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Model Generation by Domain Refinement
and Rule Reduction

Thomas Sudkampviember, IEEEAaron Knapp, and Jon Knapp

Abstract—The granularity and interpretability of a fuzzy = When sufficient training information is available, these tech-
model are ianuencc_ed by the meth_od_ used to construct the rule niques can produce highly precise models. A cost incurred
base. Models obtained by a heuristic assessment of the under-in obtaining the precision is that the resulting models lack a

lying system are generally highly granular with interpretable . P . .
rules, while models algorithmically generated from an analysis linguistic interpretation and, in the case of rule-based models,

of training data consist of a large number of rules with small frequently consist of a large number of rules. Algorithms for
granularity. This paper presents a method for increasing the model construction generally fall within one of four categories,
granularity of rules while satisfying a prescribed precision bound namely, neural-fuzzy systems [14], [15]; evolutionary rule

on the training data. The model is generated by a two-stage ; N . ; . .
process. The first step iteratively refines the partitions of the input generation [16]-[18]; clustering [19], [20]. and proximity

domains until a rule base is generated that satisfies the precision @nalysis [21]-[25]. The ternproximity analysisis used to
bound. In this step, the antecedents of the rules are obtained describe a category of rule learning algorithms in which the
from decomposable partitions of the input domains and the domain decompositions are predetermined and the consequent
consequents are generated using proximity techniques. A greedy of 4 ryle is obtained from an analysis of the training data that
merging algorithm is then applied to increase the granularity of occur in the support of the antecedent of the rule.

the rules while preserving the precision bound. To enhance the . . . .
representational capabilities of a rule and reduce the number of 1 here are two often conflicting properties that are desired in

rules required, the rules constructed by the merging procedure a fuzzy model: interpretability and precision. The former is ac-
have multi-dimensional antecedents. A model defined with rules complished by having a small number of rules of large granu-
of this form incorporates advantageous features of both clustering |5rity while the latter frequently requires multiple rules. Rather
and proximity methods for rule generation. Experimental results i -

than attempt to produce a model that exhibits minimal error on

demonstrate the ability of the algorithm to reduce the number of o . -
rules in a fuzzy model with both precise and imprecise training the training data, the goal of this research is to generate models

information. that are defined by a small number of rules and satisfy a pre-
Index Terms—Fuzzy system models, granularity, rule learning SCfibed precision bound. This objective is in keeping with the
algorithms, rule reduction. philosophy of approximate reasoning and fuzzy inference that

exact or optimal responses are not necessarily required to pro-
vide acceptable solutions to a problem.

One method for achieving both of the objectives is to con-
HEN a system is too complex or too poorly understood tetruct a rule base using a learning algorithm and then employ a
be described in precise mathematical terms, fuzzy modHe reduction algorithm to reduce the number and increase the

eling provides the ability to linguistically specify approximateyranularity of the rules. There are two primary strategies for re-
relationships between the input and the desired output. The deicing the number of rules in a fuzzy rule base: 1) dimension
lationships are represented by a set of fuzzy if-then rules in whiggduction and 2) rule merging. Dimension reduction attempts
the antecedentis an approximate representation of the state ofthdetermine functional relationships between input variables
underlying system and the consequent provides a range of po4identify variables that have minimal impact on the result.
tential responses. Traditionally, expert analysis and heuristic #¢hen these relationships are discovered, the variables are re-
timation have been used to produce fuzzy models [11]-[13]. inoved decreasing the dimension of the input space. Dimension
spite of the intuitive advantages of encapsulating expert knowéduction is frequently employed in classification problems in
edge as fuzzy rules, the ability to produce rules by a heuristihich the objects are defined by a large number of attributes.
analysis of a system becomes more challenging as the relatibhe objective of reducing the number of input variables is to
ships within the system increase in number and complexity. facilitate the system design and to reduce the computational re-

The difficulties encountered in heuristic rule constructiorources required. One popular approach to dimension reduction

have led to the development of alternative approaches fsito use singular value decomposition to identify input variables

producing fuzzy models. Automatic rule generation techniquésat may be eliminated [1]-[3].

have been introduced to generate models from training dataThe NEFCLASS system [4], [5] provides another approach
for constructing a small rule base for a classification problem.
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user to delete attributes, fuzzy sets from domain partitions, orThroughout this paper, we will consider learning rules to

rules to reduce the size of the rule base. model a two-input system with input domaibs = [—1,1]
Rule combination and region expansion are frequently aprdV = [—1,1]. The output will take values from the domain
plied to models with a small number of inputs, primarily il = [-1,1]. The impact of increased dimensionality is

system modeling and function approximation applications. Onléscussed in Section V-A.

approach to rule combination uses a similarity analysis of the

fuzzy sets in the rules to identify similar rules, which are then Il. PARTITIONS, RULES, AND MODELS
combined into a single rule [6]. The objective of this type of
merging is principally to remove rules providing redundant irh
formation. Berthold and Huber [7] provide an region expansiqn
strategy for constructing a model from hyper-dimensional fuz

An initial step in the construction of a fuzzy model using
proximity-based learning strategy is the selection of the an-
cedents of the rules in the rule base. This is accomplished by
ﬂ'artitioning the input domain into a set of local regions that de-

points. Ann-dimensional fuzzy point represents the anteced e the supports of the antecedents of a rule. A fuzzy partition
of a rule withn input variables. A training instance initiates th 26] of a two-dimensional input spadé x V consists of a set
construction of a fuzzy point and the consequent of the asso f;uzzy setsD; D, overlU x V with

yee e

ated rule is the output fuzzy set that best matches the output o

training instance. The region is extended as far as possible until t
another training point is encountered that is inconsistent with Z pip,(z,y) =1
the associated output value. i=1

The algorithm for model construction presented in this papgjr everyz € U andy € V.

combines proximity-based rule generation with an iterative re- o partition of a multi-dimensional domaiti x V' is decom-
finement of the partitions of the input domains to produce gosableif there are fuzzy partition§ A, ..., A,} of U and
model that satisfies the precision bound. A rule reduction alg{JB1 ,,,,, B,,} of V whose Cartesian products form the parti-
rithm is then used to merge rules while preserving the precisiggn of U x V. That is, everyD, = A; x B, for somei and
bound [8], [9]. The merging is accomplished by combining the The partitions of fuzzy rule bases with muIt|pIe inputs fre-
regions of applicability of adjacent rules and constructing an aggently employ decomposable partitions. In this case, the an-
propriate consequent for the extended rule. The objective of fa@edent of a rule has the form “¥ is 4; andY is B;” where
merging is to increase the granularity of the rule base, where thegng B; are fuzzy sets from the pamnonSUfandV respec-
granularity may be considered a measure of the degree to WW%W

the rule generalizes training data. The granularity of a fuzzy rulegecause of their simplicity and ease of computation, many
is generally obtained from the sigma-count or the support of th@rtitions of one-dimensional spaces consist of triangular fuzzy
rule antecedent [10]. The utility of rule merging is accentuategts [27]. In a triangular partition, the fuzzy setts, . . . , A, are
when there are a large number of rules, as is frequently the caggnpletely determined by the selection of a sequence of points
when rules are generated from training data. a1 = —1,as,...,a, = 1, where the point; is the center point

The merging strategy produces rules whose antecedents#fhe triangular fuzzy set;. The support of4; is the interval
multi-dimensional fuzzy sets. The particular form of the ruleg,, _, ai+1) and the membership function is

was selected for three reasons: to increase the representational

capability of the rules, to facilitate rule merging, and to en- ey e <z <a
sure an efficient evaluation of the inference procedure. Models pa, ()= —Zteer it o o< g

. . .o . . . e Qiy1—a; ’ 7 > W41
built with the type of multi-dimensional rule described in Sec- 0 otherwise

tion 1l using triangular partitions of the input spaces constitute
a superset of models produced using Mamdani rules or Taka§ig. 1 shows a partition into triangular fuzzy sets defined by five
Sugeno—-Kang (TSK) rules with single point consequents.  points evenly spaced on-L, 1].

The combination of iteration and rule merging produces There are two major types of fuzzy rules, which differ in the
models that have advantages associated with both proximity datm of the consequent. A Mamdani-style rule [28], [29] for
clustering-based rule learning. Proximity learning algorithn® two-input system with decomposable partitions of the input
are efficient in both the generation of rules and in the run-tingpace has the form
execution of the resulting models. The determination of the
rule consequents generally requires a single pass through the
training data. When the model is run, the use of parametrica|
defined input domain partitions ensures that the selectior?(&‘
rules requires no search but rather is accomplished by a dir
computation. The advantage of clustering is that there are no
restrictions on the form of the fuzzy sets in the antecede_nts if X is A; andY is B, thenz = g; ;(z,y)
of the rules. The fuzzy sets are determined by the clustering
algorithm and their shape is strictly driven by the data. In owhereg; ; is a function of the inputs, y).
algorithm, this effect is achieved by merging areas, which A rule base consists of a rule for each pair of fuzzy skts
produces antecedents shaped by the data rather thaproyri andB;. The rules and the inference techniques combine to pro-
partitions of the input domains. duce a modef, a functionf : U x V. — W. Consider a model

if X isA; andY is B; thenZ is C; ;

ereA; andB; are fuzzy sets from the partitions of the input
maing/ andV, andC; ; is a fuzzy set over the output domain.
SK [12] rule has the form
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defined by Mamdani-style rules in which the partitions consist //
of triangular fuzzy sets and weighted averaging is used for de- //
fuzzification and rule aggregation. The value for inpuity) is /
determined by, at most, four rules. For inpu€ [a;, a;4+1], and d
y € [bj,bj+1], the rules (@ b) (@, by

“if X isA;andY is B;thenZisC; ;"
if XisA; andY is By thenZ isC; ;41
‘if X is A;4q andY is B thenZ is Ci4q 5,
“if X isA;y1andY is B,y thenZis Citq 41"
and weighted averaging combine to produce afunqﬁgmver

Fig. 2. Local surface ovdr;. a,] X [b;, b].

The partitionsd,, ..., A, of U andBy, ..., B,, of V divide

the input domain intdqn — 1)(m — 1) rectangular regions de-
termined by the center points of the triangular fuzzy sets. Each

[ai; aita] X [bj; bj41] region has the fornfu;, a; 1] x [bj,b;+1] for somel <i < n
i1 41 andl < 5 < m. Using TSK rules with single point consequents
> > ma, (@)pBs(y)cs and inputz € [a;,a;41] andy € [b;,b;41], the value of the
f” (z,y) = =i t:J local appro>.<imating functiotf; ;(x,y) is dgtermined by valges
’ ’Lil Jf joa (2) s (1) of the _functlon at the four corners of this rectangle; that is, by
s=i i—j s s the points @i,bj./cid), (ai,bj+1,ci7j+1), (ai+1,bj./ci+17j), and
(i1 — ) (bjy1 — y) cij (@it1,bj41, Cig1,541)-

= (@ie1 —a3) (bya1 — b)) Rather than having the combination of four rules define the
AEERCAN AR surface, we will now define a form of TSK-style rule that per-

+ (2 = ai) (b1 — ) Civr mits a single rule to generate the surfdge(z, y). Defining rule
(@iv1 —ai) (bjt1 — bj) antecedents as Cartesian products of fuzzy sets from indepen-
n (ai+1 — ) (¥ — bj+1) i1 dent partitions of the input domains restricts the regions that can
(@it1 — a;) (bjr1 — bj) be the support of a rule. The projection of any two antecedents
(x —a;) (z—bj) ciy1+1 onto an input domain must be either be identical or disjoint. To
( (1) add flexibility to the modeling process, we will construct models
aiy1 — a;) (bjr1 — by) y gp :

from rules with multi-dimensional antecedents. A rule have will
wherec; ; is the center point of the triangular fuzzy <€t;. the form
Fig. 2 shows the surface generated by the local funcfign ' '
Equation (1) shows that, with triangular partitions and weighted if X xYisD ={[(a;,b;), (ar,bs)]
averagi.ng, the local approximating functigh; is completely theng(z,y) =[ci j, CissCr js Cr.s)
determined by the values, Ai41, bj, bj+1, Cijr Cit1,5r Cij+1s )
ande; 41 j+1. The borders of the surface are simply obtained Byhere [(ai,b;), (a,, b)] denotes the rectangle with corners
linear interpolation between the values at the corners. ai; b;), (ar;bj), (ai,bs), and ., bs). The consequent of the

The modelf is constructed frontn — 1)(m — 1) local ap- rule specifies the values at the corners of the rectangular region;

proximating functions; ;, 1 <i < n—1,andl < j <m—1, (@ bj,cij), (@i bs,cis), (ar, by, crj), and @, bs, cr.s). This
where the domain oﬁ_j is the rectangl@u; , a; 1] X [b;, bj41]- isa TSK-ster_ rule W_here the functlgf_tjx,_y) is obtained from
The fuzzy partitioning of the input domains provides a contirf’® corner points using (1) by substituting for a; 1, b, for
uous transition between adjacent rules that guarantees thatlthig Ci.s fOr Cijjt1, ¢rj for ciyy j, ande, s for ¢ity j11. That

functionf obtained from the local functionﬁ ; is continuous is, (1) has been generalized to produce a local function over an
overlU x V. ’ arbitrary rectangular region of the input space. Thus, rule bases

A TSK rule with single point consequent has the form obtained from rules of this form will have the ability to generate
all models that could be produced using Mamdani-style rules
if X is A; andY is B, thenz = ¢; ;. or TSK rules with single point consequents whose antecedents

are obtained from triangular partitions of the input domains.

Using weighted averaging aggregation, the approximating furtdewever, employing the type of multi-dimensional antecedents
tion f defined by a TSK rule base is the same as that obtaindescribed above allows us to produce additional models with
using Mamdani rules where ; is the center point of the con- nondecomposable partitions of the input domain that require

sequent fuzzy set; ;. fewer rules to satisfy a precision requirement.
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d o 06 0606 06 0606 0 o o When all grid points have been assigned a value by the pre-
IR G . ceding procedure, the rule base is completely specified. Each
a; ay rule has the form
Fig. 3. Domain decomposition and grid points. fXxYisD = [(ai_ bj) ) (ai+1 bj+1)]

theng(z,y) =[cij, cij+1, Civ1,5, Ci,j41]
I1l. RULE CONSTRUCTION
The generation of a model begins by selecting poinféherec;;, ¢ i1, cit1,, andeiyy ;11 are the values computed
{a1....,a,} € U and{by,....b,} € V that define the forgrid points @;,b;), (ai,bj+1), (@i+1,b;), and @iy, bj41).
partitions of the input domains. The ordered paits, ;) The rule base defines the model: U x V' — W consisting
form a gnd over the spact x V. Fig. 3 shows the domain of the local surfaces associated with each rule. The boundary
with n = m = 11, which will produce a rule base with 100conditions of the local surfaces ensure tﬁm continuous over

rules. Throughout this paper we will use partitions with evenfy/ x V.
spaced grid points to facilitate the rule reduction strategy and

to enhance the run-time efficiency of the model. These features IV. RULE BASE GENERATION BY REFINEMENT
will be discussed in Section V. . The construction of a rule base consists of two steps: the gen-
For a rule with antecedent “ifX x Y is D = gration of an original rule base followed by rule reduction. Ad-

[(ai,b;), (ar,bs)],” the learning process consists of sejacent rules produced by the learning algorithm must have sup-
lecting the constants, ;, c; s, cr,j, ande, s in the consequent. ports that facilitate the merging process that follows. To accom-
AsetT = {(z¢,yr,2¢) | t = 1,..., N} of training examples, plish this, a proximity learning algorithm is incorporated into a
wherez; € U andy; € V are input values and; € W is the generate-and-test domain partition refinement strategy to con-
associated response, provides the information needed for gact the rule base.
generation of the rules. The objective of the refinement of the partitions is to pro-
The valuer; ; associated with grid point(, b;) is determined duce a rule base that approximates the training data within a
by the weighted average of all training points whose projectiginescribed maximum errgs. The generation begins by parti-
onto the input space lies within a distangcef (a;, b;). The ini- tioning the input domains into a small number of fuzzy sets and
tial distancey is determined from the spacing of the grid pointsconstructing a rule base. If the resulting rule base satisfies the
Let gs = min{a;4+1 — a4, b;11 — b;} be the minimum distance precision bound, the process is complete. Otherwise a new par-
between grid points. Initiallyg is set to three-fourths of the tition is selected and generate-and-test procedure is repeated.
grid size:q = .75(gs). Let (zx, yx, zx) be a training point and  Throughout this presentation we will assume that partitions of
d; ;.1 be the distance fromx(,, v ) to grid point @;, b;). The set input spaces have the same number of fuzzy sets. Thus the grid
T;.;.4 IS the subset of the training sBtconsisting of all training formed by the partitions will by an x » grid, as shown in Fig. 3.
points @, vk, zx) with the distancel; ; ;. less than or equal to The initial partition sets to 2 with grid pointsy; = —1,a, =1
q. The value associated with grid point;(b;) obtained from andb; = —1,b, = 1. With this partition, the only rule is
T; ; , using weighted averaging is
a USING WEIG gne if X x YVisD =[(ay,by),(az,bs)]

( ( dijn )) thend; 1(z,y) = [c1,1,¢1,2, 2,1, ¢2,2] -

Cij =
> (1 - (d - )) The values for the; ;s are obtained as described in the pre-
vious section and the training data are then used to determine

where the summation is taken over all training pointiin ;.  the error of the model. The error at training poimt,(y:, z:)

Since training data may be sparsely distributed throughout ﬂgqf(l-h y:) — z|. The rule base generation is completed if the
input space, it is possible that no training point lies within disnaximum error of the training data lies within the specified pre-
tancey from a grid point ¢, b;). When this occurs, the radigs cision bound. If not, the algorithm expands the number of re-
defining the sefl; ; , is expanded incrementally until traininggions in the grid by decomposing the input domains with-()
information is found. The expansion of the radius is accompoints, as shown in Fig. 4. This procedure will continue incre-
plished by adding .25 s) to ¢ after each unsuccessful searcimentingn until a grid of sizen x = is found that satisfies the
for training data. precision bound.
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The procedure for generating the initial rule base can be sum- '(a. bis)
marized as follows. B3 T
1) Input: training sefl” and error bound.
2) Setn = 2.
3) Generate rule base with—1)? rules defined by the x n ¢
grid. (@42 bj+2)
4) Calculate maximum erroer over the set of training
points.
5) If er < B accept the rule base, else set n + 1 and go
to 2).
The applicability of the preceding strategy for generating the (@41, by41)

original rule base is limited by the number of input dimensions.

With £ input dimensions, théth iteration of the preceding loop

would be required to produce witfi — 1)* rules. For auto-

matic control, function approximation and many system mod- (a; b)
eling problems with a small number of variables, the refine-

ment process provides a computationally tractable strategy fay. 5. Merging regions as a square.

producing a rule base that satisfies a predetermined precision

bound. For classification problems with high dimensionality, the

growth of the exponerit would make this approach to the con-

struction of the rule base computationally unfeasible.

The greedy rule reduction algorithm presented in the next se T
tion, however, does not require a rule base produced by p:
tition refinement. The original rule base may be generated
any learning algorithm that produces rules whose supports ¢| (|
hyper-rectangular regions over the grid formed by input domai
decompositions.

V. RULE REDUCTION BY MERGING

The objective of the merging strategy is to reduce the numb@
of rules while preserving the satisfaction of the precision bound:
Ideally, the goal would be to identify the smallest set of rules
satisfying the precision bound. However, the algorithm that viBat preserve the precision bourtl Merging begins with
present is greedy and does not guarantee the generation &f ®gion[(a;,b;), (ai1+1,b;+1)] (see Fig. 5) and attempts to
minimal size rule base. Rule reduction based on merging fuzeglarge the rule. Starting at the lower left corner of the region,
sets to extend the scope of fuzzy rules has been considered inf#, merging strategy combines regions by expanding diag-
[8], [30], and [31]. The technique presented here differs fro@nally to produce rules with suppofta;,b;), (aiy2,bj12)],
previous methods due to use of multi-dimensional fuzzy sets[itwi: b;), (ai+3,bj+3)], - - .-
the antecedents of the rules and the complications associatefihe first step in accepting a new rule is to verify that the
with ensuring the continuity of the model. training data within the support of the expanded rule still satisfy

Regions inthe input domain in which the system has high vathe precision bound. The second requirement for accepting a
ation may require a fine partition to reach the desired precisigrtential expansion is that the surface generated by the new rule
Consequently, the uniform partitioning of the input space thatust be continuous with those in adjacent regions. Once a rule
was employed in the generation the original model may requingth enlarged support is proposed, the surfaces associated with
many rules in regions of little variation where a small number @fdjacent rules may no longer be continuous. Fig. 6 shows the
rules would suffice. The merging algorithm combines adjacerglationship in the input domain between an expanded rule and
rules that specify similar responses. Enlarging the region of ape adjacent rules. Before expansion, the surface is continuous
plicability of a rule may produce two beneficial results. First, inalong the line segmerd H since the values at point and H
creasing the size of the support produces arule with a greater dies the same for the adjacent rules. WiSeis expanded, the
gree of generalization of the data and guards against the clasailties specified by the expanded rule at poidtand H are
overfitting problem. The second benefit is that rules with largeo longer the values determined from the local training data but
granularity are more likely to admit a linguistic interpretation.rather are obtained from the values at the corner paint (; 1)

Rulesfromthe rule base with uniformpartitions ofthe inputdaand ;. , b;1). To maintain continuity, the grid point values
mains generated by the refinement process are combined to po@the regionT are modified to match the values generated by
duce rules with rectangular regions of applicability of the fornthe rule overS. Since this alters the function associated with

the regionT, the modified rule ovel must also be checked
if X xYisD ={[(as,b;), (ar, bs)] for compliance with the precision bound. If these conditions are
theng(z,y) =[cij, Ciss Cr js Crs) met, the enlarged rule is accepted.

Continuity considerations.



50 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 1, FEBRUARY 2003

*
1@ bj+k+s)
]

(@i+k bj+i) ’(ai+k+t> bj+r)

@i+p bj+)

(a; b)) (a; b

Fig. 7. Merging as rectangles.

After the rule has been expanded as far as possible diafjthe vaIuef(a;y) utilizes only one rule and no aggregation is
onally, expansions are attempted along ftieand V' axes. required. The antecedent of the rule has the form
The region[(a;, b;), (ai+k, bj+x)] resulting from the diagonal
expansion is then expanded in th& direction until halted
by the precision bound. This e_xpansion p_roduces a rectang}ﬁerex € [ai,ar] andy € [b;,b,]. The indexes and; in the
[(i,0;), (@isr, bjsr+s)] (s€€ Fig. 7). In like manner, the o array can be obtained directly from the input= |(n —
region [_(ai,bi), (@itx, bj4+x)] is expanded in thé/ direction )(z +1)/2] + 1andj = [(m — 1)(y + 1)/2] + 1. The value
producing|(a;, b;), (ai+k-+t,bj+r)]. The larger rectangle thatin yhe gl ] indicates the rule needed to obtdifr, y).
preserves the precision bound is selected as the antecedent @f, objective of the reduction of the number of rules in a
the new rule. _ _ _ _ model is to increase the interpretability of the rules. Linguistic
The merging process is greedy; it begins with rectangdigierpretation has generally considered Mamdani-style rules
[(a1,b1), (a2, b2)] and merges regions until the precision boungince fuzzy sets, with their associated linguistic terms, occur in
stops the process. Once an expanded rule is accepted, i the antecedent and consequent of such a rule. For example,
Values at the gnd pOintS on the boundary Of the I’ule are ﬁx%ommon form Of a rule for a fuzzy PD Contro”er iS
and cannot be changed by subsequent expansions. The merging
process continues left-to-right, bottom-to-top until the entiré Error is Positive small andChange of error is
input domain has been considered. Negative small thenResponse is Zero

if X xYisD ={[(ai,b;),(ar,bs)]

where Positive small, Negative small, andZero are fuzzy

sets over the error, change of error, and response domains, re-
The rules constructed by the refine-and-merge algorithspectively. This rule has a straightforward interpretation: if there

have several desirable features. Along with the reduction in tlsdlittle error and the change is reducing it in the correct direc-

number of rules required to produce a model with the desiréidn, do not alter the system.

precision, merging produces rule antecedents that are formedSK rules do not admit such a linguistic analysis since the

by the data rather than obtained fromaapriori selection of a consequent is a function of the input values and not a potentially

partition of the input space. The supports of the antecederigerpretable fuzzy set. The result of expanding the support of

however, are not allowed to be arbitrary regions in the inp@trule by merging regions for TSK rules does, however, have

space but rather are restricted to rectangular regions. THReful interpretation. A rule

restriction permits an efficient implementation of the model.
Although the merging process constructs rules with multi-di-

mensional antecedents, the run-time efficiency of a model byiigicates that the relationship between the input variables is the
from decomposable partitions is maintained using indireggme throughout the support Bf The TSK rule simply gives
hashing. When the rule base is generated using ann grid, 3 mathematical formulation of the relationship rather than a lin-
an(n — 1) x (m — 1) matrix R is constructed whose entries argyuistic one and the antecedent defines the extent of the relation-
pointers to the rule associated with each region. Initially, eaghip.
entry in the array points to the rule generated by the refinementrhis observation is particularly pertinent for the models built
process for the region. When regions are merged and a nigyvthe refine-and-merge algorithm. The result of such a model
rule is created, the entries for each of the regions that makeigbtained from a single rule and not from the aggregation of
the support of the new rule are set to point to the merged rulenultiple rules. Thus, a rule with a large region of applicability
With this formulation, the identification of the appropriaténdicates an intuitive stability of the model throughout that re-
rule during the execution is a direct computation. Consider inpgibn. The fundamental relationships between the variables are
(=, y) with n andm evenly spaced points defining the partitionsinchanged within the region and change only when traversing
of U andV respectively. As previously noted, the computatiothe borders of the region.

A. Features of the Rule Base

if X is D thenz = g, ;(x,y)
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VI. EXPERIMENTAL RESULTS To adapt the FLM algorithm to the production of a rule base
tlgfat satisfies a precision bound, the iterative refinement of parti-

Experiments have been conducted to determine the ability ; : : .
) 1ons of the input domains will be employed. In the experiments,
the refine-and-merge strategy to produce small rule bases that

. . - ) . the partition of each dimension will have the same number of
satisfy a prescribed precision boufgid An experiment begins . . L
! . . . fuzzy sets. Table | shows the results of iterative applications of
with selection of a@arget functionf, which represents the un-

derlying system. A training & = {(ze.ye, f(z1,3)) | t = the FLM algorithm and rule learning strategy from Section 1V

. . for target functionf (z,y) = 2% — y2. For simplicity, we will
L. , IV} is generated by randomly selectingelements from label the latterefine as the first step in the refine-and-merge
the input space. After the selection of the target and the genera-

: - ) ) focess.
tion ofthe training S.et’. the reﬂnem.e.nt processis used tolp.r od CSWe first observe several general characteristics exhibited by
a rule base that satisfies the precision bound on the training

. . X $2th of the learning strategies. As expected, the average and
The merging strategy is then applied to reduce the nu'ﬁnberrﬂtfglximum error over the test set decreases with the number

rules. of training points. Note that with a precision bound of .2, the

The functionf(z, y) defined by rule base is then comparedy e age error is well below the bound regardless of the size

with the target function to determine the precision of the '@Faining set used. As the precision bound becomes more de-
sulting model. The test set consists of 784 points uniformly diﬁianding, additional training data are required to reduce the av-
tributed over the input domaiii x V. The experimental results erage error below the bound. Even 10 000 data points, however,
reported in this section consist of the average number of rulgs not sufficient for the FLM algorithm to produce a rule base
generated, the average of the average error and the average M@k- maximal error below .05. The iterative refinement built
imum error over 20 iterations of the algorithm for each set ¢fi M rule bases with up to 22500 rules in the attempt to reach
parameters. this level of precision, but was unsuccessful.

The algorithm was tested with a number of target functions pos observed in previous experiments with the FLM algo-
to evaluate the ability to construct models with systems of difithm, the number of rules required initially increases with the
ferent levels of variability. The robustness of the algorithm wagquisition of training data. When sufficient training data is
examined by varying the precision bounds and the size of thgailable, the number of rules declines until it reaches an es-

training set. sentially constant number. Initially, the acquisition of training
data permits the opportunity of finding errors in more regions
A. FLM and Refinement in the input and thereby requiring additional rules. Eventually

The baseline for comparison is the proximity rule learning aif&ining data saturatioroccurs. That is, there are few or no re-

gorithm introduced by Wang and Mendel [21], [32], which wdlions without training data and in each region there is sufficient
will refer to as the FLM algorithm. This technique was Origi_infor'rn'ation to approximate each' of the rules to a high degree of
nally presented for the construction of Mandami-style rules plfecision. The accurate generation of rules reduces the number

can easily be adapted to produce TSK rules. The process be ﬁgded._T_he point at WhiCh saturation occurs i_s dependent upon
by decomposing the input domains into triangular fuzzy par he precision bound. This phenomena is exhibited by both of the
e

. arning strategies. In threfinecolumn, the number of rules de-
tions {Ay,..., An} and{Bs,..., Bu}. creases between 100 and 500 training points for precision bound
FLM: A training example £, yx, z) that has the maximal 9p P

membership in the fuzzy st x 3. is selected from the trainin .2, between 500 and 1000 training points for precision bound
P Y SELX 1, . 9 .1, and between 1000 and 10 000 training points for precision
setT. If more than one example assumes the maximal memb

g . UM . B6und .05.
ship m.Ai x BB, onels s:e_lected arbitrarily. The rule i is A; Comparing the results of FLM andfine, we see thatefine
andY is B; thenz = z;” is added to the rule base.

! ; produces rule bases with between 50% and 95% fewer rules than
The consequent of the rule, which we previously have dgje £| \ aigorithm. In each case, the maximum error was also
noted as:; ;, is simply the output value of the training set ele[ess than that in the corresponding FLM experiment. Similar

ment that has maximal membership in the antecedent. The i85 s were exhibited by experiments with a variety of target
tuition behind the approach is that the training instance neargfctions.

to satisfying the antecedent represents the best prototype of the
rule. Variations to the FLM algorithm that use all training exam- )
ples that fall within the support of the antecedent to determiffe Rule Reduction

the consequent have been examined in [23]. The rule base constructed by the iterative refinement is sub-

The FLM algorithm presented above requires at least op&ted to the merging algorithm to reduce the number of rules.
training point to have nonzero membership in the antecedemible I shows the results obtained of merging the rule bases
of the rule to produce a value for the consequent. Techniqugshstructed in Table I. The lower the precision bound, the more
for completing a rule base were introduced to extend this algsffective the merging is in reducing the number of rules. For
rithm to situations with distributed or sparse training data [23precision .2, the number of rules is reduced by 40 to 50 per-
[33]. Rule base completion uses existing rules and interpolatioant for training sets of size 50, 100 and 500. This increases to
to produce rules in regions with no training data. When we refarreduction of approximately 200 to 300% of the rules for rule
to the FLM algorithm, we will mean the rule selection procedsases generated with precision bound .1 and 200 to 600% with
described above augmented with region growing completion.05 precision bound.
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TABLE |

FLM VERSUSREFINEMENT: TARGET f(z, y) = x? — y?

FLM Refine
Prec Training | Rules | Ave | Max | Rules | Ave | Max
Bound | Examples Error | Error Error | Error
0.2 50 87.8 | .118 | .704 | 35.5| .100| .577
100 | 109.8 | .077 | .548 | 38.2| .076 | .440
500 | 167.2| .036| .280| 23.9| .039| .198
1000 | 841.5| .020 | .198 | 13.2| .039| .171
10000 | 126.0 | .015| .196 9.0 | .042| .167
0.1 50| 253.9| .110 | .607 | 131.2| .105| .656
100 | 344.6 | .074| .549| 163.5| .069 | .520
500 | 653.4| .029 | .304 | 193.5| .027 | .249
1000 | 841.5| .020 | .198 | 140.4 | .020 | .147
10000 | 625.4| .009 | .102| 25.0| .018 | .080
0.05 50 | 750.0 | .124 | .762| 289.0 | .109| .721
100 | 1188.3 | .082 | .568 | 409.4 | .073 | .516
500 | 1600.0 | .032 | .290 | 784.8 | .029 | .254
1000 | 2372.2 | .021| .226 | 873.9| .019| .183
10000 - - -1 495.0| .006 | .052

TABLE 1
RESULT OFMERGING. TARGET f(r,y) = 22 — y?

Prec Training | Rules | Ave | Max Percent

Bound | Examples Error | Error | Reduction

0.2 50 | 14.9| .111| .485 138%

100 | 14.8 | .084| .385 158%

500 | 11.7| .058 | .217 104%

1000 | 12.4| .046 | .188 6%

10000 9.0| .043| .171 0%

0.1 50 | 43.7| .093| .563 200%

100 | 53.7 | .064 | .395 203%

500 | 42.0| .034 | .147 311%

1000 | 33.2 | .032 | .122 323%

10000 | 25.0 | .018 | .081 0%

0.05 50| 89.0| .088| .515 224%

100 | 132.8 | .062 | .391 296%

500 | 199.3 | .021 | .229 293%

1000 | 175.5 | .027 | .149 397%

10000 | 65.6 | .015| 0.053 654%

Table Il gives a comparison of the models generated by re-
finement alone and by refinement-and-merging over a series of
target functions. In each case the training set consisted of 1000
points. The targef; is a planar surface and the surface gener-
ated by a single rule can approximateto within the desired
precision. The functiorf; is a cylindrification of the sine curve
to two dimensions, creating a surface that resembles a wave.
The merging algorithm reduces the number rules between 300%
and 800% from that produced by iterative refinement alone. The
targetf, defines a more complicated “ripple-like” surface. Min-
imal reduction occurs with .2 precision, indicating that approxi-
mately 25 rules are required to achieve that degree of precision.
As the precision bound decreases, the effect of the reduction be-
comes substantial.

In general, one may expect an increase in the error with a
reduction of rules. Enlarging the region of applicability provides
a greater generalization from the training data. This has occurred
in the experimentation, but the increases in both average and
maximum errors have been marginal and frequently the reduced
model has less test set error than the original.

C. Observations

The surface given in Fig. 8 illustrates several properties and
shortcomings of the refine-and-merge algorithm and indicates
directions of future improvements. The surface was produced by
a rule base generated using target functién, y) = 2% — ¢2,

1000 training points and precision bound .2. Refinement re-
quired 25 rules to reach the desired precision. The squares along
the bottom of the figure show the size of the local regions in the
original rule base. The shading indicates the 14 rules resulting
from the mergers.

The large region in the upper corner is the antecedent of a
single rule. In the terminology used to describe rectangles, the
antecedent of thisrule is “K x Y is D = [(a4, b1), (as, b3)].”

As discussed in Section V-A, merging TSK rules indicates that
similar relationships hold between the input variables in the ex-
panded region. A standard fuzzy rule interpretation of the rule
with antecedentl = [(a1,b1), (a3, bg)] might be stated: “ifX

is LargeandY is Smallthenz = ¢(z,y)"” whereg is the func-
tion from the consequent of the rule.

Fig. 8 also exhibits artifacts of the greedy approach to rule
merging. The functiorf (z, y) = 2% — y? is symmetric and one
might expect, or at least hope for, an equally large rule in the
other corners. However, the greedy strategy dictates that once an
expanded rule has been accepted, it will not be changed in later
analyses. Once the rule with antecedBnt [(a2, b3), (as, bs)]
is accepted, the values for grid poinis (b5) and @2, bg) cannot
be altered. When the squdfe; ,b4), (a2, bs)] is considered for
expansion, the region to the right has already been assigned to
a rule and will not be reallocated. Even potential expansion up-
ward is limited since the value at poiniy( b5) is fixed. This

As the saturation of training data occurs, the impact of redugxample shows that, as more rules are accepted, the flexibility
tion lessens. In this case, the origimefine component is pro- to merge regions in the remainder of the input space is restricted.
ducing high quality models with fewer rules than those producedThere are two techniques for potentially mitigating this limita-
with fewer training data. Since these rules have larger scopedidh. The firstis to allow backtracking in the merging process; ac-
becomes more difficult to successfully merge regions.

cepting an expanded rule does not preclude it from being changed
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TABLE Il
REFINE VERSUSMERGE 1000 TRAINING POINTS

Refine Merge
Target Prec | Rules| Ave | Max | Rules | Ave | Max
Bound Error | Error Error | Error
filz,y) = (z+y/2)/2 0.2 1.0| .023 | .069 1.0 | .022| .062

0.1 1.0| .023| .065| 1.0| .022| .065
0.05 45| .013| .036| 10| .013| .036
fo(z,y) = 2% — 2 02| 13.2| .039| .171| 12.4| .046| .188

0.1| 140.4| .020| .147| 33.2| .032| .122
0.05| 873.3| .019| .183| 1755 .019| .130
fs(z,y) = .5(sin(2rz)) 02| 683 .069| .225| 7.5| .072| .196

0.1| 306.4| .032| .233| 521 | .036| .147
0.05 | 1491.8 | .025 | .217| 339.2| .019| .205
fa(z,y) = (sin(rz) + sin(7y))/2 0.2 266 | .054 | .178 | 24.0| .058| .198

01| 988| .027| .150| 47.6| .037| .153
0.05| 703.7| .018 | .188 | 182.4| .021| .163
fs(z,y) = (sin 5z + sin 5y) /(25zy) 02| 347| .068| .338| 159| .085| .310

0.1| 103.6| .062| .396| 34.7| .070| .364
0.05| 225.9| .066| .437| 71.9| .067| .431

VII. | MPRECISETRAINING INFORMATION

The experiments in the previous section demonstrated the fea-
sibility of making a significant reduction in the number of rules
using a greedy merging algorithm. In those experiments, the
training set consisted of precise data. However, the training data
available for rule generation is frequently imprecise. Imprecise
training data requires a modification to the criterion used to halt
the refinement in the construction of the original rule base and
the merging in the rule reduction process.

For precise data, a partition of the input domains is rejected if
a training instancey, y, z) is encountered for whicly (z, y) —
z| exceeds the precision boufidWith imprecise data, this con-
dition may be triggered not by a change in the underlying system
. . . . but rather by noise in a single training point. To compensate for
when expansions of abutting regions are considered. The draw- y . 9 gp P

: : : : : noisy data, the decision to accept the current rule base or to fur-

back with this approach is the increased computational resourges © "

L . r refine the partition must not be dependent on the value of a
required in constructing the reduced rule base. Another approac - . . . y

swgle training point. This can be accomplished by requiring a

would be to perform the merging routine a number of times each * . S
certain percentage of the training points in the support of a rule

beginning at a different location (e.g., at each corner) followi L .
different patterns. The final model would be obtained fromtheré%e exceed the error bound. An alternative is to require the av-

various rule bases by selecting rules from each that cover rage error of all training points within the region to excged

space and whose boundary points can be made consistent to ¢ ne_Iatter strategy was incorporated into the iterative refinement

sure the continuity of the final model. ruIIe gelpl(erat|on. th f a sinale traini inti i
Building several rule bases from the same set of training data" @ 'Ik€ manner, the error of a single training point Is sufhi-
has been employed by Ischibuatt al. [34] for constructing

Fig. 8. Merging with target functiof(z, y) = =2 — y2.

cient to halt the merging process. Adopting the error averaging
fuzzy classification systems. In their work, the objective wairategy defined above, merging will be halted when the average
to use multiple rule bases to mitigate the effect of the arbitrafjror of all training points within the region considered for ex-
selection of the size of the partitions of the input domains. RANsion exceeds. With these modifications, a series of exper-
the strategy suggested above, the goal would be to retain tf@nts was conducted with imprecise training data.

efficiency of the greedy strategy but to limit the impact of the In these experiments, the training set consists of points of the
arbitrary selection of the initial location and pattern employeform (z, vy, f(z,y) +e(x, y)), wheref is the target function and

in the merging procedure. e is an error function. The error is randomly generated from a
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TABLE IV TABLE V
IMPRECISETRAINING DATA: TARGET f(z,y) = 22 — y? IMPRECISETRAINING DATA: 1000 TRAINING POINTS
Refine Merge Refine Merge

Error | Prec | Training | Rules | Ave | Max | Rules | Ave | Max Target Error | Prec | Rules | Ave | Max | Rules | Ave | Max
Std. Dev. | Bound | Points Error | Error Error | Error Std. Dev. | Bound Error | Error Error | Error
0.1 0.1 100 | 33.0| .127| .609 | 14.5| .123 | .547 fa 0.1 0.1 12.8 | .095| .418 11.0 | .098 | .403
500 | 17.5| .100| .430| 12.5| .102| .427 0.05 0.1 6.2 .085| .334 59| .088 | .368
1000 | 12.8| .095| .418| 11.0| .098 | .403 0.05 0.05 | 42.3| .052| .257| 29.5| .052| .235
0.05 0.1 100 11.6 | .106 488 84| .111 492 f1 0.1 0.1 33.9 .100 .393 25.5 .104 433
500 | 72| .083| .337| 71| .084| .385 0.05 01| 169| .091| .316| 9.1| .091| .316
1000 | 62| .085| .348| 59| .088| .368 0.05| 005| 783| .052| .236| 50.7| .054| .233
0.05 0.05 100 | 84.1| .086 | .494 | 424 | .082| .454 fs 0.1 0.1 305 | .097| .404 19.0| .102| .426
500 | 754 | .056 | .276 | 38.4| .056| .271 0.05 0.1 11.8 | .091| .329 571 .099| .349
1000 | 423| .052| .257| 29.5| .052| .235 0.05| 005| 585| .051| .226| 35.8| .052| .224

Gaussian distribution with mean 0. In the experimental results VIIl. CONCLUSIONS

in Tables IV and V, training data with error standard deviations strategy for reducing the number of rules needed to pro-

of .1 and .05 are used for generating rule bases with precisigii.e 4 model that satisfies a prescribed precision bound has been
bound .1 and standard deviation .05 for generating rule bagegsented. The algorithm employs an iterative refinement of the
with preC|S|or_1 bound .05. . . partitions of the input domains to produce a set of decomposable
Table IV gives the; resuQIt of the rule generation with target, 5 that satisfy the bound. When possible, adjacent rules are
function f(z,y) = «* —y*. The basic relationships between, o aq ysing a greedy strategy to increase the granularity of the

the precision bound, the number of training points, the NUMBEfie hase. Merging produces rules with multi-dimensional fuzzy

of rules, and the error identified in the precise training data Casgis in the antecedents, which enhances the representational ca-

- bility of the rules. The merging step has been shown to signifi-

are also exhibited with imprecise data. As might be expected, 0
creasing the error in the training data increases both the numggrmy reduce the number of rules in models built from a variety
of target functions and precision bounds. Future research will

of rules and the error in the resulting model.

Itis interesting to compare Table IV with with the results fog, e the potential of obtaining further improvements in the
the algor_|t.hm with precise training data given in Tables I anQbiIity to reduce the number of rules by modifying the merging
II_I._Requmng that the average value of the error exceed the Pfgorithm to allow a degree of backtracking (a nongreedy ap-
C|§|0n bound.g.reatly 'reduces the rymber of rules. For exgm%?oach) or by combining the results of several iterations of the
with 1000 training points and precision bound .1, the precise Feedy algorithm
gorithm produced rule bases with an average of 33.2 rules while
the imprecise algorithm with error standard deviation .05 pro- REFERENCES
duced rU|e.baseS with an _average of 5_'9 rules. The_tradeOﬁ Was[i] J. Yen and L. Wang, “An SVD-based fuzzy model reduction strategy,” in
of course, in accuracy. With the algorithm for precise data, the™ " proc. 5th IEEE Int. Conf. Fuzzy Systerew Orleans, LA, Sept. 1996,
maximum error was .122 while it was three times that for the  pp. 835-841.

; ; ; ; 2] —, “Simplifying fuzzy rule-based models using orthogonal transfor-
imprecise data. The data from experiments with the other targef mation methods,EEE Trans. Fuzzy Systol. 6. no. 4, pp. 13-24, 1999,

functions in Table V exhibited similar properties. [3] Y. Yam, P. Baranyi, and C.-T. Yang, “Reduction of fuzzy rule base via
Table V gives the results of refine-and-merge rule gener-  singular value decompositionlEEE Trans. Fuzzy Systol. 7, no. 2,

i i i 2,2 _ pp. 120-132, 1999.
ation with target functionsz(z,y) = = y°, fa(z,y) = [4] D.Nauck and R. Kruse, “A neuro-fuzzy method to learn fuzzy classifi-

S(sin(27z)), fa(z,y) = (sin(rx) + sin(ry))/2, and cation rules from data,Fuzzy Sets Systol. 89, pp. 277-288, 1997.
f5(z,y) = (sinbz + sinby)/(25zy). When the precision [5] —— "NEFCLASS-X-a soft somputing tool to build readable fuzzy

. . . : _ classifiers,"BT Technol. J.vol. 16, no. 3, pp. 180-190, 1998.
bound /3 is high and the training data error is low, = .1 M. Setnes, R. Babuska, U. Kaymak, and H. R. van Nauta Lemke, “Sim-

and error standard deviation .05, the use of averaging in the ~ ilarity measures in fuzzy rule base simplificatiofZEE Trans. Syst.,
refinement process produces rule bases with a small number of Man, Cybern. Bvol. 28, no. 3, pp. 376-386, 1998.

P . P 7] M. R. Berthold and K.-P. Huber, “Constructiong fuzzy graphs from ex-
rules. In this case, merging rules does not make a S|gn|f|can{ amples, ntell. Data Anal, vol. 3, pp. 37-53, 1999.

improvement to the rule base. [8] T. A. Sudkamp, A. Knapp, and J. Knapp, “A greedy approach to rule
With a more Stringent precision bound, the size of the Origina| reduction in fuzzy models,” ifProc. 2000 IEEE Conf. Syst., Man, Cy-

. . . bern, Nashville, TN, Oct. 2000, pp. 3716-3622.
rule bases increases and merging plays a more important ro'%g] T. A. Sudkamp, J. Knapp, and A. Knapp, “Refine and merge: Generating

For the cases witfi = .5 and standard deviation .5 in Table lll, small rule bases from training data,”®1oc. Joint 9th IFSA World Con-
the merging process reduced the number of rules by 30%, 35% 9ress and 20th NAFIPS Int. Conf/ancouver, BC, Canada, July 2001,
pp. 197-201.

0% writh [ .
and 38% W'Fh little change to the average and maximum errof'lo] W. Pedrycz Granular ComputingW. Pedrycz, Ed. Heidelberg, Ger-
of the resulting rule bases. many: Physica-Verlag, 2001.



SUDKAMP et al. MODEL GENERATION BY DOMAIN REFINEMENT AND RULE REDUCTION 55

(11]

(12]

(13]
(14]

(19]

[16]
[17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]
(30]

[31]

L. A. Zadeh, “Outline of a new approach to the analysis of complex[32] L.WangandJ. M. Mendel, “Generating fuzzy rules from numerical data,
systems and decision processéEEE Trans. Syst., Man, Cyberwol. with applications,” Signal and Image Processing Inst., Univ. Southern
SMC-3, pp. 28-44, 1973. California, Los Angeles, Tech. Rep. USC-SIPI-169, 1991.

T. Takagi and M. Sugeno, “Fuzzy identification of systems and its ap-[33] T. Sudkamp and R. J. Hammell, Il, “Rule base completion in fuzzy
plications to modeling and controllEEE Trans. Syst., Man, Cybern. models,” in Fuzzy Modeling: Paradigms and Practic®V. Pedrycz,
vol. SMC-15, pp. 329-346, 1985. Ed. Norwell, MA: Kluwer, 1996, pp. 313-330.

R. R. Yager and D. P. File\Essentials of Fuzzy Modeling and Con- [34] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Construction
trol.  New York: Wiley, 1994. of fuzzy classification systems with rectangular fuzzy regiofsizzy

J. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,” Sets Systvol. 65, no. 2, pp. 237-253, 1994.

|EEE Trans. Syst., Man, Cyberwol. 23, pp. 665-684, 1993.

H. Ishibuchi, “Development of fuzzy neural networks,” Ruzzy

Modeling: Paradigms and Practices Norwell, MA: Kluwer, 1996,

pp. 185-202.

C. L. Karr and E. J. Gentry, “Fuzzy control of pH using genetic algo Thomas Sudkamp(M’'94) received the B.S. degree

rithms,” IEEE Trans. Fuzzy Systol. 1, pp. 46-53, 1993.

W. Pedrycz, Fuzzy Evolutionary Computatipn W. Pedrycz,
Ed. Norwell, MA: Kluwer, 1997.

O. Cordon, F. Herrera, F. Hoffmann, and L. MagdaleBanetic Fuzzy
Systems: Evolutionary Tuning and Learning of Fuzzy Rule B&ses
gapore: World Scientific, 2001.

M. Delgado, A. F. Gomez-Skarmeta, and F. Martin, “Using fuzzy clug
ters to model fuzzy systems in a descriptive approactPtac. Informa-
tion Processing Management Uncertainty Knowledge-Based Syste University. His research interests are in the applica-
Granada, Spain, July 1996, pp. 564-568. tion of soft computing techniques to modeling and
S. Medasani, J. Kim, and R. Krishnapuram, “An overview of memelecision making in complex problem domains.

bership function generation for pattern recognitiomt. J. Approx. Dr. Sudkamp is an Associate Editor of IEERANSACTIONS ON SYSTEMS,
Reason.vol. 19, pp. 391-417, 1998. MAN AND CYBERNETICSand IEEE RANSACTIONS ONFuzzy SYSTEMS. He is

L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning fronalso the President of the North American Fuzzy Information Processing Society.
examples,”IEEE Trans. Syst., Man, Cybermol. 22, pp. 1414-1427,

1992.

B. Kosko,Neural Networks and Fuzzy Systems: A Dynamical Systems

Approach to Machine Intelligence Englewood Cliffs, NJ: Prentice-
Hall, 1992.

T. Sudkamp and R. J. Hammell I, “Interpolation, completion anc
learning fuzzy rules,|IEEE Trans. Syst., Man, Cyberwol. 24, no. 2,
pp. 332-342, 1994.

J. A. Dickerson and M. S. Lan, “Fuzzy rule extraction from numerica
data for function approximation|EEE Trans. Syst., Man, Cyberwol.

26, pp. 119-129, 1995.

T. Thawonmas and S. Abe, “Function approximation based on fuz:
rules extracted from partitioned numerical datlEE Trans. Syst.,
Man, Cybern. Bvol. 29, no. 4, pp. 525-534, 1999.

C. C. Lee, “Fuzzy logic in control systems—Part I: Fuzzy logic con-
troller,” IEEE Trans. Syst., Man, Cyberwol. 20, no. 2, pp. 404-418,
1990.

W. Pedrycz, “Why triangular membership functionsPyzzy Sets Syst.
vol. 64, pp. 21-30, 1994.

E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesi:
with a fuzzy logic controller,’Int. J. Man-Mach. Studvol. 7, pp. 1-13,
1975.

E. H. Mamdani, “Advances in the linguistic synthesis of fuzzy con
trollers,” Int. J. Man-Mach. Studvol. 8, pp. 669-678, 1976.

T. A. Sudkamp and R. J. Hammell, II, “Granularity and specificity in
fuzzy function approximation,” ifProc. NAFIPS 1998, pp. 105-109.

J. Espinosa and J. Vandewalle, “Constructing fuzzy models with lir
guistic integrity from numerical data-AFRELI algorithmEEE Trans.
Fuzzy Systvol. 8, no. 5, pp. 591-600, 2000.

in mathematics from University of Wisconsin,
Madison, in 1974, the M.S. and Ph.D. degrees in
mathematics from the University of Notre Dame,
Notre Dame, IN, in 1976 and 1978, respectively, and
the M.S. degree in computer science from Wright
State University, Dayton, OH, in 1982.

Currently, he is a Professor in the Department of
Computer Science and Engineering at Wright State

Aaron Knapp received the B.S. and M.S. degrees
in computer science from Wright State University,
Dayton, OH, in 1999 and 2001, respectively.

He is currently with Northrop Grumman Informa-
tion Technologies, Dayton. His research interests in-
clude system modeling and the design of fuzzy rule
bases.

Jon Knapp received the B.S. and M.S. degrees in
computer science from Wright State University,
Dayton, OH, in 1999 and 2001, respectively.

He is currently with TriVectus LC, Phoenix, AZ,
which specializes in Macintosh-based consulting
and development, web-site design, and computer
graphics. His research interests in soft computing
include system modeling and the design of fuzzy
rule bases.




	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


