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Abstract - A staged approach to identify a com- 
pact fuzzy classification rule base from numeri- 
cal data is presented. First, the fuzzy rules are 
generated by adaptively clustering the input data 
and defining a relationship between cluster mem- 
bership values and class labels. Then, the clas- 
sification accuracy of the resulting fuzzy rules is 
enhanced by training a neuro-fuzzy network used 
to model the fuzzy classifier. Finally, the inter- 
pretability of the resulting fuzzy classifier is im- 
proved via a compression of the fuzzy rule base. 
Two well known data classification problems are 
considered to asses the validity of the approach. 

I .  INTRODUCTION 

A growing research topic is the identification of fuzzy 
rules from the available information about the domain 
knowledge of a specific task. Such fuzzy rules can be 
used to build up fuzzy controllers, fuzzy classifiers or to 
support decision making processes [l], [2], [3]. In many 
application tasks, fuzzy rules are manually derived from 
human expert knowledge, but this approach becomes im- 
practical when such a-priori knowledge is not available. 
Recently several methods have been proposed for auto- 
matically generate fuzzy rules from numerical data [4], 
[5], [6], [7], but few of them can be directly applied to 
pattern classification problems [5], [8], [9], [lo]. The main 
problem in classification tasks with high-dimensional pat- 
tern space is that the number of generated fuzzy rules 
may become vcry large. This makes hard a linguistic in- 
terpretation of the generated classification rules. There- 
fore the problem of finding a balance between the rule 
base size and the accuracy is of considerable importance. 

In this paper we propose a staged approach to con- 
struct a parsimonious but accurate fuzzy classification 
rule base from numerical data. In the first stage, fuzzy 
rules are generated by partitioning the input space into 
fuzzy regions (clusters), and defining a fuzzy rule for each 
using the cluster fuzzy membership and the target class 
labels. In the second stage, to enhance the classification 
rate of the resulting fuzzy classifier, the generated rules 
and their parameters are used to initialize the structure 
and the weights of a neural network which is trained to 
optimize the rule parameters. In the last stage, the in- 
terpretability of the rule base is improved by pruning off 

unnecessary rules and adjusting the remaining ones so 
that the classification rate remains unchanged. 

Preliminar experimental results over two well-known 
classification problems are presented. 

11. THE FUZZY CLASSIFICATION SCHEME 

In this section we outline the basics of thc adopted 
fuzzy reasoning scheme for pattern classification prob- 
lems. 

Let us consider a n-dimensional classification problcni 
for which P pattarns Z P  = (zy, ..., z:), p = 1 ,2 ,  ..., P arc 
given from m classes Cl, C2, ..., C,. The task of a pat- 
tern classifier is to assign a given pattern x to one of the 
m possible classes based on its features values. Thus, a 
classification task can be represented as a mapping 

$ : x c R" 4 ( 0 ,  l}m 

where +(%) = i? = (c l ,  ..., cm) such that ck = 1 and c, = 0 
( j  = 1 ,..., m , j  # k ) .  

To solve this classification problem we consider fuzzy 
rules of the following type: 

IF (zy is A:)  AND ... AND (z: is A;) THEN (c1 is b f )  
AND ... AND (c, is b h )  

for k = l . . .K ,  where K is the numbcr of fuzzy rulcs, 
A:(i = l . . .n) are fumy sets defined ovcr thc input vari- 
ables x$, and b," are fuzzy singletons defined ovcr thc 
membership value c3 of pattern 9' to class C,(j = 
1, ..., m) . 

Different types of membership functions can be used 
for the antecedent fuzzy sets. In this paper Gaussian 
membership functions are used because they are smooth 
unimodel functions which correspond well with heuristic 
fuzzy membership function and the parameterized math- 
ematical form aids computation and programming. The 
type of Gaussian function employed for antecedent fuzzy 
sets A;,  is in the form: 

where W i k  and C7,k are the center and the width of thc 
gaussian function, respectively. 
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Once a set of K rules are generated as described in the 
following section, they are used to classify an unknown 
pattern 2' = (zy , ..., z:) by an inference mechanism in 
which Larscn's product operator is used as fuzzy con- 
junction of fuzzy rules and sum is used as aggregation. 

The complete inference results are the class member- 
ship values for the pattern %': 

where 

j = 1,  ..., m 

n 

pk(%') = n p i k ( X B )  k = 1, ..., (3) 
i=l 

are the rule activation strengths. 
Thus the outputs t j  E [0,1] of the fuzzy classifier rep- 

resent the membership degree of the pattern to  class Cj . 
This yields to a "soft" (fuzzy) classification. To obtain 
hard classification, the highest component of the out- 
put vector is mapped to 1 while other components are 
mapped to 0. In other words, the pattern %' is assigned 
to the class Ct such that Et = max{21,22, ..., e m } .  

111. CREATING RULES FROM DATA 

The generation of fuzzy rules from the available data 
is made by clustering the input space (i.e. the number 
of obtained cluster prototypes results independent of the 
number of classes) and defining the logical relationship 
between the cluster membership values and the class la- 
bels. 

A. Clustering the input space 
The input space partition is made through an adap- 

tive clustering algorithm, similar to the one developed in 
[11]. The algorithm divides the input space into hyper- 
rectangles by applying a series of guillottine cuts. By 
a guillottine cut, we mean a cut which is made entirely 
across the subspace to be partitioned: each of the result- 
ing region can then be subjected to independent guillot- 
tine cuts. At the beginning of the kth step, the input 
space is partitioned into k hyper-rectangles. Then, an- 
other cut is applied to one of the hyper-rectangles to fur- 
ther partition the entire space into IC + l partitions. At 
each step, the strategy to decide which dimension to cut 
and where to cut it, is based on the use of two fuzzy clus- 
tering objective functions: a density measure J o  [12] and 
a typicality measure JT [3]. They are defined as follows: 

P P  K 

J D  = x { [ > : ( w p k  - W s k ) ' ]  - d ( e P ,  ~ s ) 2 } 2  
p = l s = l  k = l  

p = l  k=l 

Fig. 1.  Input space partition and derivation of membership 
tion parameters 

func- 

where Zk = ( z l k ,  ..., z , k )  is the center of the kth hyper- 
rectangle, d ( . ,  .) is the Euclidean distance, and W p k  is the 
membership value of the pth point 9' to  the kth hyper- 
rectangle, which is defined as: 

n ( X :  - Z i k ) ' )  

W p k  = exp (- 
i= 1 ah 

with parameters a i k  and Z i k  computed depending on the 
hyper-rectangle resulting from guillotine cuts. 

The use of these two objective functions allows to find a 
meaningful structure for the input fuzzy partition. Den- 
sity and typicality measures are closely relatcd to the 
support (i.e. the range of nonzero mcmbcrship valucs) 
and the core (the range of full membership values) of 
fuzzy sets, respectively. In order to obtain fuzzy sets 
with strong support (small J D )  and representative core 
(small J T )  we choose J = JD + JT as objective function 
for the fuzzy partitioning process. At each step, the value 
of J is computed for the fuzzy partitions resulting from 
all possible guillottine cuts, and then the partition with 
the least J value is selected as the next hypothesis to 
continue the partitioning process. 

Indeed, in our context we do not need to  find a perfect 
input space partition, for which the computational cost 
tends to be high, but just a satisfying partition which 
would result in a first approximation of the fuzzy rule 
base to be further enhanced. Accordingly, the partition- 
ing algorithm is stopped as soon as: 

IJT(k) - J T ( k  - 111 < E 

where E is small threshold. In this way, a fuxzy partition 
of the input space into K clusters is adaptivcly obtained. 

Each cluster center acts as a prototypical data point 
that represents the antecedent of a fuzzy rule. Calcu- 
lation of the rule parameters is dependent on the hyper- 
rectangle defined by a cluster (fig. 1). Precisely, from the 
components of the cluster center, we derive the centers of 
the Gaussian membership functions in the antecedents, 
that is the center W i k  of the i th  fuzzy set in the kth rule 
is defined as the i th  coordinate z i k  of the cluster cen- 
ter. Meanwhile the width of the Gaussian function f f i k  

is assigned to the value of the cluster radius, i.e. half 
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I I t r  
Fig 2 The  neuro-fuzzy network 

the length of the hyper-rectangle along the i th  compo- 
nent. Thus both the number of rules and their premise 
parameters come out from the algorithm. 

B. Computing the rule consequents 

To determine the rule consequent parameters a logical 
relationship between the structures (clusters) found in 
the input space and the class labels has to be specified. 
Specifically, this relation is defined using the information 
in the cluster membership values w p k ,  directly available 
from the clustering algorithm, and the target vectors 3' = 
(4,  ..., c%), for all p = 1, ..., P. 

Hence, the consequent values b: of the kth rule are 
obtained as follows: 

This relation takes into account how much patterns 
belonging to class Cj are covered by the kth cluster. 

Iv. TUNING RULES 

To enhance the generated fuzzy rule base in terms of 
classification rate, we tune both the antecedent mem- 
bership functions and the consequent values of each 
fuzzy rule through a supervised learning stage. To 
do this, the extracted rules and their parameters are 
used to determine the structure and to set the initial 
weights of a 4-layer feedforward neural network (fig. 2).  
The structure of the network is composed of a set of 
units L = L1 U L2 U L3 U L4 and a set of connections 
u = w u v .  

Units of the network have the following specifications: 
1. Units a E L1 simply supply input features zi(i = 
1, ..., n) to units in L2. 
2. Units ik E L2 compute membership values { p i k ( z i ) }  

according to (1). 
3. Units k E LJ compute rule activation strengths 
p k ( % ) ( k  = 1, ..., K )  according to (3). 
4. Units j E L4 compute the class membership values 
q ( j  = 1, ..., m) according to (2). 

The sets of connections are defined as follows: 

. Each connection ( i k , k )  E w is associated with a pair 
of weights ( W i k  , u i k )  corresponding to  center and width of 
the gaussian membership function p i k .  Each connection 
( k , j )  E V is associated with a weight ?&j corresponding 
to the j t h  consequent value in the kth rule. 

The training of this network performs an optimal ad- 
justment of weights ( w i k ,  u i k )  and ' u k j .  The learning al- 
gorithm is a back-propagation-like algorithm based on a 
gradient-descent technique [13], [14]. Given a training 
set T = { ( X P , F ) I X p  E X , b  E ( 0 ,  l}m}p=l ,..,, p ,  the goal 
is to minimize the error function E = 
E, = $ E,"=,(< - q)2 where q is the j t h  output of thc 
neuro-fuzzy network for pattern X P  and < is thc dcsired 
class label. The update formula for a generic weight CY is 
ACY = -7% where q is the learning rate. 

E,=, P E, with 

In summary, the learning algorithm is as follows. 

(*Rule Tuning Algorithm *) 
1. initialize weights w i j  E W and uij E W with center 
and width of membership functions determined by clus- 
tering 
2. initialize weights v k j  E V with degree values b: com- 
puted in (4) 
3. select the next sample (3',?') E T ,  propagate it 
through the neuro-fuzzy network and determine the out- 
put class membership values [<, ..., ?%] 
4. compute the error terms for units j E L4 

5. update weights V k J  E V by adding thc update yuantity 

6. compute the error terms for units k E L3 
m 

j = 1  

7. compute the error terms for units i k  E L2 

k = l  

8. update weights W i k  E W by adding the update quan- 
titv 
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9. update weights U &  E W by adding the update quan- 
titv 

10. if E < E then go to step 11. else go to step 3. 
11. End 

V. REDUCING RULES 

In this last stage, the enhanced fuzzy rule base is sim- 
plified to improve its interpretability while preserving the 
classification accuracy. The rule reduction procedure is 
an ext,cnded version of that we previously developed for 
simplifying neuro-fuzzy models [15]. 

The unnecessary rules are iteratively pruned off and 
thc remaining ones are adjusted so that the classification 
rate remains approximately unchanged. At each step, a 
rule is identified to be removed and the remaining ones 
are properly updated. Once a criterion has been defined 
to choose the rule to be removed, the rule reduction can 
be stated as follows. 

(* Rule Reduction Algorithm *) 
1. identify the unit h E L3 to be removed 
2. remove ingoing connections { (ih, h ) } i , , E ~ ~  
3. remove outgoing connections { (h ,  j ) }3E~4 
4. remove units E L 2  

5 .  remove unit h E L3 
6. update remaining weights { ? & j } k E L 3 , j E L 4  by adding 
appropriate adjusting factors 6 k J  (computed as specified 
bclow) 
7. if stopping condition’is met then go to step 8 else go 
to step 1 
8. End 

The update quantities 6 k j ’ s  are derived by imposing 
that the net input of each output unit j E L4 remains 
approximately unchanged after the elimination of unit 
h E L 3 .  This amounts to requiring that,  for each training 
pattern 9 and for each unit j E L4, the following relation 
holds: 

w k j P k ( ~ p )  = ( U k j  + ~ k j ) P k ( % p )  (5) 
kEL3 k E L 3 - { h )  

Simplc algebraic manipulations yield the following linear 
system: 

6 k , p k ( % ’ )  = v h j p h ( % p )  (6) 
k E L s - { h }  

The quantities Sk,’s are then computed by solving the 
linear system (6) in the least-squares sense throught an 
cfficicnt preconditioned Conjugate-Gradient method [16]. 
The criterion for identifying the unit (rule) to be removed 
at each step has been suggested by the adopted least- 
squares method. Such a method provides a better solu- 
tion with faster convergence if the system being solved 

has a small known term vector { v h J p h ( % p ) }  (in terms of 
Euclidean norm). Since in system (6) the known terms 
depend essentially on the unit h E LB being removed, 
our idea is to choose the unit for which the norm of the 
known term vector is minimum. The algorithm is stopped 
before the performance of the reduced nctwork worsens 
significantly. 

VI. EXPERIMENTAL RESULTS 

The performance of the proposed approach has bcen 
evaluated on two well known classification datascts: thc 
Iris data [17], and the Pima Indians Diabetes data [18]. 

A .  Iris data 

The classification problem of the Iris data consists of 
classifying three species of iris flowers (setosa: C1, ver- 
sicolor: C 2  and verginica: C3). A sample is a four- 
dimensional pattern vector ( 2 1 ,  x 2 , 2 3 , 2 4 )  representing 
four attributes of the iris flower (sepal length, sepal width, 
petal length, petal width). There are 150 samples for this 
problem, 50 of each class 3. This data set was divided 
into a training set and a test set. Both subsets were the 
same used in [8]. 

In the first stage of the proposed approach 14 fuzzy 
rules were extracted from the training set, resulting in a 
fuzzy classifier with a classification rate of 85.3%. Then, 
the accuracy of the generated fuzzy classifier was im- 
proved to 100% by training a 436-14-3 ncuro-fuzzy nct- 
work, whose weights were initialized with the prcmisc 
and consequence parameters of the identified rules. Sub- 
sequently, the enhanced rule base was reduced by simpli- 
fying the structure of the network until the classification 
rate over the test set worsened for more than 1%. Table I 
summarizes the classification rates of the fuzzy classifier 
obtained after the three stages of the proposed approach. 
It can be seen that 9 rules are removed while leaving 
completely unchanged the classification rate of the fuzzy 
system. Hence the method provided a fuzzy classifier 
with 5 rules (the final rules are depicted in fig. 3) and a 
classification rate of 94.6% on the test set. 

Fig. 3. The final fuzzy rules for the Iris Problem 
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TABLE I 
RESULTS OBTAINED AT EACH STAGE O F  THE PROPOSED APPROACH 

FOR IRIS DATA 

stage #rules % classification 
rule generation 14 85.3 

rule reduction 5 100.0 
rule tuning 14 100.0 

TABLE I1 
COMPARISON AMONG VARIOUS CLASSIFIERS FOR IRIS DATA IN TERMS 

OF GENERALIZATION 

classifier % # #  

Adaptive fuzzy classifier in [19] 93.3 5 28 

Neuro-fuzzy classifier in [21] . 97.3 2 10 
Our fuzzy classifier 94.6 4 5 

classification miscl. rules 
Fuzzy min-max network [8] 97.3 2 48 

Fuzzy classifier in [20] 97.3 2 17 

In Table I1 the performance of this fuzzy classifier was 
compared with other fuzzy classifiers on the same test 
set in terms of number of rules, number of misclassified 
patterns and classification rate. It can be seen that the 
fuzzy classifier defined by our method outperforms the 
other ones developed in literature in terms of simplicity, 
providing the smaller number of rulcs. 

Even though the method proposed in [5] generates a 
fuzzy classifier with a better accuracy (classification rate 
of 97 3%), the structure of the rule base is more com- 
plex (i e. 17 rules). Besides, the same authors obtain a 
number of misclassified test data equal to 6 (i.e. 92.0% 
classification rate) with the same number of rules as our 
final classifier (i e. 5 rules). 

B. Pama Indzans Dzabetes 

The data considered in this subsection were collected 
by US National Institute of Diabetes and Kidney Diseases 
[MI. A population of women of Pima Indian heritage who 
were at least 21 years old was tested for diabetes. For 
each woman the following variables were collected: 

number of pregnancies 
plasma glucose concentrations in an oral glucose toler- 

ance test 
diastolic blood pressure (mmHg) 
triceps skin fold thickness (mm) 
body mass index (weight in kg/(height in m)') 
diabetes pedigrec function 
age in years 

Thc training set and the test set consist of 200 patterns 
and 332 patterns, respectively. Both training and test set 
were taken from [18] who reports that the best classifi- 
cation methods for this problem provide about a 20% of 
falsc classification on the test set. 

Fig. 4. Final rule base for the Pima Indians Diabetes Problem 

TABLE 111 
RESULTS OBTAINED AT EACH STAGE OF THE PROPOSED APPROACH 

FOR PIMA INDIANS DATA 

stage #rules % classification 
Train set Test set 

rule generation 13 66.5 67.2 
rule tuning 13 72.5 76.0 

rule reduction 5 71.5 76.0 

For this classification problem, 13 fuzzy rules were ex- 
tracted after the first stage resulting in a fuzzy classifier 
with a classification rate of 66.5% on the training set. 
Then, the fuzzy classification rules were tuned to improve 
accuracy by training an appropriate neuro-fuzzy network 
initialized with the parameters of the 13 extracted rules. 
After training, the classification rate improved to 72.5% 
on the training set, resulting in a classification rate of 
76.0% over the test set. Finally, the rule reduction algo- 
rithm (stopped, again, when the classification rate over 
the test set worsened for more than 1%) rcduced the 
number of rules from 13 to 5 while leaving completely 
unchanged the classification rate of the fuzzy systcm 011 
the test set (see Table 111). 

The same results in terms of number of rules and classi- 
fication rate on the test set was obtained in [22]. However, 
it is worthwile noting that our approach provides this re- 
sults in a completely automatic fashion. Conversely, in 
[22] the number of rules is not automatically generated 
but several neurofuzzy networks with different number of 
rules must be trained in order to evaluate the best final 
classifier. 

VII. CONCLUSIONS 

In this paper a staged approach to automatically iden- 
tify a fuzzy classification rule base from numerical data 
has been described. Such an approach provides good so- 
lutions in terms of balance between rule base size and 
classification accuracy. Promising results on two well- 
known classification tasks have bccn obtaincd. Morc ex- 
tensive tests are in progress aiming at  evaluating thc pcr- 
formance of the approach to high dimensional classifica- 
tion problems. 
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