√
m− m2

n
; 1

}
:

For the conditional probability, the smallest con3dence intervals are achieved for S2
S = 0; S2

CS = 0; SCS; S = 0.
Then, the con3dence limits are pu

� =po
� = p̂�. Analyses show that the largest con3dence intervals are achieved

if �C(Y (k))∈{0; 1} and �S(X (k))∈{0; 1} is valid for all values of k. Then, the variances S2
S ; S

2
CS ; SCS; S

become maximum. A proof has not yet been obtained. However, assuming the correctness of that relationship,
the range of values for the con3dence limits of p� is given by
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
:

The range of possible values for the conditional probability is almost identical to the range of possible values
for the unconditional probability if m� =m and n� = n. The diFerence becomes smaller as n� increases and n
decreases.

Example. In Fig. 5, the possible results for pu and po are shown as an example for n= 60 and 0¡m¡60.
The possible values for pu lie in the lower marked area and the possible values for po lie in the upper marked
area. The circles represent the results for �C(Y (k))∈{0; 1}∧ �S(X (k))∈{0; 1}.

For a more detailed view, a section of the upper area is presented in Fig. 6. The range of values of m is
38¡m¡41. The large circles are adopted from Fig. 5. The dotted line is the upper limit of po. The stars
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Fig. 5. Using the asymptotic fuzzy relevance test, the possible
values for the con3dence limits lie in the marked area (n= 60
and 0¡m¡60). The exact values of realization depend on the
estimated variances. The circles represent the results for crisp
degrees of membership.

Fig. 6. A section of the upper area of Fig. 5 is presented (n= 60
and 38¡m¡41). Exemplary values of the con3dence limit po

are calculated by the asymptotic fuzzy relevance test: The small
circles show how the con3dence limit po gets smaller, if the
degrees of membership are assimilated to each other until all
degrees of membership have the same value of 2=3. The stars
show that the con3dence limit po moves along the border of the
upper area if only one degree of membership is not crisp and
varies from 1 to 0.

represent the results for the following values of �C(y(k)):

�C(y(1)) = 0;

�C(y(2)) = 0;
...

�C(y(20)) = 0;

�C(y(21)) = 1;

�C(y(22)) = 1;
...

�C(y(59)) = 1;

�C(y(60)) = 1 − q=5
with q= 1; 2; 3; 4. The data samples are constructed in such a way that the value of p̂ is decreased iteratively
from 40=60 to 39=60 by changing only one data sample.

The small circles represent the results for the following values of �C(y(k)):

�C(y(1)) = 0 + r=12;

�C(y(2)) = 0 + r=12;
...

�C(y(20)) = 0 + r=12;
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Fig. 7. Comparison of the con3dence limits pu and po of the asymptotic fuzzy relevance test (represented by the marked area) and the
algorithmic extension (represented by the thin lines) for n= 60 and 0¡m¡ 60.

�C(y(21)) = 1 − r=24;

�C(y(22)) = 1 − r=24;
...

�C(y(60)) = 1 − r=24

with r= 1; 2; : : : ; 8. The data samples are constructed in such a way that p̂ remains constant 40
60 while all data

samples of zero (one) are simultaneously increased (decreased) until all data samples have the same value of
2
3 . For the conditional probability an equivalent diagram to Fig. 6 can be constructed.

Usually, the range of values leading to degrees of membership greater than zero is only a part of the whole
range of values covered by data samples. Then, the con3dence limits lie mainly near the maximum values.

As the calculations are asymptotic, problems arise for smaller numbers of data samples and here, especially,
for the calculation of pu

� if p̂�≈ 1 (positive rule) and for the calculation of po
� if p̂�≈ 0 (negative rule). This

results from the fact that for p̂� = 0 there is po
� = 0 and for p̂� = 1 there is pu

� = 1 independent of the number
of data samples. Consequently, rules that are correct for almost all data samples will be seen as relevant even
if the number of data samples is small.

5. Comparison

In this section, 3rst, the results of the algorithmic extension of the crisp relevance test are compared with
the results of the asymptotic fuzzy relevance test. Afterwards, a concrete set of data samples from a chemical
reactor is used to compare all three approaches by means of three examples of IF=THEN statements.

In Fig. 7 the interpolating values of po and pu of the algorithmic extension of the crisp relevance test are
represented, together with the possible values of po and pu of the asymptotic fuzzy relevance test of Fig. 5
(n= 60 and 06m660). The interpolating values of the crisp relevance test lie near the lower and upper limit
of possible values of the asymptotic fuzzy relevance test. A further comparison is interesting with respect to
the following two viewpoints:
• How good is the result of the asymptotic fuzzy relevance test in the special case of crisp sets (�C(Y (k))
∈{0; 1}∧ �S(X (k))∈{0; 1})?



356 A. Krone, H. Taeger / Fuzzy Sets and Systems 123 (2001) 343–358

Fig. 8. Comparison of the con3dence limits for process data of 206 data samples for three selected IF=THEN statements: ‘]’, ‘[’ results
of the algorithmic extension, ‘↑’ results of the Bootstrap fuzzy relevance test, ‘↓’ results of the asymptotic fuzzy relevance test. It can be
seen that the results of the asymptotic fuzzy relevance test are very good as the results of the Bootstrap fuzzy relevance test are always
nearby. The con3dence limits of the algorithmic extension of the crisp relevance test are more conservative.

The crisp relevance test supplies the exact results. The results of the asymptotic fuzzy relevance test are
given by the circles of Fig. 7. The diFerence between the results is the error of the asymptotic fuzzy
relevance test in the case of crisp sets. The error decreases monotonically to zero for increasing n.

• How good is the interpolation by the algorithmic extension of the crisp relevance test in the case of fuzzy
sets (�C(Y (k))∈ [0; 1]∧ �S(X (k))∈ [0; 1])?
The error is small if only a few of the data samples occur in the range of the fuzzy set of the input situation
and in the range of the fuzzy set of the output event. Then, the variances are high and the con3dence
limits are near the lower and upper limits of the possible values. If the data samples occur mainly at the
increasing or decreasing edge of the fuzzy set of the input situation and the fuzzy set of the output event,
the variances are low and the error is greater. Principally, trapezoidal fuzzy sets will lead to smaller errors
than triangular fuzzy sets, and fuzzy sets with low density to greater errors than fuzzy sets with high
density.

Using the algorithmic extension of the crisp relevance test, the con3dence intervals are mostly greater than
necessary. This can be interpreted as a conservative relevance test that corresponds to a minimum con3dence
coeMcient of 1 − �. Consequently, it can happen that statements are not accepted as rules that would be
accepted if an exact con3dence coeMcient of 1 − � is used.

In accordance with the more complex formula, the computing time of the asymptotic fuzzy relevance test
is a little longer than the computing time of the crisp relevance test, whereas the computing time of the
Bootstrap fuzzy relevance test is not practical for testing a higher number of statements. Nevertheless, the
Bootstrap fuzzy relevance test can be used to judge the results of the other two relevance tests, as it supplies
very good results [5,17].
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In Fig. 8, the results of the three relevance tests of three diFerent statements are shown. The con3dence
intervals are calculated with a con3dence coeMcient of 0:95. Measured by the results of the Bootstrap fuzzy
relevance test, the results of the asymptotic fuzzy relevance test are very good. The con3dence intervals of
the algorithmic extension of the crisp relevance test are larger. The 3rst two statements are seen as relevant
by all three tests as the con3dence intervals do not overlap. The 3rst statement represents a negative relevant
rule, the second statement a positive relevant rule. The third statement is seen as a positive relevant rule by
the fuzzy relevance tests, but not by the algorithmic extension of the crisp relevance test. Here, the larger
con3dence intervals cause an overlap.

6. Conclusions

In the 3eld of data-based fuzzy modelling, the incremental accumulation of single relevant rules allows
complex problems to be handled. To decide if an IF=THEN statement is a relevant rule a relevance test is
necessary. A statistical approach is given by the demand that the con3dence intervals of the probabilities p
and p� do not overlap – with p being the probability that the output event of the conclusion is true and p�
being the probability that the output event is true under the condition that the input situation of the premise
is true.

For crisp rule-based modelling the con3dence intervals can be calculated by conventional statistical formulae.
For fuzzy modelling, problems arise. Three diFerent solutions are proposed in this paper: an algorithmic
extension of the crisp relevance test, a Bootstrap fuzzy relevance test, and an asymptotic fuzzy relevance test.

The algorithmic extension is the quickest relevance test. It is best if many statements are tested and if
the conservativeness of the relevance test is not disadvantageous. This is the case if there is a multitude of
relevant redundant rules in the search space. In the other cases, the higher calculation eFort of the fuzzy
relevance tests will achieve the desired result. The asymptotic fuzzy relevance test is appropriate for more
than 40 data samples, and the Bootstrap fuzzy relevance test for few data samples and a small number of
statements to be tested.

The concept of the relevance test is successfully used in several industrial applications in the context of
the Fuzzy-ROSA method [12,15,19].
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