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Model Generation by Domain Refinement
and Rule Reduction
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Abstract—The granularity and interpretability of a fuzzy
model are influenced by the method used to construct the rule
base. Models obtained by a heuristic assessment of the under-
lying system are generally highly granular with interpretable
rules, while models algorithmically generated from an analysis
of training data consist of a large number of rules with small
granularity. This paper presents a method for increasing the
granularity of rules while satisfying a prescribed precision bound
on the training data. The model is generated by a two-stage
process. The first step iteratively refines the partitions of the input
domains until a rule base is generated that satisfies the precision
bound. In this step, the antecedents of the rules are obtained
from decomposable partitions of the input domains and the
consequents are generated using proximity techniques. A greedy
merging algorithm is then applied to increase the granularity of
the rules while preserving the precision bound. To enhance the
representational capabilities of a rule and reduce the number of
rules required, the rules constructed by the merging procedure
have multi-dimensional antecedents. A model defined with rules
of this form incorporates advantageous features of both clustering
and proximity methods for rule generation. Experimental results
demonstrate the ability of the algorithm to reduce the number of
rules in a fuzzy model with both precise and imprecise training
information.

Index Terms—Fuzzy system models, granularity, rule learning
algorithms, rule reduction.

I. INTRODUCTION

WHEN a system is too complex or too poorly understood to
be described in precise mathematical terms, fuzzy mod-

eling provides the ability to linguistically specify approximate
relationships between the input and the desired output. The re-
lationships are represented by a set of fuzzy if-then rules in which
the antecedent is an approximate representation of the state of the
underlying system and the consequent provides a range of po-
tential responses. Traditionally, expert analysis and heuristic es-
timation have been used to produce fuzzy models [11]–[13]. In
spite of the intuitive advantages of encapsulating expert knowl-
edge as fuzzy rules, the ability to produce rules by a heuristic
analysis of a system becomes more challenging as the relation-
ships within the system increase in number and complexity.

The difficulties encountered in heuristic rule construction
have led to the development of alternative approaches for
producing fuzzy models. Automatic rule generation techniques
have been introduced to generate models from training data.
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When sufficient training information is available, these tech-
niques can produce highly precise models. A cost incurred
in obtaining the precision is that the resulting models lack a
linguistic interpretation and, in the case of rule-based models,
frequently consist of a large number of rules. Algorithms for
model construction generally fall within one of four categories,
namely, neural-fuzzy systems [14], [15]; evolutionary rule
generation [16]–[18]; clustering [19], [20]; and proximity
analysis [21]–[25]. The termproximity analysisis used to
describe a category of rule learning algorithms in which the
domain decompositions are predetermined and the consequent
of a rule is obtained from an analysis of the training data that
occur in the support of the antecedent of the rule.

There are two often conflicting properties that are desired in
a fuzzy model: interpretability and precision. The former is ac-
complished by having a small number of rules of large granu-
larity while the latter frequently requires multiple rules. Rather
than attempt to produce a model that exhibits minimal error on
the training data, the goal of this research is to generate models
that are defined by a small number of rules and satisfy a pre-
scribed precision bound. This objective is in keeping with the
philosophy of approximate reasoning and fuzzy inference that
exact or optimal responses are not necessarily required to pro-
vide acceptable solutions to a problem.

One method for achieving both of the objectives is to con-
struct a rule base using a learning algorithm and then employ a
rule reduction algorithm to reduce the number and increase the
granularity of the rules. There are two primary strategies for re-
ducing the number of rules in a fuzzy rule base: 1) dimension
reduction and 2) rule merging. Dimension reduction attempts
to determine functional relationships between input variables
or identify variables that have minimal impact on the result.
When these relationships are discovered, the variables are re-
moved decreasing the dimension of the input space. Dimension
reduction is frequently employed in classification problems in
which the objects are defined by a large number of attributes.
The objective of reducing the number of input variables is to
facilitate the system design and to reduce the computational re-
sources required. One popular approach to dimension reduction
is to use singular value decomposition to identify input variables
that may be eliminated [1]–[3].

The NEFCLASS system [4], [5] provides another approach
for constructing a small rule base for a classification problem.
Initially, the user specifies domain partitions and a maximum
number of rules. A neuro-fuzzy system modifies the parameters
that define the domain partitions while generating the rule base.
A statistical analysis of the impact of the resulting rules on the
classification of the training data provides information for the
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user to delete attributes, fuzzy sets from domain partitions, or
rules to reduce the size of the rule base.

Rule combination and region expansion are frequently ap-
plied to models with a small number of inputs, primarily in
system modeling and function approximation applications. One
approach to rule combination uses a similarity analysis of the
fuzzy sets in the rules to identify similar rules, which are then
combined into a single rule [6]. The objective of this type of
merging is principally to remove rules providing redundant in-
formation. Berthold and Huber [7] provide an region expansion
strategy for constructing a model from hyper-dimensional fuzzy
points. An -dimensional fuzzy point represents the antecedent
of a rule with input variables. A training instance initiates the
construction of a fuzzy point and the consequent of the associ-
ated rule is the output fuzzy set that best matches the output of
training instance. The region is extended as far as possible until
another training point is encountered that is inconsistent with
the associated output value.

The algorithm for model construction presented in this paper
combines proximity-based rule generation with an iterative re-
finement of the partitions of the input domains to produce a
model that satisfies the precision bound. A rule reduction algo-
rithm is then used to merge rules while preserving the precision
bound [8], [9]. The merging is accomplished by combining the
regions of applicability of adjacent rules and constructing an ap-
propriate consequent for the extended rule. The objective of the
merging is to increase the granularity of the rule base, where the
granularity may be considered a measure of the degree to which
the rule generalizes training data. The granularity of a fuzzy rule
is generally obtained from the sigma-count or the support of the
rule antecedent [10]. The utility of rule merging is accentuated
when there are a large number of rules, as is frequently the case
when rules are generated from training data.

The merging strategy produces rules whose antecedents are
multi-dimensional fuzzy sets. The particular form of the rules
was selected for three reasons: to increase the representational
capability of the rules, to facilitate rule merging, and to en-
sure an efficient evaluation of the inference procedure. Models
built with the type of multi-dimensional rule described in Sec-
tion II using triangular partitions of the input spaces constitute
a superset of models produced using Mamdani rules or Takagi–
Sugeno–Kang (TSK) rules with single point consequents.

The combination of iteration and rule merging produces
models that have advantages associated with both proximity and
clustering-based rule learning. Proximity learning algorithms
are efficient in both the generation of rules and in the run-time
execution of the resulting models. The determination of the
rule consequents generally requires a single pass through the
training data. When the model is run, the use of parametrically
defined input domain partitions ensures that the selection of
rules requires no search but rather is accomplished by a direct
computation. The advantage of clustering is that there are no
restrictions on the form of the fuzzy sets in the antecedents
of the rules. The fuzzy sets are determined by the clustering
algorithm and their shape is strictly driven by the data. In our
algorithm, this effect is achieved by merging areas, which
produces antecedents shaped by the data rather than bya priori
partitions of the input domains.

Throughout this paper, we will consider learning rules to
model a two-input system with input domains
and . The output will take values from the domain

. The impact of increased dimensionality is
discussed in Section V-A.

II. PARTITIONS, RULES, AND MODELS

An initial step in the construction of a fuzzy model using
a proximity-based learning strategy is the selection of the an-
tecedents of the rules in the rule base. This is accomplished by
partitioning the input domain into a set of local regions that de-
fine the supports of the antecedents of a rule. A fuzzy partition
[26] of a two-dimensional input space consists of a set
of fuzzy sets over with

for every and .
A partition of a multi-dimensional domain is decom-

posableif there are fuzzy partitions of and
of whose Cartesian products form the parti-

tion of . That is, every for some and
. The partitions of fuzzy rule bases with multiple inputs fre-

quently employ decomposable partitions. In this case, the an-
tecedent of a rule has the form “if is and is ” where

and are fuzzy sets from the partitions ofand , respec-
tively.

Because of their simplicity and ease of computation, many
partitions of one-dimensional spaces consist of triangular fuzzy
sets [27]. In a triangular partition, the fuzzy sets are
completely determined by the selection of a sequence of points

, where the point is the center point
of the triangular fuzzy set . The support of is the interval
( ) and the membership function is

if

if
otherwise.

Fig. 1 shows a partition into triangular fuzzy sets defined by five
points evenly spaced on [1, 1].

There are two major types of fuzzy rules, which differ in the
form of the consequent. A Mamdani-style rule [28], [29] for
a two-input system with decomposable partitions of the input
space has the form

if is and is then is

where and are fuzzy sets from the partitions of the input
domains and , and is a fuzzy set over the output domain.
A TSK [12] rule has the form

if is and is then

where is a function of the input ( ).
A rule base consists of a rule for each pair of fuzzy sets

and . The rules and the inference techniques combine to pro-
duce a model , a function . Consider a model
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Fig. 1. Triangular decomposition.

defined by Mamdani-style rules in which the partitions consist
of triangular fuzzy sets and weighted averaging is used for de-
fuzzification and rule aggregation. The value for input () is
determined by, at most, four rules. For input and

the rules

“if is and is then is ,”
‘if is and is then is ’,
‘if is and is then is ’,
“if is and is then is ”

and weighted averaging combine to produce a functionover

(1)

where is the center point of the triangular fuzzy set .
Fig. 2 shows the surface generated by the local function.
Equation (1) shows that, with triangular partitions and weighted
averaging, the local approximating function is completely
determined by the values, , , , , , ,
and . The borders of the surface are simply obtained by
linear interpolation between the values at the corners.

The model is constructed from local ap-
proximating functions , , and ,
where the domain of is the rectangle .
The fuzzy partitioning of the input domains provides a contin-
uous transition between adjacent rules that guarantees that the
function obtained from the local functions is continuous
over .

A TSK rule with single point consequent has the form

if is and is then

Using weighted averaging aggregation, the approximating func-
tion defined by a TSK rule base is the same as that obtained
using Mamdani rules where is the center point of the con-
sequent fuzzy set .

Fig. 2. Local surface over[a ; a ] � [b ; b ].

The partitions of and of divide
the input domain into rectangular regions de-
termined by the center points of the triangular fuzzy sets. Each
region has the form for some
and . Using TSK rules with single point consequents
and input and , the value of the
local approximating function is determined by values
of the function at the four corners of this rectangle; that is, by
the points ( ), ( ), ( ), and
( ).

Rather than having the combination of four rules define the
surface, we will now define a form of TSK-style rule that per-
mits a single rule to generate the surface . Defining rule
antecedents as Cartesian products of fuzzy sets from indepen-
dent partitions of the input domains restricts the regions that can
be the support of a rule. The projection of any two antecedents
onto an input domain must be either be identical or disjoint. To
add flexibility to the modeling process, we will construct models
from rules with multi-dimensional antecedents. A rule have will
the form

if is

then

where denotes the rectangle with corners
( ), ( ), ( ), and ( ). The consequent of the
rule specifies the values at the corners of the rectangular region;
( ), ( ), ( ), and ( ). This
is a TSK-style rule where the function is obtained from
the corner points using (1) by substituting for , for

, for , for , and for . That
is, (1) has been generalized to produce a local function over an
arbitrary rectangular region of the input space. Thus, rule bases
obtained from rules of this form will have the ability to generate
all models that could be produced using Mamdani-style rules
or TSK rules with single point consequents whose antecedents
are obtained from triangular partitions of the input domains.
However, employing the type of multi-dimensional antecedents
described above allows us to produce additional models with
nondecomposable partitions of the input domain that require
fewer rules to satisfy a precision requirement.
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Fig. 3. Domain decomposition and grid points.

III. RULE CONSTRUCTION

The generation of a model begins by selecting points
and that define the

partitions of the input domains. The ordered pairs ( )
form a grid over the space . Fig. 3 shows the domain
with , which will produce a rule base with 100
rules. Throughout this paper we will use partitions with evenly
spaced grid points to facilitate the rule reduction strategy and
to enhance the run-time efficiency of the model. These features
will be discussed in Section V.

For a rule with antecedent “if is
,” the learning process consists of se-

lecting the constants , , , and in the consequent.
A set of training examples,
where and are input values and is the
associated response, provides the information needed for the
generation of the rules.

The value associated with grid point ( ) is determined
by the weighted average of all training points whose projection
onto the input space lies within a distanceof ( ). The ini-
tial distance is determined from the spacing of the grid points.
Let be the minimum distance
between grid points. Initially, is set to three-fourths of the
grid size: . Let ( ) be a training point and

be the distance from ( ) to grid point ( ). The set
is the subset of the training setconsisting of all training

points ( ) with the distance less than or equal to
. The value associated with grid point ( ) obtained from

using weighted averaging is

where the summation is taken over all training points in .
Since training data may be sparsely distributed throughout the

input space, it is possible that no training point lies within dis-
tance from a grid point ( ). When this occurs, the radius
defining the set is expanded incrementally until training
information is found. The expansion of the radius is accom-
plished by adding .25 to after each unsuccessful search
for training data.

Fig. 4. Grid point refinement.

When all grid points have been assigned a value by the pre-
ceding procedure, the rule base is completely specified. Each
rule has the form

if is

then

where , , , and are the values computed
for grid points ( ), ( ), ( ), and ( ).
The rule base defines the model consisting
of the local surfaces associated with each rule. The boundary
conditions of the local surfaces ensure thatis continuous over

.

IV. RULE BASE GENERATION BY REFINEMENT

The construction of a rule base consists of two steps: the gen-
eration of an original rule base followed by rule reduction. Ad-
jacent rules produced by the learning algorithm must have sup-
ports that facilitate the merging process that follows. To accom-
plish this, a proximity learning algorithm is incorporated into a
generate-and-test domain partition refinement strategy to con-
struct the rule base.

The objective of the refinement of the partitions is to pro-
duce a rule base that approximates the training data within a
prescribed maximum error. The generation begins by parti-
tioning the input domains into a small number of fuzzy sets and
constructing a rule base. If the resulting rule base satisfies the
precision bound, the process is complete. Otherwise a new par-
tition is selected and generate-and-test procedure is repeated.

Throughout this presentation we will assume that partitions of
input spaces have the same number of fuzzy sets. Thus the grid
formed by the partitions will by an grid, as shown in Fig. 3.
The initial partition sets to 2 with grid points
and . With this partition, the only rule is

if is

then

The values for the s are obtained as described in the pre-
vious section and the training data are then used to determine
the error of the model. The error at training point ( )
is . The rule base generation is completed if the
maximum error of the training data lies within the specified pre-
cision bound. If not, the algorithm expands the number of re-
gions in the grid by decomposing the input domains with ( )
points, as shown in Fig. 4. This procedure will continue incre-
menting until a grid of size is found that satisfies the
precision bound.
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The procedure for generating the initial rule base can be sum-
marized as follows.

1) Input: training set and error bound .
2) Set .
3) Generate rule base with rules defined by the

grid.
4) Calculate maximum error over the set of training

points.
5) If accept the rule base, else set and go

to 2).
The applicability of the preceding strategy for generating the

original rule base is limited by the number of input dimensions.
With input dimensions, theth iteration of the preceding loop
would be required to produce with rules. For auto-
matic control, function approximation and many system mod-
eling problems with a small number of variables, the refine-
ment process provides a computationally tractable strategy for
producing a rule base that satisfies a predetermined precision
bound. For classification problems with high dimensionality, the
growth of the exponent would make this approach to the con-
struction of the rule base computationally unfeasible.

The greedy rule reduction algorithm presented in the next sec-
tion, however, does not require a rule base produced by par-
tition refinement. The original rule base may be generated by
any learning algorithm that produces rules whose supports are
hyper-rectangular regions over the grid formed by input domain
decompositions.

V. RULE REDUCTION BY MERGING

The objective of the merging strategy is to reduce the number
of rules while preserving the satisfaction of the precision bound.
Ideally, the goal would be to identify the smallest set of rules
satisfying the precision bound. However, the algorithm that we
present is greedy and does not guarantee the generation of a
minimal size rule base. Rule reduction based on merging fuzzy
sets to extend the scope of fuzzy rules has been considered in [6],
[8], [30], and [31]. The technique presented here differs from
previous methods due to use of multi-dimensional fuzzy sets in
the antecedents of the rules and the complications associated
with ensuring the continuity of the model.

Regions in the input domain in which the system has high vari-
ation may require a fine partition to reach the desired precision.
Consequently, the uniform partitioning of the input space that
was employed in the generation the original model may require
many rules in regions of little variation where a small number of
rules would suffice. The merging algorithm combines adjacent
rules that specify similar responses. Enlarging the region of ap-
plicability of a rule may produce two beneficial results. First, in-
creasing the size of the support produces a rule with a greater de-
gree of generalization of the data and guards against the classic
overfitting problem. The second benefit is that rules with large
granularity are more likely to admit a linguistic interpretation.

Rulesfromtherulebasewithuniformpartitionsof the inputdo-
mains generated by the refinement process are combined to pro-
duce rules with rectangular regions of applicability of the form

if is

then

Fig. 5. Merging regions as a square.

Fig. 6. Continuity considerations.

that preserve the precision bound. Merging begins with
a region (see Fig. 5) and attempts to
enlarge the rule. Starting at the lower left corner of the region,
the merging strategy combines regions by expanding diag-
onally to produce rules with support ,

.
The first step in accepting a new rule is to verify that the

training data within the support of the expanded rule still satisfy
the precision bound. The second requirement for accepting a
potential expansion is that the surface generated by the new rule
must be continuous with those in adjacent regions. Once a rule
with enlarged support is proposed, the surfaces associated with
adjacent rules may no longer be continuous. Fig. 6 shows the
relationship in the input domain between an expanded rule and
the adjacent rules. Before expansion, the surface is continuous
along the line segment since the values at points and
are the same for the adjacent rules. Whenis expanded, the
values specified by the expanded rule at pointsand are
no longer the values determined from the local training data but
rather are obtained from the values at the corner points ( )
and ( ). To maintain continuity, the grid point values
for the region are modified to match the values generated by
the rule over . Since this alters the function associated with
the region , the modified rule over must also be checked
for compliance with the precision bound. If these conditions are
met, the enlarged rule is accepted.
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Fig. 7. Merging as rectangles.

After the rule has been expanded as far as possible diag-
onally, expansions are attempted along theand axes.
The region resulting from the diagonal
expansion is then expanded in the direction until halted
by the precision bound. This expansion produces a rectangle

(see Fig. 7). In like manner, the
region is expanded in the direction
producing . The larger rectangle that
preserves the precision bound is selected as the antecedent of
the new rule.

The merging process is greedy; it begins with rectangle
and merges regions until the precision bound

stops the process. Once an expanded rule is accepted, the
values at the grid points on the boundary of the rule are fixed
and cannot be changed by subsequent expansions. The merging
process continues left-to-right, bottom-to-top until the entire
input domain has been considered.

A. Features of the Rule Base

The rules constructed by the refine-and-merge algorithm
have several desirable features. Along with the reduction in the
number of rules required to produce a model with the desired
precision, merging produces rule antecedents that are formed
by the data rather than obtained from ana priori selection of a
partition of the input space. The supports of the antecedents,
however, are not allowed to be arbitrary regions in the input
space but rather are restricted to rectangular regions. This
restriction permits an efficient implementation of the model.

Although the merging process constructs rules with multi-di-
mensional antecedents, the run-time efficiency of a model built
from decomposable partitions is maintained using indirect
hashing. When the rule base is generated using an grid,
an matrix is constructed whose entries are
pointers to the rule associated with each region. Initially, each
entry in the array points to the rule generated by the refinement
process for the region. When regions are merged and a new
rule is created, the entries for each of the regions that make up
the support of the new rule are set to point to the merged rule.

With this formulation, the identification of the appropriate
rule during the execution is a direct computation. Consider input
( ) with and evenly spaced points defining the partitions
of and respectively. As previously noted, the computation

of the value utilizes only one rule and no aggregation is
required. The antecedent of the rule has the form

if is

where and . The indexes and in the
rule array can be obtained directly from the input:

and . The value
in the indicates the rule needed to obtain .

An objective of the reduction of the number of rules in a
model is to increase the interpretability of the rules. Linguistic
interpretation has generally considered Mamdani-style rules
since fuzzy sets, with their associated linguistic terms, occur in
both the antecedent and consequent of such a rule. For example,
a common form of a rule for a fuzzy PD controller is

if is and is

then is

where , , and are fuzzy
sets over the error, change of error, and response domains, re-
spectively. This rule has a straightforward interpretation: if there
is little error and the change is reducing it in the correct direc-
tion, do not alter the system.

TSK rules do not admit such a linguistic analysis since the
consequent is a function of the input values and not a potentially
interpretable fuzzy set. The result of expanding the support of
a rule by merging regions for TSK rules does, however, have
useful interpretation. A rule

if is then

indicates that the relationship between the input variables is the
same throughout the support of. The TSK rule simply gives
a mathematical formulation of the relationship rather than a lin-
guistic one and the antecedent defines the extent of the relation-
ship.

This observation is particularly pertinent for the models built
by the refine-and-merge algorithm. The result of such a model
is obtained from a single rule and not from the aggregation of
multiple rules. Thus, a rule with a large region of applicability
indicates an intuitive stability of the model throughout that re-
gion. The fundamental relationships between the variables are
unchanged within the region and change only when traversing
the borders of the region.
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VI. EXPERIMENTAL RESULTS

Experiments have been conducted to determine the ability of
the refine-and-merge strategy to produce small rule bases that
satisfy a prescribed precision bound. An experiment begins
with selection of atarget function , which represents the un-
derlying system. A training set

is generated by randomly selectingelements from
the input space. After the selection of the target and the genera-
tion of the training set, the refinement process is used to produce
a rule base that satisfies the precision bound on the training set.
The merging strategy is then applied to reduce the number of
rules.

The function defined by rule base is then compared
with the target function to determine the precision of the re-
sulting model. The test set consists of 784 points uniformly dis-
tributed over the input domain . The experimental results
reported in this section consist of the average number of rules
generated, the average of the average error and the average max-
imum error over 20 iterations of the algorithm for each set of
parameters.

The algorithm was tested with a number of target functions
to evaluate the ability to construct models with systems of dif-
ferent levels of variability. The robustness of the algorithm was
examined by varying the precision bounds and the size of the
training set.

A. FLM and Refinement

The baseline for comparison is the proximity rule learning al-
gorithm introduced by Wang and Mendel [21], [32], which we
will refer to as the FLM algorithm. This technique was origi-
nally presented for the construction of Mandami-style rules but
can easily be adapted to produce TSK rules. The process begins
by decomposing the input domains into triangular fuzzy parti-
tions and .

FLM: A training example ( ) that has the maximal
membership in the fuzzy set is selected from the training
set . If more than one example assumes the maximal member-
ship in , one is selected arbitrarily. The rule “if is
and is then ” is added to the rule base.

The consequent of the rule, which we previously have de-
noted as , is simply the output value of the training set ele-
ment that has maximal membership in the antecedent. The in-
tuition behind the approach is that the training instance nearest
to satisfying the antecedent represents the best prototype of the
rule. Variations to the FLM algorithm that use all training exam-
ples that fall within the support of the antecedent to determine
the consequent have been examined in [23].

The FLM algorithm presented above requires at least one
training point to have nonzero membership in the antecedent
of the rule to produce a value for the consequent. Techniques
for completing a rule base were introduced to extend this algo-
rithm to situations with distributed or sparse training data [23],
[33]. Rule base completion uses existing rules and interpolation
to produce rules in regions with no training data. When we refer
to the FLM algorithm, we will mean the rule selection process
described above augmented with region growing completion.

To adapt the FLM algorithm to the production of a rule base
that satisfies a precision bound, the iterative refinement of parti-
tions of the input domains will be employed. In the experiments,
the partition of each dimension will have the same number of
fuzzy sets. Table I shows the results of iterative applications of
the FLM algorithm and rule learning strategy from Section IV
for target function . For simplicity, we will
label the latterrefine as the first step in the refine-and-merge
process.

We first observe several general characteristics exhibited by
both of the learning strategies. As expected, the average and
maximum error over the test set decreases with the number
of training points. Note that with a precision bound of .2, the
average error is well below the bound regardless of the size
training set used. As the precision bound becomes more de-
manding, additional training data are required to reduce the av-
erage error below the bound. Even 10 000 data points, however,
are not sufficient for the FLM algorithm to produce a rule base
with maximal error below .05. The iterative refinement built
FLM rule bases with up to 22 500 rules in the attempt to reach
this level of precision, but was unsuccessful.

As observed in previous experiments with the FLM algo-
rithm, the number of rules required initially increases with the
acquisition of training data. When sufficient training data is
available, the number of rules declines until it reaches an es-
sentially constant number. Initially, the acquisition of training
data permits the opportunity of finding errors in more regions
in the input and thereby requiring additional rules. Eventually
training data saturationoccurs. That is, there are few or no re-
gions without training data and in each region there is sufficient
information to approximate each of the rules to a high degree of
precision. The accurate generation of rules reduces the number
needed. The point at which saturation occurs is dependent upon
the precision bound. This phenomena is exhibited by both of the
learning strategies. In therefinecolumn, the number of rules de-
creases between 100 and 500 training points for precision bound
.2, between 500 and 1000 training points for precision bound
.1, and between 1000 and 10 000 training points for precision
bound .05.

Comparing the results of FLM andrefine, we see thatrefine
produces rule bases with between 50% and 95% fewer rules than
the FLM algorithm. In each case, the maximum error was also
less than that in the corresponding FLM experiment. Similar
results were exhibited by experiments with a variety of target
functions.

B. Rule Reduction

The rule base constructed by the iterative refinement is sub-
jected to the merging algorithm to reduce the number of rules.
Table II shows the results obtained of merging the rule bases
constructed in Table I. The lower the precision bound, the more
effective the merging is in reducing the number of rules. For
precision .2, the number of rules is reduced by 40 to 50 per-
cent for training sets of size 50, 100 and 500. This increases to
a reduction of approximately 200 to 300% of the rules for rule
bases generated with precision bound .1 and 200 to 600% with
.05 precision bound.



52 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 1, FEBRUARY 2003

TABLE I
FLM VERSUSREFINEMENT: TARGET f(x; y) = x � y

TABLE II
RESULT OFMERGING: TARGET f(x; y) = x � y

As the saturation of training data occurs, the impact of reduc-
tion lessens. In this case, the originalrefinecomponent is pro-
ducing high quality models with fewer rules than those produced
with fewer training data. Since these rules have larger scopes, it
becomes more difficult to successfully merge regions.

Table III gives a comparison of the models generated by re-
finement alone and by refinement-and-merging over a series of
target functions. In each case the training set consisted of 1000
points. The target is a planar surface and the surface gener-
ated by a single rule can approximateto within the desired
precision. The function is a cylindrification of the sine curve
to two dimensions, creating a surface that resembles a wave.
The merging algorithm reduces the number rules between 300%
and 800% from that produced by iterative refinement alone. The
target defines a more complicated “ripple-like” surface. Min-
imal reduction occurs with .2 precision, indicating that approxi-
mately 25 rules are required to achieve that degree of precision.
As the precision bound decreases, the effect of the reduction be-
comes substantial.

In general, one may expect an increase in the error with a
reduction of rules. Enlarging the region of applicability provides
a greater generalization from the training data. This has occurred
in the experimentation, but the increases in both average and
maximum errors have been marginal and frequently the reduced
model has less test set error than the original.

C. Observations

The surface given in Fig. 8 illustrates several properties and
shortcomings of the refine-and-merge algorithm and indicates
directions of future improvements. The surface was produced by
a rule base generated using target function ,
1000 training points and precision bound .2. Refinement re-
quired 25 rules to reach the desired precision. The squares along
the bottom of the figure show the size of the local regions in the
original rule base. The shading indicates the 14 rules resulting
from the mergers.

The large region in the upper corner is the antecedent of a
single rule. In the terminology used to describe rectangles, the
antecedent of this rule is “if is .”
As discussed in Section V-A, merging TSK rules indicates that
similar relationships hold between the input variables in the ex-
panded region. A standard fuzzy rule interpretation of the rule
with antecedent might be stated: “if
is Largeand is Smallthen ” where is the func-
tion from the consequent of the rule.

Fig. 8 also exhibits artifacts of the greedy approach to rule
merging. The function is symmetric and one
might expect, or at least hope for, an equally large rule in the
other corners. However, the greedy strategy dictates that once an
expanded rule has been accepted, it will not be changed in later
analyses. Once the rule with antecedent
is accepted, the values for grid points ( ) and ( ) cannot
be altered. When the square is considered for
expansion, the region to the right has already been assigned to
a rule and will not be reallocated. Even potential expansion up-
ward is limited since the value at point ( ) is fixed. This
example shows that, as more rules are accepted, the flexibility
to merge regions in the remainder of the input space is restricted.

There are two techniques for potentially mitigating this limita-
tion. The first is to allow backtracking in the merging process; ac-
ceptinganexpandedruledoesnotpreclude it frombeingchanged
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TABLE III
REFINE VERSUSMERGE: 1000 TRAINING POINTS

Fig. 8. Merging with target functionf(x; y) = x � y .

when expansions of abutting regions are considered. The draw-
back with this approach is the increased computational resources
required in constructing the reduced rule base. Another approach
would be to perform the merging routine a number of times each
beginning at a different location (e.g., at each corner) following
different patterns. The final model would be obtained from these
various rule bases by selecting rules from each that cover the
space and whose boundary points can be made consistent to en-
sure the continuity of the final model.

Building several rule bases from the same set of training data
has been employed by Ischibuchiet al. [34] for constructing
fuzzy classification systems. In their work, the objective was
to use multiple rule bases to mitigate the effect of the arbitrary
selection of the size of the partitions of the input domains. In
the strategy suggested above, the goal would be to retain the
efficiency of the greedy strategy but to limit the impact of the
arbitrary selection of the initial location and pattern employed
in the merging procedure.

VII. I MPRECISETRAINING INFORMATION

The experiments in the previous section demonstrated the fea-
sibility of making a significant reduction in the number of rules
using a greedy merging algorithm. In those experiments, the
training set consisted of precise data. However, the training data
available for rule generation is frequently imprecise. Imprecise
training data requires a modification to the criterion used to halt
the refinement in the construction of the original rule base and
the merging in the rule reduction process.

For precise data, a partition of the input domains is rejected if
a training instance ( ) is encountered for which

exceeds the precision bound. With imprecise data, this con-
dition may be triggered not by a change in the underlying system
but rather by noise in a single training point. To compensate for
noisy data, the decision to accept the current rule base or to fur-
ther refine the partition must not be dependent on the value of a
single training point. This can be accomplished by requiring a
certain percentage of the training points in the support of a rule
to exceed the error bound. An alternative is to require the av-
erage error of all training points within the region to exceed.
The latter strategy was incorporated into the iterative refinement
rule generation.

In a like manner, the error of a single training point is suffi-
cient to halt the merging process. Adopting the error averaging
strategy defined above, merging will be halted when the average
error of all training points within the region considered for ex-
pansion exceeds. With these modifications, a series of exper-
iments was conducted with imprecise training data.

In these experiments, the training set consists of points of the
form ( ), where is the target function and

is an error function. The error is randomly generated from a
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TABLE IV
IMPRECISETRAINING DATA: TARGET f(x; y) = x � y

Gaussian distribution with mean 0. In the experimental results
in Tables IV and V, training data with error standard deviations
of .1 and .05 are used for generating rule bases with precision
bound .1 and standard deviation .05 for generating rule bases
with precision bound .05.

Table IV gives the result of the rule generation with target
function . The basic relationships between
the precision bound, the number of training points, the number
of rules, and the error identified in the precise training data case
are also exhibited with imprecise data. As might be expected, in-
creasing the error in the training data increases both the number
of rules and the error in the resulting model.

It is interesting to compare Table IV with with the results for
the algorithm with precise training data given in Tables II and
III. Requiring that the average value of the error exceed the pre-
cision bound greatly reduces the number of rules. For example,
with 1000 training points and precision bound .1, the precise al-
gorithm produced rule bases with an average of 33.2 rules while
the imprecise algorithm with error standard deviation .05 pro-
duced rule bases with an average of 5.9 rules. The tradeoff was,
of course, in accuracy. With the algorithm for precise data, the
maximum error was .122 while it was three times that for the
imprecise data. The data from experiments with the other target
functions in Table V exhibited similar properties.

Table V gives the results of refine-and-merge rule gener-
ation with target functions ,

, , and
. When the precision

bound is high and the training data error is low,
and error standard deviation .05, the use of averaging in the
refinement process produces rule bases with a small number of
rules. In this case, merging rules does not make a significant
improvement to the rule base.

With a more stringent precision bound, the size of the original
rule bases increases and merging plays a more important role.
For the cases with and standard deviation .5 in Table III,
the merging process reduced the number of rules by 30%, 35%
and 38% with little change to the average and maximum error
of the resulting rule bases.

TABLE V
IMPRECISETRAINING DATA: 1000 TRAINING POINTS

VIII. C ONCLUSIONS

A strategy for reducing the number of rules needed to pro-
duce a model that satisfies a prescribed precision bound has been
presented. The algorithm employs an iterative refinement of the
partitions of the input domains to produce a set of decomposable
rules that satisfy the bound. When possible, adjacent rules are
merged using a greedy strategy to increase the granularity of the
rule base. Merging produces rules with multi-dimensional fuzzy
sets in the antecedents, which enhances the representational ca-
pability of the rules. The merging step has been shown to signifi-
cantly reduce the number of rules in models built from a variety
of target functions and precision bounds. Future research will
explore the potential of obtaining further improvements in the
ability to reduce the number of rules by modifying the merging
algorithm to allow a degree of backtracking (a nongreedy ap-
proach) or by combining the results of several iterations of the
greedy algorithm.
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