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Abstract

Recently, many different possibilities to extend the Linguistic Fuzzy Modeling have

been considered in the specialized literature with the aim of introducing a trade-off

between accuracy and interpretability. These approaches are not isolated and can be

combined among them when they have complementary characteristics, such as the hi-

erarchical linguistic rule learning and the weighted linguistic rule learning. In this paper,

we propose the hybridization of both techniques to derive Hierarchical Systems of

Weighted Linguistic Rules. To do so, an evolutionary optimization process jointly

performing a rule selection and the rule weight derivation has been developed. The

proposal has been tested with two real-world problems achieving good results.
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1. Introduction

One of the problems associated with Linguistic Fuzzy Modeling is its lack of

accuracy when modeling some complex systems. It is due to the inflexibility of

the concept of linguistic variable, which imposes hard restrictions to the fuzzy

rule structure [2]. A possible way to improve the linguistic fuzzy model per-

formance without losing interpretability to a high degree is to extend its usual

structure making it more flexible.

Many different possibilities to improve the Linguistic Fuzzy Modeling have

been considered in the specialized literature. All of these approaches share the
common idea of improving the way in which the linguistic fuzzy model per-

forms the interpolative reasoning by inducing a better cooperation between the

rules in the Knowledge Base. When these approaches have complementary

characteristics, they can be combined improving even more the system per-

formance. This is the case of the weighted [4,18,26,33] and the hierarchical [10]

linguistic rule learning approaches, when the two-level Hierarchical System of

Linguistic Rules Learning Methodology (HSLR-LM) is considered.

The hierarchical methodology was proposed as a first strategy to improve
simple linguistic fuzzy models, 1 preserving their structure and descriptive

power, and only reinforcing the modeling of those problem subspaces with

more difficulties by a hierarchical treatment of the rules generated in these

zones. Therefore, this approach was devoted to produce a more general and

well defined structure, the Hierarchical Knowledge Base (HKB) [10]. To obtain

the initial simple linguistic fuzzy models, the authors considered two simple

inductive Linguistic Rule Generation methods (LRG-method), the Wang and

Mendel’s algorithm [30] and the Thrift’s algorithm [29], but any other method
can be considered within the proposed approach.

On the other hand, since the said HKB is generated from an operation mode

guided by local error measures, repeated and/or multiple consequent rules

could be obtained. The use of rule weights as a local tuning of linguistic rules

enables the linguistic fuzzy models to cope with these kinds of rules in a better

way and thereby enhances the robustness, flexibility and system modeling ca-

pability [26]. In this way, the ability of this technique to indicate the interaction

level of each rule with the remaining ones is considered.
In this work, we propose the hybridization of the hierarchical scheme with

the use of rule weights by extending the two-level HSLR-LM proposed in [10].

The resulting Hierarchical System of Weighted Linguistic Rules (HSWLR),

presents a model structure which is extended by permitting the use of weighted

hierarchical linguistic rules. Besides, the summarization component – which has

the aim of selecting the subset of rules best cooperating among the rules gen-

1 Generated from any other learning method or from expert knowledge.
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erated to obtain the final HKB – is modified by allowing it to jointly perform

the rule selection and the rule weight derivation. A Genetic Algorithm (GA)
[22] performing the rule selection together with the derivation of rule weights

has been developed for this task. Hence, this extended methodology is intended

as a meta-method over any other LRG-method, developed to improve simple

linguistic fuzzy models by only reinforcing the modeling of those problem

subspaces with more difficulties while the use of rule weights improves the way

in which they interact.

This paper is organized as follows. In the next section, different possibilities to

improve the Linguistic Fuzzy Modeling are briefly presented. In Section 3, the
two-level HSLR-LM will be reviewed. This methodology will be extended in

Section 4 in order to obtain HSWLRs. Section 5 presents the GA performing the

rule selection together with the rule weight derivation. Experimental results are

shown in Section 6. In Section 7, some concluding remarks are pointed out.

Finally, a table with the used acronyms is presented in Appendix A.

2. Preliminaries: improving the linguistic fuzzy models

Linguistic Fuzzy Modeling has certain inflexibility due to the use of a global

semantic that gives a general meaning to the used fuzzy sets [2]. However, it is

possible to make some considerations to face this drawback. Many different

possibilities to improve the Linguistic Fuzzy Modeling have been considered in

the specialized literature. All of these approaches share the common idea of

improving the way in which the linguistic fuzzy model performs the interpo-

lative reasoning by inducing a better cooperation among the rules in the
Knowledge Base. This rule cooperation may be induced acting on three dif-

ferent model components:

• Approaches acting on the Data Base (DB):

� Linguistic fuzzy partition granularity learning [8,11]: This approach is de-

voted to determine the optimal number of linguistic terms used in the

variable fuzzy partitions, i.e., the granularity.

� Linguistic fuzzy partition membership function learning [9,17,27]: It in-

volves extracting the DB by induction from the available data set. This
process is usually performed by non-supervised clustering techniques,

or using GAs.

� Membership function tuning [13,14]: This approach, usually called DB

tuning, involves refining the membership function shapes from a previous

definition once the remaining components have been obtained.

� Linguistic modifier learning [12,20]: A linguistic modifier is an operator

that alters the membership functions of the fuzzy sets associated to the

linguistic labels, giving a more or less precise definition as a result de-
pending on the case.
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• Approaches acting on the Rule Base (RB):

� Rule selection [16,19]: It involves obtaining an optimized subset of rules
from a previous RB by selecting some of them.

� Multiple rule consequent learning [6,25]: This approach allows the RB to

present rules where each combination of antecedents may have two or

more consequents associated when it is necessary.

� Weighted linguistic rule learning [4,18,26,33]: This approach considers an

additional parameter for each rule that indicates its importance degree in

the inference process, instead of considering all rules equally important as

in the usual case.
� Rule cooperation [5]: This approach follows the primary objective of in-

ducing a better cooperation among the linguistic rules. To do so, the RB

design is made using global criteria that jointly consider the action of the

different rules.

• Approaches acting on the whole Knowledge Base:
� Knowledge Base derivation [21,28]: In this case, the process of designing

the DB is jointly developed with the derivation of the RB in a simulta-

neous procedure.
� Hierarchical linguistic rule learning [10,15]: This approach is devoted to

produce a more general and well defined structure, the HKB. In this way,

to improve the system accuracy, fuzzy rules consider linguistic terms that

are defined in linguistic fuzzy partitions with different granularity levels.

In this work, we will consider the use of rule weights together with a hier-

archical approach. In the following sections, these two approaches to relax the

model structure will be analyzed.

3. Hierarchical systems of linguistic rules

This approach, proposed in [10], is based on the HKB. This structure,

composed of a Hierarchical Data Base (HDB) and a Hierarchical Rule Base

(HRB), should be flexible enough to allow a wide variety of linguistic fuzzy

models, from very accurate to properly interpretable ones.

In this case, the main purpose of HSLRs is to preserve the descriptive abilities
of the usual linguistic fuzzy models, increasing their accuracy by the use of dif-

ferent hierarchical levels. All of this is done by simplifying the inference mech-

anism adopted by other previous hierarchical approaches [15,31], independently

activating each rule as it is done in the conventional fuzzy inference mechanism.

The description of the HKB and the two-level HSLR-LM process [10] to

generate two-layer HKBs will be introduced in the following sections. The

methodology will be extended in Section 4 in order to obtain HSWLRs (such

extension will allow the rule selection process to simultaneously address the
rule selection and the weight derivation).
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3.1. Hierarchical Knowledge Base

The HKB [10] is composed of a set of layers, and each layer is defined by its

components in the following way:

layerðt; nðtÞÞ ¼ DBðt; nðtÞÞ þ RBðt; nðtÞÞ;
with nðtÞ being the number of linguistic terms in the fuzzy partitions of layer t,

DBðt; nðtÞÞ being the DB which contains the linguistic partitions with granu-

larity level nðtÞ of layer t (t-linguistic partitions), and RBðt; nðtÞÞ being the RB
formed by those linguistic rules whose linguistic variables take values in

DBðt; nðtÞÞ (t-linguistic rules). For the sake of simplicity in the descriptions, the

following notation equivalences are established:

DBðt; nðtÞÞ � DBt and RBðt; nðtÞÞ � RBt:

At this point, we should note that in this work, we are using strong fuzzy partitions

(those inwhich the sumof themembershipdegreeswithin thevariabledomain iskept
to 1.0) with the same number of linguistic terms for all input-output variables,

composed of symmetrical triangular-shapedmembership functions (see Fig. 1). The

numberof linguistic terms in the t-linguisticpartitions isdefined in the followingway:

nðtÞ ¼ ðnð1Þ � 1Þ � 2t�1 þ 1;

with nð1Þ being the granularity of the initial fuzzy partitions.

Fig. 1 graphically depicts the way in which a linguistic partition in DB1

becomes a linguistic partition in DB2. Each term of order k from DBðt; nðtÞÞ,
SnðtÞk (Snð1Þk in the figure) is mapped into the fuzzy set S2�nðtÞ�1

2k�1 ; preserving the

Fig. 1. Two layers of linguistic partitions which compose the HDB.
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former modal points, and a set of n(t)-1 new terms is created, each one be-

tween SnðtÞk and SnðtÞkþ1 ðk ¼ 1; . . . ; nðtÞ � 1Þ (see Table 1).

The main purpose of developing an HRB is to model the problem space in a

more accurate way. To do so, those linguistic rules from RBðt; nðtÞÞ – RBt – that

model a subspace with bad performance are expanded into a set of more
specific linguistic rules, which become their image in RBðt þ 1; 2 � nðtÞ � 1Þ,
RBtþ1. This set of rules models the same subspace that the former one and

replaces it. As a consequence of the previous definitions, we could now define

the HKB as the union of every layer t:

HKB ¼
[
t

layerðt; nðtÞÞ:

The proposed HKB was initially designed to improve simple linguistic fuzzy

models, preserving their structure and descriptive power, and reinforcing only

the modeling of those problem subspaces with more difficulties by a hierar-

chical treatment of the rules generated in these zones. To do so, in this con-

tribution, we will just consider a two-layer HKB which allows us to produce a

refinement of simple linguistic fuzzy models by introducing small changes to

increase their accuracy.

3.2. A two-level HSLR learning methodology

In this section, we present the two-level HSLR-LM to generate two-layer

HKBs [10]. To do so, we use an existing inductive LRG-method based on the

existence of a set of input–output training data E ¼ fe1; . . . ; el; . . . ; eqg with

el ¼ ðexl1; . . . ; exln; eylÞ; and a previously defined DB1. In this work, we consider

the Wang and Mendel’s algorithm [30] as LRG-method to obtain simple lin-

guistic fuzzy models, although any other technique could be used (some exper-

iments with the Thrift’s algorithm [29] were also included in [10]). Two

measures of error are used in the algorithm:
1. Global measure (used to evaluate the complete RB): The Mean Square Error

(MSE) for a whole RB, calculated over E, is defined as

MSEðE;RBÞ ¼
P

el2Eðeyl � sðexlÞÞ2

2 � jEj

Table 1

Mapping between terms from successive DBs

DBðt; nðtÞÞ DBðt þ 1; 2 � nðtÞ � 1Þ

SnðtÞk�1 ! S2�nðtÞ�1
2k�3

S2�nðtÞ�1
2k�2

SnðtÞk ! S2�nðtÞ�1
2k�1

S2�nðtÞ�1
2k

SnðtÞkþ1 ! S2�nðtÞ�1
2kþ1
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with sðexlÞ being the output value obtained from the HLSR using the cur-

rent RB when the input variable values are exl ¼ ðexl1; . . . ; exlnÞ; and eyl is the

known desired value.

2. Local measure (used to determine if an individual rule is expanded): The

MSE for a simple rule, 2 Rnð1Þi , calculated over Ei, is showed as follows:

MSEðEi;Rnð1Þi Þ ¼
P

el2Eiðey
l � siðexlÞÞ2

2 � jEij
with Ei being a set of the examples matching the ith rule antecedents to

degree s 2 ð0; 1� and siðexlÞ being the output value from this rule.

The algorithm basically consists of the following steps, which are listed in

Table 2:
Step 0. RB1 Generation. Generate the rules from DB1 by means of an existing

LRG-method: RB1 ¼ LRG-methodðDB1;EÞ.
Step 1. RB2 Generation. Generate RB2 from RB1, DB1 and DB2.

(a) Calculate the error of RB1: MSEðE;RB1Þ.
(b) Calculate the error of each 1-linguistic rule: MSEðEi;Rnð1Þi Þ.
(c) Select the 1-linguistic rules with bad performance which will be ex-

panded (the expansion factor a may be adapted in order to have more or
less expanded rules):

If MSEðEi;Rnð1Þi ÞP a �MSEðE;RB1Þ Then Rnð1Þi 2 RB1
bad

Else Rnð1Þi 2 RB1
good .

(d) Create 3 DB2: DB2
xj

and DB2
y .

(e) For each bad performance 1-linguistic rule to be expanded:
(i) Select the 2-linguistic partition terms from DB2 that d-intersect the
ones of the bad performance 1-linguistic rules: IðRnð1Þi Þ 8Rnð1Þi 2 RB1

bad ,

where d 2 ½0; 1� is a cross level of ‘‘significant intersection’’.

(ii) Extract a candidate set of L 2-linguistic rules:

CLRðRnð1Þi Þ ¼ LRG� methodðIðRnð1Þi Þ;EiÞ ¼ fR2�nð1Þ�1
i1 ; . . . ;R2�nð1Þ�1

iL g:

Table 2

HSLR learning methodology

HIERARCHICALIERARCHICAL KNOWLEDGENOWLEDGE BASEASE GENERATIONENERATION PROCESSROCESS

Step 0. RBð1; nð1ÞÞ Generation Process
Step 1. RBð2; 2 � nð1Þ � 1Þ Generation Process
Step 2. Summarization Process

HIERARCHICALIERARCHICAL RULEULE BASEASE GENETICENETIC SELECTIONELECTION PROCESSROCESS

Step 3. HRB Selection Process

2 Notice that other local error measures, such as the one showed in [32] could also be considered.
3 DBt is referred to as DBtxj ðj ¼ 1; . . . ; nÞ; meaning that it contains the t-linguistic partition where

the input variable xj takes values, and as DBty for the output variable y.
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Step 2. Summarization. Obtain a Joined set of Candidate Linguistic Rules

(JCLR), performing the union of the group of the new generated 2-linguistic
rules and the former good performance 1-linguistic rules:

JCLR ¼ RB1
good [

[
i

CLRðRnð1Þi Þ
 !

; Rnð1Þi 2 RB1
bad:

In the following, we show an example of the whole expansion process. Let us

consider nð1Þ ¼ 3 and the following linguistic partitions:

DBx1ð1; 3Þ ¼ DBx2ð1; 3Þ ¼ DByð1; 3Þ ¼ S3;M3; L3
� �

;

DBx1ð2; 5Þ ¼ DBx2ð2; 5Þ ¼ DByð2; 5Þ ¼ VS5; S5;M5; L5; VL5
� �

;

where S stands for Small, M for Medium, L for Large, and V for Very. Let

us consider the following bad performance 1-linguistic rule to be expanded

(see Fig. 2):

R3
i : IF x1 is S3

i1 and x2 is S
3
i2 THEN y is B3

i ;

where the linguistic terms are: S3
i1 ¼ S3; S3

i2 ¼ S3;B3
i ¼ S3, and the resulting

sets I with d ¼ 0:5 are

IðS3
i1Þ ¼ VS5; S5

� �
; IðS3

i2Þ ¼ VS5; S5
� �

; IðB3
i Þ ¼ F ð�Þ � Dyð2; 5Þ;

IðR3
i Þ ¼ IðS3

i1Þ � IðS3
i2Þ � IðB3

i Þ:

Therefore, it is possible to obtain at most four 2-linguistic rules generated by

the LRG-method from the expanded R3
i :

LRGðIðR3
i Þ;EiÞ ¼ R5

i1;R
5
i2;R

5
i3;R

5
i4

� �
:

This example is graphically showed in Fig. 2. In the same way, other bad

performance neighbor rules could be expanded simultaneously.

Step 3. HRB selection. Simplify the set JCLR by removing the unnecessary

rules from it and generating an HRB with good cooperation. In the JCLR –
where rules of different hierarchical layers coexist – it may happen that a

complete set of 2-linguistic rules which replaces an expanded 1-linguistic rule

does not produce good results. However, a subset of this set of 2-linguistic

rulesmay work properly. A genetic process is considered to put this task into

effect, but any other optimization technique could be considered:

HRB ¼ Selection ProcessðJCLRÞ:
It is based on a binary coded GA where each gene indicates whether a rule is

selected or not (alleles ‘1’ or ‘0’, respectively). The stochastic universal sampling
procedure [3] together with an elitist selection scheme (considering the MSE as

fitness) and the two-point crossover together with the uniform mutation op-

erators are used. In this way, considering the m rules contained in JCLR,

C ¼ ðc1; . . . ; cmÞ represents a subset of rules for the HRB, such that:
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IF ci ¼ 1 THEN ðRi 2 HRBÞ ELSE ðRi 62 HRBÞ:

After applying this algorithm, the HKB is obtained as

HKB ¼ HDBþ HRB:

Remark 1. As a consequence of the previous DB2 generation policy, which is

based on selecting those terms in DB2 which significantly intersect the ones of

the bad rule, at least two different kinds of special linguistic rules can appear
from the HKB Generation Process. On the one hand, repeated 2-linguistic rules
can be generated as a consequence of the expansion of adjacent bad t-linguistic
rules. On the other hand, double-consequent 2-linguistic rules (those with the

Fig. 2. Example of the HRB Generation Process.
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same antecedent and different consequents) can be derived because of the same

reason. Both of them can be intended as a local reinforcement of the problem
space zones with a high complexity.

In the following section, we will be back on these kinds of rules showing the

way in which they can be interpreted and how the use of rule weights can –

positively – affect to them (see Sections 4.2.1 and 4.2.2).

3.3. Trade-off between accuracy and complexity

In many cases, the accuracy is not the only requirement of the model and the

interpretability becomes an important aspect. Reducing the model complexity

is a way to improve the system readability, i.e., a system with a minor number

of rules requires a minor effort to be interpreted. In the following, we introduce

a modification of the fitness function of the GA (see Step 3 of the algorithm)

as a trade-off Accuracy-Complexity-oriented policy (AC-oriented selection

policy) of the hierarchical model [16] in order to add another interestingness

relation to enrich the modeling process.
Let us consider the following function F 0ðCjÞ which penalizes those RBs

with a high number of rules in the following way:

F 0ðCjÞ ¼ w1 � F ðCjÞ þ w2 � Nj
rules

with F ðCjÞ being the former fitness function based on the error produced by the
current HRB encoded in the chromosome Cj, Nj

rules being the number of rules

of that HRB, and with w1 and w2 being weights defining the relative impor-

tance of each objective. In the present experiments, these coefficients are ini-

tialized as follows [9]:

w1 ¼ 1:0; w2 ¼ 0:1 � MSEinitial

Ninitial rules

with MSEinitial and Ninitial rules respectively being the error and the amount of

rules of the original HRB to be summarized.

This policy is also viewed as a kind of post-pruning [23] which, in the

methodology context, does not only consider the quality of the approxima-

tion performed by each rule but also the global cooperation among them for

selecting rules in order to increase the generalization power of the system

modeled.

4. Introducing weights in the HSLR-LM

It is known that the use of rule weights as a local tuning of linguistic rules

enables the linguistic fuzzy models to cope with redundant or inconsistent rules
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and thereby enhances the robustness, flexibility and system modeling capability

[26]. Hence the ability of this technique to indicate the interaction level of each
rule with the remaining ones is considered, improving the global cooperation.

The hybridization of weighted rules and the two-level HSLR-LM could

result in important improvements of the system accuracy, maintaining the

interpretability to an acceptable level. To do so, the two-level HSLR-LM will

be extended in order to obtain two-layer HSWLRs. This extension of the

learning methodology will be named two-level HSWLR Learning Methodo-

logy (HSWLR-LM) and consists of two modifications:

• Modification of the HRB structure and Inference System, in order to consider
the use of weights, obtaining Weighted HKBs (WHKBs).

• Modification of the rule selection process (Step 3 of the two-level HSLR-LM
algorithm) to consider the derivation of rule weights.

This section is organized as follows. First, the use of weighted linguistic rules

is introduced. Then, the way to consider repeated and double-consequent rules

in HSWLRs is analyzed. Finally, the WHKB structure and the two level

HSWLR-LM algorithm are presented.

4.1. The use of weighted linguistic rules

Using rule weights [4,26,33] has been previously considered for two main

directly related reasons:

• To handle repeated and multiple consequent rules. Considering these kinds of

rules may be intended as a local reinforcement of the problem space zones

presenting a higher complexity. The use of rule weights can deal with the

modeling of these subspaces in a better way [4,33], improving the way in
which they interact.

• To improve the model accuracy. In Linguistic Fuzzy Modeling, the tuning of

any fuzzy set will influence all rules that involve it. Rule weights suppose an

effective extension of the conventional fuzzy reasoning process that allows

the tuning of the system to be developed at the rule level [26,4].

It is clear that both approaches improve the accuracy of the learned model

since they induce a good cooperation among rules. However, they come with the

drawback of a small interpretability losswhich lies in the difficulty to interpret the
actual action performed by each rule in the interpolative reasoning process [24].

However, from other point of view (rule level), when weights are applied to

complete rules, the corresponding weight is used to modulate the firing strength

of a rule in the process of computing the defuzzified value. For human beings,

it is very close to consider this weight as an importance degree associated to the

rule, determining how this rule interacts with its neighbor ones. We will follow

this approach, since the interpretability of the system is appropriately main-

tained. In addition, we will only consider weight values in ½0; 1� since this
preserves the model readability. In this way, the use of rule weights represents
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an ideal framework for extended Linguistic Fuzzy Modeling when we are

searching for a trade-off between accuracy and interpretability.

4.1.1. Weighted rule structure and inference system

As said, rule weights will be applied to complete rules. In order to do so, we

will follow the weighted rule structure and the inference system proposed in

[26]:

IF X1 is A1 and . . . and Xn is An THEN Y is B with ½w�;
where XiðY Þ are the linguistic input (output) variables, AiðBÞ are the linguistic

labels used in the input (output) variables, w is the real-valued rule weight, and

with is the operator modeling the weighting of a rule.

With this structure, the fuzzy reasoning must be extended. The classical

approach is to infer with the FITA (First Infer, Then Aggregate) scheme [1]

and to compute the defuzzified output as the following weighted sum:

y0 ¼
P

i mi � wi � PiP
i mi � wi

with mi being the matching degree of the ith rule, wi being the weight associated

to it, and Pi being the characteristic value of the output fuzzy set corresponding

to that rule. In this contribution, the center of gravity will be considered as

characteristic value [1].

4.1.2. An example of learning process for weighted FRBSs

A simple approximation for weighted rule learning would consist of the

following two steps – we will use this process in our experiments for com-

parison purposes, calling it WRL:
(1) Firstly, a preliminary fuzzy rule set is derived considering a specific gen-

eration process. In this work, the generation process proposed by Wang and

Mendel [30] is considered.

(2) Then, a learning algorithm is used to derive the associated weights of the

previously obtained rules. A real-coded GA where each gene indicates the

corresponding rule weight may be considered as learning algorithm. 4

4.2. Handling repeated and multiple consequent rules in HSLRs using weights

As said in the previous section, rule weights present an ideal framework to

consider repeated and multiple consequent rules (see Fig. 3) improving the way

4 The stochastic universal sampling procedure together with an elitist selection scheme

(considering the MSE as fitness) and the max–min-arithmetical crossover [14] (see Section 5.3)

together with the uniform mutation operators are considered.
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in which these rules cooperate. In this section, we will see how these kinds of

rules can be interpreted from a linguistic point of view. Besides, we will also
analyze how the use of rule weights affects to them.

4.2.1. Repeated rules

More than one copy of a rule in the same layer can be produced as a

consequence of the generation process (Steps 0, 1 and 2). To illustrate this

situation, consider the two dark grey squares in Fig. 3 with the 2-linguistic rule:

IF X1 is M5 and X2 is VL5 THEN Y is M5;

which are both derived from the expansion of R3
2 and R3

4. The overlapping of

the expanded rule images is produced by low values of the parameter d (see

Step 1.(c) i. in the algorithm). We experimentally compared the effect of the

exclusion of those repeated rules in the input to the selection process of the
HSLR-LM by modifying the algorithm in the following way:

HRB ¼ SelectionðExtract RepeatedðJCLRÞÞ

However, results showed that the models obtained by the use of repeated rules

performed the best approximation in training. This means that although the

Fig. 3. Repeated and double-consequent rules.
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Selection Process has the chance to eliminate all those redundant rules,

sometimes it preserves some of them producing a sort of reinforcement on the
whole subspace of the rule, like a global refinement action. This fact can be

interpreted as a weight on that rule by using the extended fuzzy reasoning

model presented in Section 4.1 with wi being the number of times that the ith
rule is repeated:

IF X1 is M5 and X2 is VL5 THEN Y is M5 with ½w ¼ 2�;

In this work, we will consider this approach (which theoretically should

obtain equivalent models with the same accuracy level). To do so, repeated

rules are excluded of the HKB by obtaining an equivalent HSWLR without
them:

Equivalent Weighted HRB ¼ ðExtract RepeatedðJCLRÞ þWeightsÞ:

To obtain an equivalent system without repeated rules, we maintain a single

instance for each rule, with wi being the sum of the weights of the corre-

sponding repeated rules. Other equivalent HSWLR could be found with

wi 2 ½0; 1� by means of a normalization process over the weights. In this way,
the number of rules is decreased maintaining the same accuracy level, as we will

clearly show in the experiments developed (see Section 6.2).

4.2.2. Double consequent rules

As well as we have considered the existence of repeated linguistic rules in the

previous section, we can also observe that some of the learned rules have

multiple consequents (see the two light grey squares in Fig. 3). This pheno-

menon is an extension of the usual linguistic fuzzy model structure which

allows the RB to present rules where each combination of antecedents may

have two or more consequents associated. The consideration of these kinds of

rules may be intended as a local reinforcement of the problem space zones
presenting high complexity. Therefore, as shown in [6,25], considering some

rules with multiple consequents could improve the global system behavior.

In this way, we should note that these kinds of rules do not constitute an

inconsistency from the Linguistic Fuzzy Modeling point of view but only a

shift of the main labels making the final output of the rule lie in an intermediate

zone between the most distant consequents. It is the case of the double-con-

sequent linguistic rules [6]. For example, we can consider the specific combi-

nation of antecedents of Fig. 3, ‘‘X1 is S5 and X2 isM5’’, which has two different
consequents associated, S5 and M5. The resulting double-consequent rule may

be interpreted as follows:

IF X1 is S5 and X2 is M5 THEN Y is between S5 and M5;
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whose output is exactly the middle point between these two consequents,

y0 ¼
mi � dðS5Þ þ mi � dðM5Þ

mi þ mi
¼ dðS5Þ þ dðM5Þ

2
:

Of course, notice that when these double-consequent rules interact with their

neighbor ones, the output is not the middle point between both consequents

but it is shifted according to the firing strengths of those neighbor rules.

The use of rule weights can deal with these kinds of fuzzy rules in a better

way, since it is not necessary to discard the multiple consequents when they

present useful information. It improves the way in which they interact and

thereby the model accuracy. In this way, the use of weights flexibilizes the rule
structure, whose output lies in an explicit point between the most distant conse-
quents which is determined by the corresponding rule weights. This is the case

when double-consequent rules are presented:

y0 ¼
mi � wi � dðS5Þ þ mi � w0

i � dðM5Þ
mi � wi þ mi � w0

i
¼ wi � dðS5Þ þ w0

i � dðM5Þ
wi þ w0

i
:

4.3. Weighted Hierarchical Knowledge Base

In this case, only the rule structure in the HRB has to be modified. The same
structure of the weighted linguistic rules will be used to form the Weighted

HRB (WHRB) and then the WHKB:

WHKB ¼ HDB þ WHRB:

Therefore, the fuzzy reasoning process must be extended as in the case of

weighted linguistic rules, considering the matching degree of the rules fired (see
Section 4.1.1).

In this way, we can define the WHRB as a whole HRB together with their

corresponding rule weights:

WHRB ¼
[
t

RBt þ
[
t

W t:

with W t being the set of weights associated to the rules from layer t. We should

notice that these weights are obtained over the whole HRB (and not over the

isolated layers) since they must consider the way in which all the rules interact,

i.e., the weights considered in the different layers, W t, are interdependent.
Therefore, they must be jointly derived once the whole HRB is available.

4.4. Algorithm

The same operation mode of the two-level HSLR-LM algorithm will be

followed to generate linguistic fuzzy models with this new structure, but

including the weight learning. Again, we consider the Wang and Mendel’s
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algorithm [30] as LRG-method to obtain simple linguistic fuzzy models, al-

though any other technique could be used. Therefore, the main steps of the

extended algorithm will be the following ones:

HIERARCHICALIERARCHICAL KNOWLEDGENOWLEDGE BASEASE GENERATIONENERATION PROCESSROCESS

Step 0. RBð1; nð1ÞÞ Generation Process
Step 1. RBð2; 2 � nð1Þ � 1Þ Generation Process
Step 2. Summarization Process! ðExtract RepeatedðJCLRÞ þ WeightsÞ:
HIERARCHICALIERARCHICAL RULEULE BASEASE GENETICENETIC SELECTIONELECTION PROCESSROCESS

Step 3. Genetic Weight Derivation and Rule Selection Process.
• Genetic selection of a subset of rules presenting good cooperation.

• Genetic derivation of the weights associated to these rules.

Fig. 4 presents the flowchart of this algorithm. In the next section, the Step 3

of the two-level HSWLR-LM will be explained in deep.

5. Genetic weight derivation and rule selection process

The proposed GA must consider the use of binary (rule selection) and real

values (weight derivation) in the same coding scheme. As we will see, a double

coding scheme will be used considering integer and real genes, and therefore

appropriate genetic operators for each part of the chromosome are considered.

Fig. 4. HSWLR Learning Methodology.
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In the following, the main characteristics of this genetic approach are pre-

sented.

5.1. Coding scheme and initial gene pool

A double coding scheme (C ¼ C1 þ C2) for both rule selection and weight
derivation is used:

• For the C1 part, the coding scheme generates binary-coded strings of length
m (the number of single fuzzy rules in the previously derived rule set). De-

pending on whether a rule is selected or not, the alleles ‘1’ or ‘0’ will be re-

spectively assigned to the corresponding gene. Thus, the corresponding part

Cp1 for the pth chromosome will be a binary vector representing the subset of

rules finally obtained.

• For the C2 part, the coding scheme generates real-coded strings of length m.

The value of each gene indicates the weight used in the corresponding rule.

They may take any value in the interval ½0; 1�. Now, the corresponding part
Cp2 for the pth chromosome will be a real-valued vector representing the

weights associated to the fuzzy rules considered.

Finally, a chromosome Cp is coded in the following way:

Cp1 ¼ ðcp11; . . . ; c
p
1mÞ j c

p
1i 2 f0; 1g;

Cp2 ¼ ðcp21; . . . ; c
p
2mÞ j c

p
2i 2 ½0; 1�;

Cp ¼ Cp
1C

p
2 :

Once an equivalent HSWLR without repeated rules has been considered, the

initial pool is obtained with an individual having all genes with value ‘1’ in both

parts, and the remaining individuals generated at random:

8k 2 f1; . . . ;mg; c11k ¼ 1 and c12k ¼ 1:0:

5.2. Evaluating the chromosome

To evaluate the pth chromosome, we will follow one of the two policies

proposed in Section 3.3, by using the corresponding fitness functions, F ðCpÞ –

accuracy – oriented policy – or F 0ðCpÞ – AC-oriented policy:

F ðCpÞ ¼ MSEðE;RBðCpÞÞ ¼
P

el2Eðeyl � sðexlÞÞ2

2 � Ej j ;

F 0ðCpÞ ¼ w1 � F ðCpÞ þ w2 � Np
rules:

In this case, sðexlÞ – the output value obtained from the RB encoded in Cp –

will be computed following the extended fuzzy reasoning process in order to

consider the rule weights influence.
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5.3. Genetic components

The different components of the GA are introduced as follows:

Selection and reproduction: The selection probability calculation follows

linear ranking [3]. Chromosomes are sorted in order of raw fitness, and then

the selection probability of each chromosome, psðCpÞ, is computed according to

its rank, rankðCpÞ – with rankðCbestÞ ¼ 1, by using the following non-increasing

assignment function:

psðCpÞ ¼
1

NC

� gmax

�
� ðgmax � gminÞ �

rankðCpÞ � 1

NC � 1

�
;

where NC is the number of chromosomes and gmin 2 ½0; 1� specifies the expected
number of copies for the worst chromosome (the best one has gmax ¼ 2 � gmin

expected copies). In the experiments, gmin ¼ 0:75.
The classical generational [22] scheme has been considered in this algorithm.

In this way, linear ranking is performed along with stochastic universal sam-
pling [3]. This procedure guarantees that the number of copies of any chro-

mosome is bounded by the floor and by the ceiling of its expected number of

copies. Together with the Baker’s stochastic universal sampling procedure, an

elitist mechanism (that ensures to maintain the best individual of the previous
generation) has been considered.

Genetic operators: crossover and mutation: Due to the different nature of the

chromosomes involved in the WHRB definition process, different operators

working in each part, C1 and C2, are required. Taking into account this aspect,

the following operators are considered.

The crossover operator will depend on the chromosome part where it is

applied: in the C1 part, the standard two-point crossover is used, whilst in the

C2 part, the max–min-arithmetical crossover [14] is considered.
The two-point crossover involves interchanging the fragments of the parents

contained between two points selected at random (resulting two descendents).

On the other hand, using the max–min-arithmetical crossover in the second

parts, if Cv2 ¼ ðcv21; . . . ; cv2k; . . . ; cv2mÞ and Cw2 ¼ ðcw21; . . . ; cw2k; . . . ; cw2mÞ are going to

be crossed, the resulting descendents are the two best of the next four offspring:

O1
2 ¼ aCw2 þ ð1 � aÞCv2;

O2
2 ¼ aCv2 þ ð1 � aÞCw2 ;

O3
2 with c32k ¼ minfcv2k; cw2kg;

O4
2 with c42k ¼ maxfcv2k; cw2kg

with a 2 ½0; 1� being a constant parameter chosen by the GA designer.

In this case, eight offspring are generated by combining the two ones from
the C1 part (two-point crossover) with the four ones from the C2 part (max–
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min-arithmetical crossover). The two best offspring so obtained replace the two

corresponding parents in the population.

As regards the mutation operator, it flips the gene value in the C1 part and

takes a value at random within the interval ½0; 1� for the corresponding gene in
the C2 part.

Fig. 5 shows the application scope of these operators.

6. Experiments

In this section, we will analyze the performance of the linguistic fuzzy

models generated from the proposed two-level HSWLR-LM, when solving two
real-world problems [7]. They will be compared to the models designed by the

following methods: the well-known ad hoc data-driven method proposed by

Wang and Mendel [30] (calling it as WM), the original two-level HSLR-LM

method [10] and the WRL method presented in Section 4.1.2. From now on, a

reference to an application of any of these methods will be represented by the

following expression:

methodðr½; q�Þ
with r (and q in the case of the hierarchical-based methods) being the granu-

larity level of the linguistic partitions used in the method.

The linguistic partitions considered are comprised by three or five linguistic
terms with triangular-shaped fuzzy sets giving meaning to them. These lin-

guistic terms are labeled from l1 to l5, for the 5-linguistic partition, standing l1
and l2, for very small, and small l3, for medium, and l4 and l5, for large and

very large, respectively. In order to ease the comparisons in the decision tables,
the linguistic terms in the 3-linguistic partitions will be labeled as L1, L3 and L5

whose modal points are the same that the ones for l1, l3 and l5 (see Section 3.1).

With respect to the fuzzy reasoning method used, we have selected the

minimum t-norm playing the role of the implication and conjunctive operators,

and the center of gravity weighted by the matching strategy acting as the de-

fuzzification operator [1].

Fig. 5. Genetic representation and operators’ application scope.
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Finally, the values of the parameters used in all of these experiments are

presented as follows:
• Hierarchical generation: 0.1 as d-(2�n-1)-linguistic partition terms selector, 0.5

as s – used to calculate Ei, and 1.1 as a – used to decide the expansion of rule.

• Genetic weight derivation and rule selection process: 61 individuals, 2000 gen-

erations, 0.6 as crossover probability, 0.2 as mutation probability per chro-

mosome, and 0.35 for the factor a in the crossover operator. The same

parameters (excluding the a factor and with 1000 generations) are consid-

ered for the selection process of the original two-level HSLR-LM method.

• WRL: 61 individuals, 2000 generations, 0.6 as crossover probability, 0.2 as
mutation probability per chromosome, and 0.35 for the factor a in the max–

min-arithmetical crossover.

6.1. Estimating the length of low voltage lines

For an electric company, it may be of interest to measure the maintenance

costs of its own electricity lines. These estimations could be useful to allow

them to justify their expenses. However, in some cases these costs cannot be
directly calculated. The problem comes when trying to compute the mainte-

nance costs of low voltage lines and it is due to the following reasons. Although

maintenance costs depend on the total length of the electrical line, the length of

low voltage lines would be very difficult and expensive to be measured since

they are contained in little villages and rural nuclei. The installation of these

kinds of lines is often very intricate and, in some cases, one company can serve

to more than 10 000 rural nuclei.

Due to this reason, the length of low voltage lines cannot be directly com-
puted. Therefore, it must be estimated by means of indirect models. The

problem involves relating the length of low voltage line of a certain village with

the following two variables: the radius of the village and the number of users in
the village [7]. We were provided with the measured line length, the number of

inhabitants and the mean distance from the center of the town to the three

furthest clients in a sample of 495 rural nuclei.

In order to evaluate the models obtained from the different methods con-

sidered in this paper, this sample has been randomly divided into two subsets,
the training set with 396 elements and the test set with 99 elements, the 80% and

the 20% respectively. The existing dependency of the two input variables

with the output variable in the training and test data sets is shown in Fig. 6

(notice that they present strong non-linearities). Both data sets considered are

available at http://decsai.ugr.es/�casillas/fmlib/.

The results obtained by the four methods analyzed are showed in Table 3,

where #R stands for the number of rules, and MSEtra and MSEtst for the error

obtained over the training and test data respectively. The best results are
showed in boldface in each table. These results were obtained for an AMD K7
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(Athlon) with clock rate of 1500 MHz and 256 MB of main memory. The run

times for HSWLR(3,5) and AC-HSWLR(3,5) were 10 and 7 min.

The decision tables of the models obtained by the studied methods are

presented in Figs. 7–10. In the left-hand side of these figures, each cell of the

tables represents a fuzzy subspace and contains its associated output conse-

quent(s), i.e., the correspondent label(s) together with its(their) respective

rounded rule weight(s). The absolute importance weight for each fuzzy rule has

Fig. 6. (a) (X1; Y ) and (X2; Y ) dependency in the training data; (b) (X1; Y ) and (X2; Y ) dependency in

the test data.

Table 3

Results obtained in the low voltage line problem

Method #R MSEtra MSEtst

WM(3) 7 594,276 626,566

WM(5) 13 298,446 282,058

WRL(3) 7 231,917 230,035

WRL(5) 13 242,680 252,483

HSLR(3,5) 12 178,950 167,318

AC-HSLR(3,5) 11 180,111 166,210

HSWLR(3,5) 13 161,632 151,259

AC-HSWLR(3,5) 9 163,406 156,434
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been graphically showed by means of the grey colour scale, from black (1.0) to

white (0.0). In this way, we can easily see the importance of a rule with respect
to their neighbor ones which could help the system experts to identify important

rules.

On the other hand, in the right-hand side of these figures, an expert inter-

pretation of the relative importance of the rules is presented as regards their

influence in the modeling of the respective problem space zone. Three kinds of

rules are represented in the figure:

Fig. 8. Decision table of the model obtained from HSLR(3,5).

Fig. 7. Decision table of the model obtained from WRL with five labels.
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• Significant or important rules: Those in black, corresponding to rules that

have a higher weight than their neighbors or rules that are the ones of their
regions.

Fig. 9. Decision table of the model obtained from HSWLR(3,5).

Fig. 10. Decision table of the model obtained from AC-HSWLR(3,5).

R. Alcal�aa et al. / Internat. J. Approx. Reason. 32 (2003) 187–215 209



• Cooperative rules: Those in grey, representing rules that have a more or less

similar weight than their neighbor ones.
• Complementary rules: Those in white (with waves), representing rules that

have a lower weight than their neighbor ones.

Figs. 7 and 8 respectively show the decision tables of WRL and HSLR-LM, the

previous approaches performing improved Linguistic Fuzzy Modeling.

In view of the results obtained in the above experiments and analyzing the

presented decision tables, we will point out some important conclusions and

features of the proposed methodology.

However, before continuing, we should remark that all the features of the
HSLR-LM [10] remain in the new methodology. Thus, we will focus our

analysis on the characteristics that the rule weight approach add to the men-

tioned methodology.

6.1.1. Analysis of the results from the accuracy point of view

From this point of view, we can say that the proposed hybrid methodology

outperforms the best results obtained from the remaining methods, with im-

provements of about a 10% over the HSLR-LM and about a 73% over the

classical method, with both selection policies. The similar results obtained

when we use both policies evidence the robustness of the idea of including the

weight learning in this methodology, since the improvements in the models

directly depend on the combination of both techniques and not on other fac-
tors.

On the other hand, the good accuracy results achieved by this new technique
lie in the complementary characteristics that the use of weights and the hier-
archical approach present. The original HSLR was designed to improve simple

linguistic fuzzy models reinforcing only the modeling of those problem sub-

spaces with more difficulties while the use of rule weights improves the way in

which they interact. In Fig. 9, we can see how weighted double-consequent

rules are considered as a local reinforcement interacting at a low level (see
rules ‘‘IF X1 is l2 and X2 is l2 THEN Y is l2 with ½w ¼ 0:1� and l3 with ½w ¼
0:5�’’, where the adapted weights make the second consequent more impor-

tant). In many cases, a simple selection process can not address these cases.

Furthermore, there are single consequent rules with a bad interaction level

which, if removed, make the system accuracy decrease. Rule weight learning

can deal with these kinds of rules, decreasing their influence in the fuzzy rea-

soning when they interact with other rules. This is the case of the rule

‘‘IF X1 is L1 and X2 is L5 THEN Y is L3 with ½w ¼ 0:039�’’, whose weight is
pretty close to 0 in Figs. 9 and 10:

• These kinds of rules are important since they are the ones of their definition

spaces (see that they are usually the rules in the corners).

• In these cases, the weight is so low in order to make these rules appropriately

interact with their neighbor ones.
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6.1.2. Analysis of the results from the complexity (interpretability) point of view

In view of the results presented in Table 3, we can conclude that the model
presenting the best trade-off between accuracy and interpretability is the one

obtained with AC-HSWLR(3,5) (see Fig. 10), which confirms the good be-

havior of the AC-oriented selection policy when rule weights are considered.

The model so obtained was composed of only nine rules presenting a very

similar accuracy to the most accurate result with 13.

Notice that, useful information can be obtained if we consider rule weights as
relative importance factors. 5 If we pay attention to the decision tables of the

models obtained from the HSWLR-LM (Figs. 9 and 10), we could see how
practically the same important rules can be observed in all the figures. In the

case of the AC selection policy-based model shown in Fig. 10, the following

important rules can be obtained:

IF X1 is L1 and X2 is L1 THEN Y is L1;

IF X1 is L1 and X2 is L5 THEN Y is L3;

IF X1 is L5 and X2 is L3 THEN Y is L3;

IF X1 is l3 and X2 is l2 THEN Y is l2:

The first three rules can represent all the covered space of the corresponding

HRB. These three rules determine the system behavior at a first upper level,

while the remaining ones produce local refinements on them. All this infor-

mation can be very useful to understand the system behavior.

As main conclusion of this study, we could say that the systems obtained
with the proposed approach present a good interpretability level.

6.2. Estimating the maintenance costs of medium voltage lines

Estimating the maintenance costs of the optimal installation of medium

voltage electrical network in a town [7] is an interesting problem. Clearly, it is

impossible to obtain this value by directly measuring it, since the medium

voltage lines existing in a town have been installed incrementally, according to
its own electrical needs in each moment. In this case, the consideration of

models becomes the only possible solution. These estimations allow electrical

companies to justify their expenses. Moreover, the model must be able to ex-

plain how a specific value is computed for a certain town. Our objective will be

5 The rule weights must be considered as relative importance factors since the final output

depends on the weights of their neighbor rules. Hence, notice that, w ¼ 0 does not necessarily entail

a non-important rule.
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to relate the maintenance costs of medium voltage line with the following four

variables: sum of the lengths of all streets in the town, total area of the town, area
that is occupied by buildings, and energy supply to the town. We will deal with

estimations of minimum maintenance costs based on a model of the optimal

electrical network for a town in a sample of 1059 towns.

To develop the different experiments in this contribution, the sample has

been randomly divided into two subsets, the training and test ones, with an

80% and 20% of the original size respectively. Thus, the training set contains

847 elements, whilst the test one is composed by 212 elements. These data sets

used are available at http://decsai.ugr.es/�casillas/fmlib/.
The results obtained by the analyzed methods are showed in Table 4, where

the same equivalences than for Table 3 remain. Again, these results were ob-

tained for an AMD K7 (Athlon) with clock rate of 1500 MHz and 256 MB of

main memory. In this case the run times for HSWLR(3,5) and AC-

HSWLR(3,5) were 75 and 49 min.

From these results, we can see that the WRL and HSLR methods achieve

improvements over the WM method. Analyzing the model obtained by

HSWLR, we can conclude that it seems to present the best performance in
approximation (MSEtra) and practically the same that AC-HSLR in genera-

lization (MSEtst), with improvements of about an 11% over the HSLR method

and about a 260% over the classical one (WM).

Notice that by using the AC-oriented policy in the Weight Derivation and
Rule Selection process, the number of rules is reduced maintaining the accuracy

to a significantly good level. It is due to the elimination of the repeated rules by

obtaining an equivalent system. This way, the HSWLR obtained by using the

AC-oriented policy presents approximately the half number of rules than the
one derived from the accuracy-oriented policy, and much less compared with

the previous HSLR-LM methods.

Table 4

Results obtained in the medium voltage line problem

Method #R MSEtra MSEtst

WM(3) 28 197,313 174,400

WM(5) 66 71,294 80,934

WRL(3) 28 78,869 74,070

WRL(5) 66 32,562 32,801

HSLR(3,5) 172 22,358 23,755

AC-HSLR(3,5) 132 23,525 22,328

HSWLR(3,5) 80 19,558 22,358

AC-HSWLR(3,5) 49 20,425 22,873
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7. Concluding remarks

In this work, we have proposed the hybridization of the hierarchical scheme

with the use of rule weights by extending a previous two-level HSLR-LM. To

do so, the model structure is extended by allowing the use of weighted hier-

archical linguistic rules and the selection component (which has the aim to

select the rules best cooperating) is modified by allowing it to jointly perform

the rule selection and the rule weight derivation. In this way, a GA performing

both tasks has been developed.

The accurate results of the proposed methodology, compared with other
related approaches, have been contrasted when solving two real-world elec-

trical distribution problems. On the other hand, the obtained models presented

an acceptable interpretability level, where significant rules were identified

studying the weights of the obtained rules, helping us to easily interpret the

model behavior.

Appendix A. Acronyms

Acronym Meaning

AC Accuracy-Complexity-oriented policy
DB Data Base

GA Genetic Algorithm

HDB Hierarchical Data Base

HKB Hierarchical Knowledge Base

HRB Hierarchical Rule Base

HSLR Hierarchical System of Linguistic Rules

HSLR-LM Hierarchical System of Linguistic Rules Learning

Methodology
JCLR Joined set of Candidate Linguistic Rules

LRG Linguistic Rule Generation method

MSE Mean Square Error

RB Rule Base

Those considering rule weights

HSWLR Hierarchical System of Weighted Linguistic Rules

HSWLR-LM Hierarchical System of Weighted Linguistic Rules

Learning Methodology

WHKB Weighted Hierarchical Knowledge Base

WHRB Weighted Hierarchical Rule Base
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