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Abstract

Fuzzy data analysis as we interpret it in this paper is the application of fuzzy systems

to the analysis of crisp data. In this area, neuro-fuzzy systems play a very prominent role

and are applied to a variety of data analysis problems like classification, function ap-

proximation or time series prediction. Fuzzy data analysis in general and neuro-fuzzy

methods in particular make it easy to strike a balance between accuracy and inter-

pretability. This is an interesting feature for intelligent data analysis and shall be dis-

cussed in this paper. We interpret data analysis as a process that is exploratory to some

extent. In order for neuro-fuzzy learning to support this aspect we require fast and

simple learning algorithms that result in small rule bases, which can be interpreted

easily. The goal is to obtain simple intuitive models for interpretation and prediction.

We show how the current version of the NEFCLASS structure learning algorithms

support this requirement.
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1. Introduction

Our modern world is data-driven. Many decisions are made based on the

analysis of data. Examples of typical application areas are the weather forecast,
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stock prediction, the identification of prospective customers, object recognition

in images, etc. The remarkable progress in computer technology not only al-
lows us to gather and store more data than we can possibly analyse, it also

enables us to do analyses one could not think of 30 years ago. Thus not only

the need for data analysis has increased, but also the number of feasible data

analysis methods.

The notion of intelligent data analysis (IDA) is used to describe a certain

approach to data analysis. Like many notions that feature the term intelligent

IDA also has no exact definition. In our discussion we follow the line of ar-

gumentation by Hand found in [7] and [4, Chapter 1].
The two most important areas that contribute to intelligent data analysis are

statistics and machine learning. Further contributing areas are soft comput-

ing techniques [29] like fuzzy systems, neural networks and probabilistic rea-

soning – areas that deliberately exploit the tolerance for uncertainty and

vagueness in the area of cognitive reasoning. This can lead to considerable

reduction in complexity when real-world problems have to be solved and can

lead to solutions that are easy to handle, robust, and low-priced. Other areas

that can be mentioned are knowledge discovery in databases (KDD), evolu-
tionary computation, artificial intelligence or approximation theory and also

database theory that provides means to handle large amounts of data.

From a practical point of view certain restrictions have to be imposed on

models obtained in a data analysis process. Thanks to the computer it is

possible to create almost arbitrarily sophisticated models that fit every subtle

aspect of a data set or an underlying process. Not only are such subtleties

usually irrelevant in practical applications, complex models also tend to overfit

the data, i.e., they fit the noise and uncertainties contained in the data. From
the viewpoint of a user a model must also be comprehensible, interpretable and

inexpensive. In several application areas, e.g. medicine or financial services,

reasons of security demand that models can only be trusted, if they can be

understood by the user. For example an artificial neural network that was

created from medical data will probably not be simply accepted as a decision

authority, if it recommends an amputation based on the data of a patient.

Models obtained from data analysis that are applied in practice usually require

transparency and interpretability in terms of the attributes they process. This
also requires small models because models with many parameters are not

comprehensible to a user.

An important aspect of intelligent data analysis is to select an appropriate

model with the application in mind. It may be necessary to sacrifice precision

for interpretability, i.e., a suitable balance between model complexity and

comprehensibility, between precision and simplicity must be found.

Intelligent data analysis also requires the selection of appropriate algorithms

for the process of creating a model. There can be several algorithms available
for creating the same kind of model and they may not only differ in compu-
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tational complexity, speed of convergence, ease of parameterization, but also in

the way they ensure certain features in the model they create from data.
Considering the above-given characterisation of IDA we think that fuzzy

systems are very valuable for data analysis, especially if simple and interpret-

able solutions are required [19,20].

The advantage of fuzzy systems is that they can provide simple intuitive

models for interpretation and prediction. Prior knowledge in the form of fuzzy

rules can be easily integrated. The application of fuzzy systems to data analysis

is also known as ‘‘fuzzy data analysis’’. This term refers to the analysis of crisp

data with fuzzy methods. There are also approaches that consider the analysis
of fuzzy data with generalized statistics [14]. Such approaches are not con-

sidered in this paper.

Fuzzy systems conveniently allow us to model a partially known dependency

between independent and dependent variables by using linguistic rules. By

using linguistic terms represented by fuzzy sets to describe values, we can select

a certain granularity under which the data is observed. We can use a fuzzy

system both for predicting values for the dependent variables and for knowl-

edge representation.
Thus a fuzzy system can be regarded as a model that links models for

prediction and models for understanding. Usually models for prediction are

either not interpretable – they are black boxes like, e.g. neural networks – or

they are only interpretable by experts – regression models, for example, offer

some interpretation of an underlying process. Models for prediction usually do

not need to bother with understandability. Their objective is to create accurate

predictions.

Models for understanding are usually represented in some kind of rule base,
for example, symbolic rules based on predicate calculus. Such rule bases can

help to understand an underlying process but building them is often only

feasible for finite categorical domains or if numeric domains are partitioned

into crisp sets. Such rule bases are less suitable for prediction because count-

erintuitive results can occur at the boundaries of sets or domains.

Fuzzy systems have numeric interpolation capabilities and are therefore

suited for function approximation and prediction. On the other hand they

partition variables by fuzzy sets that can be labeled with linguistic terms. Thus
they also have a symbolic nature and can be intuitively interpreted. However,

there is a trade-off between readability and precision [2]. We can force fuzzy

systems to arbitrary precision, but then we lose interpretability. To be very

precise, a fuzzy system needs a fine granularity and many fuzzy rules. It is

obvious that the larger the rule base of a fuzzy system becomes the less in-

terpretable it gets.

In order to use fuzzy systems in data analysis it must be possible to learn

them from examples. Learning in fuzzy systems is most often implemented by
learning techniques derived from neural networks. The term neuro-fuzzy system
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(also neuro-fuzzy methods or models) refers to combinations of neural net-

works and fuzzy systems. This combination does not usually mean that a
neural network and a fuzzy system are used together in some way. A neuro-

fuzzy method is rather a way to create a fuzzy system from data by some kind

of (heuristic) learning method that is motivated by learning procedures used in

neural networks.

For IDA we think of neuro-fuzzy methods not mainly as a tool to build

predictive models, but as a way to answer questions about data, and for this

reason the fuzzy rules that are induced by a neuro-fuzzy method must be

comprehensible. In data analysis the emphasis is not on modeling but on an-
swering questions, or as [7] puts it: ‘‘it is these questions, not the model per se,

which must be paramount’’.

If a fuzzy model is to be created in such a scenario it is important to apply

algorithms that support the exploratory nature of the data analysis process. It

is important that the main advantages of a fuzzy system – its simplicity and

interpretability – are exploited.

Data analysis also plays an important role in the creation of intelligent

systems. From intelligent systems we expect that they can learn, adapt to the
users preferences, filter information, act on the behalf of the user, simplify

complex information, are simple to use, etc. [1]. Neuro-fuzzy methods can help

in achieving some of these goals, especially if we apply neuro-fuzzy methods

that focus on interpretability.

In this paper we review NEFCLASS in the context of creating interpretable

fuzzy rule bases for data analysis. We have reported about the progresses in the

development of NEFCLASS in various publications [20–24]. This paper pre-

sents the most recent version of the structure learning algorithm that comprises
handling of missing values and symbolic and numeric variables in the same

data set. The parameter learning algorithms have not been changed and can be

found in one of before-mentioned previous publications.

In the following section we introduce the notation that we use for the rest of

this paper and discuss aspects of interpretability of fuzzy systems. In Sections

3–5 we discuss the NEFCLASS system, its structure learning capabilities and

its pruning algorithms that are designed to generate small interpretable fuzzy

rule bases. Section 6 provides two examples to illustrate the rule learning ca-
pabilities before we conclude the paper in Section 7.

2. Interpretable fuzzy systems

If fuzzy sets are used to describe relations between variables we obtain

linguistic rules or fuzzy rules. A system of several fuzzy rules is called a fuzzy

system. The kind of fuzzy rules that we consider in this paper has the form
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Rr : if x1 is lð1Þ
r and . . . and xn is lðnÞ

r then y is mr:

Usually the fuzzy sets are replaced by their labels, which results in more
readable rules like, for instance,

Rr : if x1 is small and . . . and xn is large then y is approximately zero:

Other forms of fuzzy rules using additional operators like OR and NOT or

systems of hierarchical rules [6] will not be discussed in this paper.

For the fuzzy systems considered in this paper, a fuzzy rule must not be

interpreted in the sense of an implication, but as a part of the definition of a
function known only at some points. The antecedent describes a vague envi-

ronment and the consequent provides a vague description of the value that is

assumed by the output variable y, if the input vector ðx1; . . . ; xnÞ lies within the

vague environment described by the antecedent.

A fuzzy system uses a set of such fuzzy rules and provides a computational

scheme describing how the rules must be evaluated and combined to compute a

crisp output value (vector) for any crisp input vector. One can therefore think

of a fuzzy system simply as a parameterized function that maps real vectors to
real vectors.

Definition 2.1. A fuzzy system FR is a mapping

FR : X ! Y ;

where X ¼ X1 � � � � � Xn � Rn is called a domain or input space, Y ¼ Y1 � � � � �
Ym � Rm is called a co-domain or output space and x ¼ ðx1; . . . ; xnÞ 2 X and
y ¼ ðy1; . . . ; ymÞ 2 Y denote an input vector and an output vector, respectively.

R is a fuzzy rule base that determines the structure of the fuzzy system:

R ¼ fR1; . . . ;Rrg:
Each rule Rk 2 R is a tuple of fuzzy sets

Rk ¼ lð1Þ
k ; . . . ; lðnÞ

k ; mð1Þk ; . . . ; mðmÞk

� �
;

where lðiÞ
k : Xi ! ½0; 1� is a fuzzy set over the domain of input variable xi

and mðjÞk : Yj ! ½0; 1� is a fuzzy set over the domain of output variable yj. We

define

FRðxÞ ¼ y ¼ ðy1; . . . ; ymÞ;
where

yj ¼ defuzz ?Rk2R m̂mðjÞk
n o� �

with

m̂mðjÞk : Yj ! ½0; 1�; yj 7! >2 sk; m
ðjÞ
k

n o
with

sk ¼ >1 lð1Þ
k ðx1Þ; . . . ; lðnÞ

k ðxnÞ
n o

;
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where >1 and >2 are t-norms, ? is a t-conorm, sk is the degree fulfilment of

fuzzy rule Rk and defuzz is a defuzzification method that is used to convert an
output fuzzy set m̂mðjÞk into a crisp output value.

Fuzzy systems as they are introduced by the previous definition are linguistic

representations of piecewise defined functions. The evaluation of the rule base

provides an interpolation strategy in a vague environment. The inputs and

outputs are crisp values. Only the internal computation is fuzzy.

Fuzzy systems can also be used for classification problems which can be

interpreted as a special case of function approximation. In a crisp classification
problem an input vector (pattern) must be assigned to one of several classes. A

class is a subset of the pattern space. A fuzzy classification problem accepts

that a pattern is assigned to several classes with different degrees of member-

ship. In this case a class is a fuzzy set of the pattern space. A classification

problem can be easily be transformed into a function approximation problem

by specifying a set ~LL with patterns ðx; cÞ, where c 2 ½0; 1�m and ci denotes the
degree of membership of x in class Ci. If a crisp classification problem is

represented this way, then in each c there is exactly one component set to 1 and
all other components are set to 0. A fuzzy system used for classification is

called a fuzzy classifier.

Definition 2.2. A fuzzy classifier is a fuzzy system

FR : X ! Y

with Y ¼ ½0; 1�m. Its rule base R consists of special kinds of fuzzy rules of the
form

Rk ¼ lð1Þ
k ; . . . ; lðnÞ

k ; cjk
� �

;

where cjk 2 C ¼ fc1; . . . ; cmg is a class label. We define

FRðxÞ ¼ y ¼ ðy1; . . . ; ymÞ

with

yj ¼ ?
Rk2R

conðRkÞ¼cj

fskg;

where ? is a t-conorm and conðRkÞ is the consequent of rule Rk.

The output of a fuzzy classifier is a vector whose components denote the

degree of membership of a processed pattern to the available classes. In many

applications a pattern must be assigned to a single class only. In this case the
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output vector of a fuzzy classifier must be interpreted (or defuzzified). Usually

a ‘‘winner takes all’’ interpretation is used, i.e., the class with the largest degree
of membership is selected.

We interpret fuzzy systems as convenient models to linguistically represent

(non-linear) mappings [30]. The designer of a fuzzy system specifies charac-

teristic points of an assumed underlying function. This function is unknown

except for those characteristic points. The fuzzy sets that are used to linguis-

tically describe those points express the degree of indistinguishability of points

that are close to each other. Fuzzy systems can be interpreted on the basis of

equality relations [12,13].
The advantages of applying a fuzzy system are the simplicity and the lin-

guistic interpretation of the approach. This allows for the inexpensive and fast

development and maintenance of solutions and thus enables us to solve

problems in application areas where rigorous formal analysis would be too

expensive and time-consuming.

In the area of data analysis the interpretability and simplicity of fuzzy

systems are the key advantage. Fuzzy systems are not better function ap-

proximators or classifiers than other approaches. If we want to keep the model
simple, the prediction is usually less accurate. This means fuzzy systems should

be used for data analysis, if an interpretable model is needed that can also be

used to some extent for prediction.

Interpretability of a fuzzy model should not mean that there is an exact

match between the linguistic description of the model and the model para-

meters. This is not possible anyway, due to the subjective nature of fuzzy sets

and linguistic terms. Interpretability means that the users of the model can

accept the representation of the linguistic terms, more or less. The representation
must roughly correspond to their intuitive understanding of the linguistic terms.

It is more important that the rule base is small and thus comprehensible.

Furthermore, interpretability should not mean that anybody can understand

a fuzzy system. It means that users who are at least to some degree experts in

the domain where the data analysis takes place can understand the model.

Obviously we cannot expect a lay person to understand a fuzzy system in a

medical domain. It is important that the medical expert who uses the model

should understand it.
From the viewpoint of a user we can formulate the following intuitive cri-

terion for the interpretability of a fuzzy system. We assume that the linguistic

interpretability of a fuzzy system is adequate if

• it provides a rough idea about the underlying process or the relations within

the data,

• it sufficiently justifies the majority of observed output values,

• it is usable for explanations,

• it covers all important observed input/output situations (rare cases or excep-
tions might be ignored).
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A neuro-fuzzy learning procedure for creating interpretable fuzzy systems in

data analysis must be simple and fast to allow a user to understand what it does
and to experiment with it. We prefer a tool-oriented, exploratory view on

neuro-fuzzy systems. The learning algorithm should take the semantics of the

desired fuzzy system into account, and adhere to certain constraints. The

learning result should also be interpreted, and the insights gained by this

should be used to restart the learning procedure to obtain better results if

necessary. A neuro-fuzzy system supports the user in finding a desired fuzzy

system based on training data, but it cannot do all the work. This view matches

the exploratory nature of intelligent data analysis.
Semantical problems will occur if neuro-fuzzy systems do not have mech-

anisms to make sure that all changes caused by the learning procedure are

interpretable in terms of a fuzzy system [18]. The learning algorithms should be

constrained such that adjacent membership functions do not exchange posi-

tions, do not move from positive to negative parts of the domains or vice versa,

have a certain degree of overlapping, etc. An interpretation in terms of a

Mamdani-type fuzzy system may not be possible if the evaluation of ante-

cedents is not done by t-norms, but by certain special functions. The following
points influence the interpretability of a fuzzy system:

• The number of fuzzy rules: a fuzzy system with a large rule base is less inter-

pretable than a fuzzy system that needs only few rules.

• The number of variables: high dimensional models are incomprehensible.

Each rule should use as few variables as possible.

• The number of fuzzy sets per variable: only a few meaningful fuzzy sets

should be used to partition a variable. A fine granularity not only in-

creases the number of linguistic terms for a variable, but also the number
of possible fuzzy rules increases exponentially with the number of variables

and fuzzy sets. A coarse granularity increases the readability of the fuzzy

model.

• Unambiguous representation of linguistic terms: each linguistic term must

be represented by only one fuzzy set. Different rules using the same linguistic

expression (e.g. x is small) may not represent the corresponding linguistic

term (e.g. small) by different fuzzy sets.

• No conflicts: there must be no rules in the rule base that have identical an-
tecedents but different consequents (complete contradiction). Only partial

contradiction is acceptable.

• No redundancy: no rule may appear more than once in the rule base. There

must also be no rule whose antecedent is a subset of the antecedent of an-

other rule.

• Characteristics of fuzzy sets: fuzzy sets should be ‘‘meaningful’’ to the user

of the fuzzy system. After training, the fuzzy partition of a variable should

still be reasonably similar to the partition provided by the user. At least the
relative position of the fuzzy sets must be maintained. Usually, a minimum/
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maximum degree of overlapping must be enforced. Fuzzy sets should be

normal and convex and be interpretable as fuzzy numbers or fuzzy
intervals (for numeric variables, symbolic variables are discussed, e.g. in

[17]).

Aspects of interpretability can become more complex, if different types of

fuzzy rule bases are considered, for example hierarchical rule bases [6]. For a

discussion about the trade-off between accuracy and interpretability, see also

[3,5].

3. NEFCLASS

The idea of a neuro-fuzzy system is to find the parameters of a fuzzy system

by means of learning methods obtained from neural networks. Learning in

fuzzy systems must consider structure learning, i.e., creation of a rule base, and

parameter learning, i.e., optimization of fuzzy sets. Parameter learning is often

done by algorithms that were inspired by neural network learning. Structure

learning on the other hand is usually not taken from neural networks. The term
‘‘neuro-fuzzy’’, however, is nowadays applied to almost all approaches to

learning in fuzzy systems such that the learning of fuzzy rules is also subsumed

under this notion [8,20]. Distinctions are only made, for example, when fuzzy

rules are created by fuzzy decision tree learning [9] or by genetic algorithms

[11,15].

A common way to apply a learning algorithm to a fuzzy system is to rep-

resent it in a special neural-network-like architecture. Then a learning algo-

rithm – such as backpropagation – is used to train the system. There are some
problems, however. Neural network learning algorithms are usually based on

gradient descent methods. They cannot be applied directly to a fuzzy system,

because the functions used in the inference process are usually not differ-

entiable. There are two solutions to this problem: either replace the func-

tions used in the fuzzy system (like min and max) by differentiable functions, or

do not use a gradient-based neural learning algorithm but a better-suited

procedure. The NEFCLASS system that we discuss here uses the latter ap-

proach.
There are several different approaches which have much in common, but

differ in implementational aspects. To stress the common features of all these

approaches, and to give the term neuro-fuzzy system a suitable meaning, we

only apply it to systems which possess the following properties:

(i) A neuro-fuzzy system is a fuzzy system that is trained by a learning algo-

rithm (usually) derived from neural network theory. The (heuristic) learning

procedure operates on local information, and causes only local modifica-

tions in the underlying fuzzy system. The learning process is not knowl-
edge-based, but data-driven.
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(ii) A neuro-fuzzy system can always (i.e., before, during and after learning)

be interpreted as a system of fuzzy rules. It is possible both to create the
system out of training data from scratch, and to initialize it from prior

knowledge in the form of fuzzy rules.

(iii) The learning procedure of a neuro-fuzzy system takes the semantical

properties of the underlying fuzzy system into account. This results in con-

straints on the possible modifications of the system’s parameters.

(iv) A neuro-fuzzy system approximates an n-dimensional (unknown) func-

tion that is partially given by the training data. The fuzzy rules encoded

within the system represent vague samples, and represent vague proto-
types of the training data. A neuro-fuzzy system should not be seen as

a kind of (fuzzy) expert system, and it has nothing to do with fuzzy logic

in the narrow sense [13].

(v) A neuro-fuzzy system can be represented by a special three-layer feedfor-

ward neural network (see Definition 3.1). This view of a fuzzy system illus-

trates the data flow within the system and its parallel nature. However,

this neural network view is not a prerequisite for applying a learning pro-

cedure, it is merely a convenience.
The neuro-fuzzy technique, then, is used to derive a fuzzy system from data,

or to enhance it by learning from examples. The exact implementation of the

neuro-fuzzy model does not matter. A lot of neuro-fuzzy approaches use a

neural network-like graph to illustrate the data flow and the computations that

are carried out in a fuzzy system. This neural network representation is then

used to formalize the application of a learning algorithm.

A 3-layer fuzzy perceptron provides a way to represent a fuzzy system as a

network. The name refers to the structure of the model that is similar to a
multilayer perceptron, but where the weights are modeled as fuzzy sets and the

activation, output, and propagation functions are changed accordingly, to

implement a common fuzzy inference path. The term fuzzy (multilayer) per-
ceptron has also been used by other authors for their approaches [10,16,26].

Here this notion is used to describe the topology.

Definition 3.1. Let FR be a fuzzy system. A 3-layer fuzzy perceptron is a network

representation of a fuzzy system FR in the form of a neural network
ðU ;W ;A;O;NET; exÞ, where
(i) U ¼U1[U2[U3 with U1 ¼fx1; . . . ;xng; U2 ¼fR1; . . . ;Rrg; U3 ¼fy1; . . . ; ymg.
(ii) W , the network structure, is a partial mapping from U � U ! FðRÞ and is

given by

W ðu; vÞ ¼
lðiÞ
j if u ¼ xi; v ¼ Rj;

mðkÞj if u ¼ Rj; v ¼ yk
undefined otherwise;

8><
>:
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where 16 i6 n; 16 j6 r and 16 k6m. In addition every two connections

with weights W ðu; vÞ and W ðu0; v0Þ become coupled connections, if
W ðu; vÞ ¼ W ðu0; v0Þ and ðu ¼ u0; u; u0 2 U1 ^ v 6¼ v0; v; v0 2 U2Þ or ðu 6¼ u0; u;
u0 2 U2 ^ v ¼ v0; v; v0 2 U3Þ holds.

If W ðu; vÞ and W ðu0; v0Þ are coupled, then if W ðu; vÞ is modified by a

learning algorithm, W ðu0; v0Þ is modified in the same way and vice versa.

(iii) A is a mapping that assigns an activation function Au to each u 2 U
with

Au : R ! R; au ¼ AuðnetuÞ ¼ netu for u 2 U1 [ U2;

and

Au : FðRÞ ! FðRÞ; au ¼ AuðnetuÞ ¼ netu for u 2 U3:

(iv) O is a mapping that assigns an output function Ou to each u 2 U with

Ou : R ! R; ou ¼ OuðauÞ ¼ au for u 2 U1 [ U2;

and

Ou : FðRÞ ! R; ou ¼ OuðauÞ ¼ defuzzðauÞ for u 2 U3:

(v) NET is a mapping that assigns a network input function NETu to each

u 2 U , with

NETu : R ! R; netu ¼ NETuðexuÞ ¼ exu for u 2 U1;

NETu : ðR�FðRÞÞU1 ! ½0; 1�; netu ¼ >1
u02U1

fW ðu0; uÞðou0 Þg for u 2 U2

and

NETu : ð½0; 1� �FðRÞÞU2 ! FðRÞ; netu : R ! ½0; 1�;
netuðyÞ ¼ ?

u02U2

>2fou0 ;W ðu0; uÞðyÞg
	 


for u 2 U3:

(vi) ex : U1 ! R defines for each input unit u 2 U1 its external input

exðuÞ ¼ exu. For all other units ex is not defined.
In [20] we find a definition for a generic fuzzy perceptron that is more general

than the fuzzy perceptron of Definition 3.1, as it does not enforce coupled

connections. A generic fuzzy perceptron can be used to derive neuro-fuzzy

models for special domains, and can serve as a common foundation to evaluate

different neuro-fuzzy approaches by means of the same underlying model.

In this paper we are interested in creating an interpretable fuzzy system for

data analysis. One important feature of interpretable fuzzy systems is that no

linguistic expression is represented by more than one fuzzy set. Therefore we
must take care that a network representation uses coupled connections (shared

weights), as required in Definition 3.1.

NEFCLASS (neuro-fuzzy classification) is a neuro-fuzzy approach to derive

fuzzy classification rules from a set of labelled data [21–23]. NEFCLASS creates
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a fuzzy classifier according to Definition 2.2 by using the structure-oriented rule

learning algorithms (see following section). A NEFCLASS system (Fig. 1) can

be represented as a special kind of fuzzy perceptron, because Definition 3.1 is

flexible enough to allow for the representation of fuzzy classifiers.

Definition 3.2. A NEFCLASS system represents a fuzzy classifier FR according

to Definition 2.2 with a set of class labels C ¼ fc1; . . . ; cmg;>1 ¼ min;>2 ¼ min

and ?¼ max. A network representation of a NEFCLASS system is a fuzzy
perceptron according to Definition 3.1 with the following specifications:

(i) W , the network structure, is a partial mapping from U � U ! FðRÞ and is

given by

W ðu; vÞ ¼
lðiÞ
j if u ¼ xiði 2 f1; . . . ; ngÞ ^ v ¼ Rjðj 2 f1; . . . ; rgÞ;

If1g if u ¼ Rj ^ v ¼ cij ¼ conðRjÞ
ðj 2 f1; . . . ; rgÞðij 2 f1; . . . ;mgÞ;

undefined otherwise

8>><
>>:

In addition every two connections with weights W ðu; vÞ and W ðu0; v0Þ
ðu ¼ u0; v 6¼ v0; u; u0 2 U1; v; v0 2 U2Þ become coupled connections, if

W ðu; vÞ ¼ W ðu0; v0Þ holds.

Fig. 1. A network representation of a NEFCLASS system.

114 D.D. Nauck / Internat. J. Approx. Reason. 32 (2003) 103–130



(ii) The network input for the third layer is computed as follows:

NETu : ð½0; 1� �FðRÞÞU2 ! FðRÞ; netu : R ! ½0; 1�;
netuðyÞ ¼ max

u02U2

minfou0 ;W ðu0; uÞðyÞg
	 


for u 2 U3.

(iii) The output of a unit in the third layer is given by

Ou : FðRÞ ! R; ou ¼ OuðauÞ ¼ defuzzðauÞ ¼ heightðauÞ
for u 2 U3.

In Fig. 1 a NEFCLASS system with two inputs, five rules and two classes is

shown. The main difference between a fuzzy perceptron and a NEFCLASS

system is that only one connection protrudes from each unit of the second layer
to one unit of the third layer. This connection represents the connection be-

tween a rule unit and the class used in the consequent of the corresponding

rule. These connections have a constant weight of 1, which actually means they

are not weighted. Weighted fuzzy rules are difficult to interpret. This problem

of weighted fuzzy rules is discussed in [18]. In order to keep the structure of a

fuzzy perceptron that demands a fuzzy set attached to these connections we use

the membership function If1g – which is the characteristic function of the set

f1g – to represent the singleton 1 as a fuzzy set (Definition 3.2(i)).
An output unit receives a modified version of this fuzzy set, i.e., its height is

reduced to the maximum of the output values of all rule units connected to the

considered output unit (Definition 3.2(ii)). The output values of the rule units

are the degrees of fulfilment of the corresponding fuzzy rules. The output unit

then defuzzifies this output fuzzy set by means of a special defuzzification

function that computes the height of the output fuzzy set (Definition 3.2(iii)).

Because NEFCLASS uses coupled connections (shared weights), for each

linguistic value there is only one representation as a fuzzy set. This ensures the
interpretability of the fuzzy rule base. During learning it cannot happen that

two fuzzy sets corresponding to the same label (e.g. positive big) develop dif-

ferently. In Fig. 1 shared weights are denoted by ellipses around the connec-

tions. Connections that share a weight always come from the same input unit.

4. NEFCLASS structure learning

In order to be useful as a data analysis tool for classification problems, the

NEFCLASS implementation provides following features:

• fast generation of fuzzy classifiers through simple learning strategies,

• constrained fuzzy set learning to retain the interpretability of a generated

classifier,

• automatic pruning to reduce the complexity of a generated classifier,
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• automatic cross-validation to generate error estimates for a generated clas-

sifier,
• methods for integrating prior knowledge and for modifying generated clas-

sifiers manually,

• treatment of missing values,

• both numeric and symbolic variables,

• treatment of unbalanced data sets.

In this section we present the most recent structure learning algorithm

for NEFCLASS. The algorithm can handle missing values and any mix-

ture of numeric and symbolic data. The primary rule learning procedure is
given in Algorithm 1. It computes a fuzzy rule base by using a modified Wang–

Mendel procedure [27] to find antecedents. If a numeric feature is missing, it

results in more rules to be created, because all available fuzzy sets for this

variable, are eligible for the antecedent. After the numeric variables have been

processed, the antecedents are completed by adding fuzzy sets for the sym-

bolical features. Those fuzzy sets are not parameterised, but they store the

membership degrees individually for each attribute value. A fuzzy set for a

symbolic feature is therefore basically a normalise histogram. If a value of a
symbolic feature is missing, no further action is required.

After the antecedents have been created, we select for each antecedent a

suitable consequent, such that the resulting rule cause as few errors as possible.

To obtain the final rule base, we select an appropriate number from the list of

created rules. This number can either be specified by the user or computed

automatically such that all patterns are covered by rules. Algorithm 2 shows a

rule selection procedure that tries to create an equal number of rules for each

class.
The algorithms use the following notations:

• ~LL: a set of training data (fixed learning problem) with ~LL
�� �� ¼ s, which rep-

resents a classification problem where patterns p are to be assigned to m
classes C1; . . . ;Cm.

• ðp; tÞ 2 ~LL: a training pattern consists of an input vector p 2 X1 � � � � � Xn
and a target vector t 2 ½0; 1�m. p consists of u numeric and v symbolic features

(uþ v ¼ n), i.e., Xi is either a subset of R or a (finite) set of symbols. The tar-

get vector represents a possibly vague classification of the input pattern p.
The class index of p is given by the index of the largest component of t:

classðpÞ ¼ argmaxjftjg.
• R ¼ ððA;MÞ;CÞ: a fuzzy classification rule with antecedent antðRÞ ¼ ðA;MÞ

and consequent conðRÞ ¼ C, which denotes a class. A ¼ ðlð1Þ
j1 ; . . . ; l

ðuÞ
ju Þ is cre-

ated by fuzzy sets for numeric variables and is the first part of the anteced-

ent. M ¼ ðmð1Þ
j1 ; . . . ;m

ðvÞ
jv Þ is the second part of the antecedent and is created

by the fuzzy sets for the symbolic variables.

• lðiÞ
j : jth fuzzy set of the fuzzy partition of input variable xi. There are qi fuzzy

sets for variable xi.
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• m
ðkÞ
j : jth fuzzy set of the kth symbolic variable xk. There are m fuzzy sets for

each symbolic variable, i.e., one fuzzy set per class. A fuzzy set m
ðkÞ
j is rep-

resented by a vector that contains the degrees of membership for all elements

of Xk. At the time of initialization (Algorithm 1, line 12) all entries of m
ðkÞ
j are

set to zero. We use m
ðkÞ
j ½x� to denote that the degree of membership for x is

accessed for manipulation (Algorithm 1, line 22).

• PR 2 ½�1; 1�: a value representing the performance of rule R:

PR ¼ 1

s

X
ðp;tÞ2 ~LL

ð�1ÞcRðpÞ with c ¼ 0 if classðpÞ ¼ conðRÞ;
1 otherwise:



ð1Þ

Algorithm 1 starts by creating initial antecedents that contain only numeric

attributes using a Wang–Mendel procedure [27]. After the training data is

processed once, all k antecedents that are supported by the data have been

found. Then from each antecedent m rules are created, one for each class, and

the initial antecedents are completed by constructing fuzzy sets for the sym-
bolic attributes by counting the frequencies of the symbolic values [17]. This

means there is now an initial rule base that contains a set of m � k rules. This

rule set can be inconsistent, because it can contain contradictory rules. After

resolving inconsistencies, by selecting the rule with a better performance from

multiple rules with identical antecedents but different consequents, a final list of

rule base candidates is created. Then a rule evaluation algorithm is applied to

select a final rule base [19]. One example is given in Algorithm 2.

After rule creation the fuzzy sets of both numeric and symbolic variables are
trained to improve the performance of the classifier [17,19,20].

The mixed fuzzy rules created by Algorithm 1 cannot be as easily interpreted

as fuzzy rules that use only numeric variables and continuous membership

functions, which can be labelled with terms like small or large.
Fuzzy sets that are denoted as an ordered list of pairs are hard to be labelled

linguistically. In some cases linguistic labels can be found by inspection. For

example, if we have a symbolic variable describing the job of a person the fuzzy

set {(accountant, 0), (consultant, 0.3), (engineer, 0.7), (lecturer, 1), (professor,
1)} may be labelled by academic job.

If fuzzy rules are created by learning, then it is useful to also create linguistic

labels automatically. To quickly generate a rough linguistic term for a fuzzy set

given by an ordered list of pairs we could use ‘‘y is A or C or B’’ for y is

fðA; 1:0Þ; ðB; 0:4Þ; ðC; 0:7Þg. The order in which the feature values with non-

zero membership are listed, expresses the preferences represented in the degrees

of membership. In this case we learn from the label, that A is more typical than

C and C is more typical than B. If we need to know the exact degrees of
membership, we can look at the fuzzy set.

This interpretation is similar to common linguistic labels like approximately
zero for a numeric variable. In this case we also know, that 0 is the most typical
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value for the variable and larger or smaller values are less typical. If we are

interested in the exact degrees, we also have to look at the membership func-
tion.

Algorithm 1 (NEFCLASS structure learning).

1: for all ðp; tÞ 2 ~LL do

2: (* find all hyperboxes

that contain data *)

3: create a new empty antecedent A0;

4: for all metric input features xi whose value is

not missing do

5: lðiÞ
ji ¼ argmax

lðiÞj ;j2f1;...;qig
flðiÞ

j ðpiÞg;
6: add lðiÞ

ji to antecedent A0;

7: end for

8: repeat

9: create a new empty antecedent A;
10: A ¼ A0;

11: create a new combination of fuzzy sets from

all missing input features and add them to A;
12: if (A 62 list of antecedents) then
13: add antecedent A to list of antecedents;

14: end if

15: until all combinations were enumerated

16: end for

17: for all A 2 list of antecedents do

18: (* create rule base

candidates *)

19: initialize M;

20: create complete antecedent ðA;MÞ;
21: for all classes C do

22: create rule R ¼ ððA;MÞ;CÞ and add it to list

of rule base candidates;
23: end for

24: end for

25: for all ðp; tÞ 2 ~LL do
26: (* compute frequen-

cies of symbolic vari-

ables *)

27: for all R 2 list of rule base candidates do

28: if (classðpÞ ¼ conðRÞ) then
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Algorithm 2 (Select best rules per class).

29: for all symbolic features xk do
30: if(xk is not missing) then

31: with R do: mðkÞ½pk� ¼ mðkÞ½pk� þ 1;
32: end if

33: end for

34: end if

35: end for

36: end for

37: for all R 2 list of rule base candidates do

38: with R do: normalize all mðiÞ;

39: (* transform the mðiÞ

into fuzzy sets *)

40: compute performance PR of R; (* see Eq. (1)*)

41: end for

42: Find all contradicting rules and resolve con-

flicts;

43: if (select best rules) then

44: SelectBestRules; (* see [19]*)
45: else if (select best rules per class) then

46: SelectBestRulesPerClass; (* see Algorithm 2 *)

47: end if

SelectBestRulesPerClass

1: k ¼ 0; stop ¼ false;

2: repeat

3: for all classes C do

4: if (9R : conðRÞ ¼ C) then
5: R0 ¼ argmax

R:conðRÞ¼C
fPRg;

6: if (fixed rule base size) then

7: if (k < kmax) then

8: add R0 to rule base;
9: delete R0 from list of rule candidates;

10: k ¼ k þ 1;

11: else

12: stop ¼ true;

13: end if

14: else if (all patterns must be covered) then

15: if (R0 covers some still uncovered patterns) then
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5. Pruning fuzzy rule bases

In order to improve the readability of a fuzzy rule base derived by a learning

process pruning techniques can be used. Pruning techniques are well-known
from neural networks and decision tree learning. They are used to reduce the

complexity of a model.

Fuzzy rule base pruning can be based on a simple greedy algorithm that

does not need to compute complex test values as, for example, in neural net-

work pruning methods. In order to prune a rule base we consider four heuristic

strategies that can work in an automatic fashion without the necessity of user

interaction.

(i) Pruning by correlation: The variable that has the smallest influence on the
output is deleted. To identify this variable statistical measures like corre-

lations and v2 tests or measures from information theory like the informa-

tion gain can be used.

(ii) Pruning by classification frequency: The rule that yields the largest degree

of fulfilment in the least number of cases is deleted. Such a rule is only re-

sponsible for the classification of a small number of patterns. If these pat-

terns are also covered by other rules, the performance of the fuzzy rule

base may not decrease. But if these patterns represent exceptions it may
not be possible to delete the selected rule without a decrease in perfor-

mance.

(iii) Pruning by redundancy: The linguistic term that yields the minimal degree

of membership in an active rule in the least number of cases is deleted.

This pruning strategy assumes that the min operator is used in order to

evaluate the antecedent of a rule. In this case a term that always provides

large degrees of membership, does not influence the computation of the

degree of fulfilment and the term assumes the role of a don’t care variable.
This pruning strategy can also be applied, if other t-norms are used, e.g.

the product, but it may be less effective in these cases.

(iv) Pruning by fuzziness: The fuzzy set with the largest support is identified

16: add R0 to rule base;

17: delete R0 from list of rule candidates;

18: end if
19: if (all patterns are now covered) then

20: stop ¼ true;

21: end if

22: end if

23: end if

24: end for

25: until stop
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and all terms that use this fuzzy set are removed from the antecedents of

all rules. This pruning strategy is comparable to (iii), because it assumes
that fuzzy sets with large supports provide large degrees of membership

for many input values and thus terms that use this fuzzy set do not influ-

ence the computation of the degree of fulfilment in a rule. Another justi-

fication for this strategy is that fuzzy sets actually get very large

supports during training, if the corresponding variable has a large variance

and is thus less useful for prediction.

An automatic pruning algorithm can be obtained by applying the four

strategies consecutively. After each pruning step the membership functions
should be trained again before a pruning step is declared a failure or a success.

If a pruning step has failed, the rule base is restored to its previous state. This

means the modifications caused by a pruning step are only kept, if the step has

successfully improved the rule base. In the case of a classification problem, the

pruning algorithm must take care not to remove the last rule for a class.

After an application step of one of the strategies has failed, it must be de-

cided whether to carry on with this strategy and the next parameter it rec-

ommends for pruning, or to switch to the next pruning strategy. In order to
reduce runtime, usually each of the four pruning strategies is iterated until a

pruning step fails to improve the performance of the rule base. Then the next

pruning strategy is selected. An implementation of this approach produces

good results for neuro-fuzzy classification systems [25]. However, especially in

high-dimensional problems exhaustive pruning can provide better results. In

this case each pruning method is applied exhaustively and is not stopped when

it fails for the first time. To speed up the process fuzzy set learning should be

only done after an after exhaustive pruning process and not after each single
pruning step. Exhaustive pruning can be iterated several time until the rule base

cannot be reduced further.

The improvement of the rule base can be defined in terms of performance

(i.e., reduction of error) and in terms of complexity or simplicity (i.e., number

of parameters). There is usually a trade-off between performance and sim-

plicity. To obtain high accuracy, a large number of free parameters is needed,

which again result in a very complex and thus less comprehensible model.

However, often the performance of a model can actually increase with the
reduction of the number of parameters because the generalization capabilities

of the model may increase. If the model has too many parameters, it tends to

overfit the training data and displays poor generalization on test data. But if

the number of parameters is too small, sufficient accuracy can no longer be

attained.

If variables are deleted from the rule, the rule base can become inconsistent

during pruning. This may happen for the above-mentioned pruning strategies

(i), (iii) and (iv). Inconsistencies must be resolved by deleting some rules.
If the rule learning algorithm shown in the previous section is applied the
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performance values of the rules can be used to select rules for deletion until the

rule base is consistent again.
A consistent rule base is a rule base that does not contain contradictions or

redundancies.

• A contradiction occurs if there are two rules with different consequents and

their antecedents are either equal or one is more general than the other. An

antecedent A is more general than an antecedent B, if A contains fewer lin-

guistic terms than B and all linguistic terms of A also appear in B.
• A rule base is redundant, if there are two rules with identical consequents

and if the antecedent of one rule is more general than the antecedent of
the other rule.

The rule base can be made consistent by identifying pairs of contradictory

and/or redundant rules and deleting rules with smaller performance values.

6. Application of NEFCLASS

In this section we demonstrate the NEFCLASS rule learning and pruning

algorithms on two benchmark data sets: the ‘‘Wisconsin Breast Cancer’’

(WBC) and the ‘‘Pima Indian Diabetes’’ (PID) data sets. Both sets are avail-

able from the machine learning repository of the University of Irvine at ftp://

ftp.ics.uci.edu/pub/machine-learning-databases. As the example for we use the

‘‘Wisconsin Breast Cancer’’ (WBC).

6.1. WBC data set

The WBC data set is a breast cancer database that was provided by Wolberg

from the University of Wisconsin Hospitals, Madison [28]. The data set con-

tains 699 cases and 16 of these cases have missing values. Each case is repre-

sented by an id number and nine attributes (x1: clump thickness, x2: uniformity

of cell size, x3: uniformity of cell shape, x4: marginal adhesion, x5: single epi-

thelial cell size, x6: bare nuclei, x7: bland chromatin, x8: normal nucleoli, x9:
mitoses). All attributes are from the domain f1; . . . ; 10g. Each case belongs to

one of two classes (benign: 458 cases, or malignant: 241 cases).

The values of all nine variables are actually from an ordinal scale. Classifiers

usually simply treat them as metric values and good classification results can be

obtained this way (see Table 2). To illustrate Algorithm 1 we chose to interpret

variables x3 and x6 as categorical variables and the rest as metric variables. x3
and x6 are selected, because these two variables usually turn out to be influ-

ential in other classification approaches.
We use a 10-fold cross validation, and let the tool select the best two rules

per class during rule learning. For each metric variable two initial membership

functions are given (shouldered triangles). The fuzzy sets for the categorical
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variables are created during rule learning. The fuzzy sets are trained until the

error on the validation set reaches a local minimum which the algorithm
cannot escape within 30 epochs (look-ahead). The maximum number of

training cycles is set to 200 epochs and the learning rate is set to 0.1 (default

value). We used exhaustive pruning and trained the fuzzy set only before and

after pruning, but not after each pruning step.

The final classifier contains only two rules using one and two variables,

respectively:

(i) if x2 (uniformity of cell size) is small and x6 (bare nuclei) is term
ð6Þ
1 then be-

nign
(ii) if x2 (uniformity of cell size) is large then malignant

The membership functions after training are shown in Fig. 2. The fuzzy set

for the categorical variable x6 is drawn as a histogram. Its exact representation

is

termð6Þ
1 ¼ fð1; 1:0Þ; ð2; 1:0Þ; ð3; 0:66Þ; ð4; 0:37Þ; ð5; 0:61Þ; ð6; 0:0Þ; ð7; 0:01Þ;

ð8; 0:01Þ; ð9; 0:0Þ; ð10; 0:14Þg:

This classifier causes 28 misclassifications (4.01%) on the training data, i.e.,
its classification rate is 95.99% (see Table 1). This classifier covers all data,
there are no unclassified cases. The error estimation for unseen data obtained

from cross validation yields 4:58� 1:21% misclassifications, i.e., an estimated

classification rate of 95:42� 1:21% (99% confidence interval). This error esti-

mation must be interpreted this way: A classifier that is obtained by the de-

scribed learning procedure and using the described parameters and training

data is estimated to produce an error of 4:58� 1:21% on unseen data.

The final rule base was also discovered in one of the validation cycles. Al-

together seven different rule bases were discovered during validation (nine rule
bases with two rules, one rule base with four rules). However, most of the other

1.0

0.5

0.0

1.0 2.8 4.6 6.4 8.2 10.0

Uniformity of Cell Size

sm lg

(a)

1.0

0.5

0.0

1.0 2.8 4.6 6.4 8.2 10.0

Bare Nuclei

fs0
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Fig. 2. Membership functions for the metric variable x2 and the categorical variable x6 after

training.
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rule bases were very similar and differed only in additionally using the other

categorical variable x3, using x3 instead of x2, or using just x2.
Table 2 compares the result obtained with NEFCLASS-J (last entry) to

results obtained with other approaches. The classification performance on

unseen data is very good and the classifier is very compact. The error estimates

given in the column ‘‘Validation’’ of Table 2 are either obtained from 1-leave-

out cross validation (discriminant analysis), 10-fold cross validation, or from

testing the solution once by withholding 50% of the data for a test set (MLP).

Note that the cases with missing values had to be removed only for the MLP.

All other approaches are able to handle missing values.

6.2. PID data set

The PID data set describes eight medical conditions for a selected group of

768 female Native Americans. There are two classes positive and negative de-
scribing the result of a test for diabetes. The majority class with 500 cases

Table 1

The confusion matrix of the final NEFCLASS-J classifier for the WBC data set

Predicted class

Malignant Benign Not classified Sum

Malignant 228 (32.62%) 13 (1.86%) 0 (0.00%) 241 (34.99%)

Benign 15 (2.15%) 443 (63.38%) 0 (0.00%) 458 (65.01%)

Sum 243 (34.76%) 456 (65.24%) 0 (0.00%) 699 (100.00%)

Correct: 671 (95.99%), misclassified: 28 (4.01%), SSE: 60.54.

Table 2

Comparing the NEFCLASS learning outcome for the WBC data set to some other approaches

Model Tool Remarks Error (%) Validation

Discriminant analysis SPSS Linear model nine

variables

3.95 1-Leave-out

Multilayer perceptron SNNS Four hidden units,

RProp

5.18 50% Test set

Decision tree C4.5 31 (24.4) Nodes,

pruned

4.9 10-Fold

Rules from decision

tree

C4.5 rules 8 (7.5) Rules using

1–3 Variables

4.6 10-Fold

NEFCLASS (metric

variables)

NEFCLASS-J

(Java version)

2 (2) Rules using

1–5 variables

5.86 10-Fold

NEFCLASS (two

symbolic variables)

NEFCLASS-J

(Java version)

2 (2.1) Rules using

1–3 variables

4.58 10-Fold

Numbers in ( ) are mean values from cross validation. The column ‘‘Error’’ contains an estimated

error for unseen data.
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(65.1%) is the negative class. For training NEFCLASS we used a learning rate

of 1.0 and set 100 as the maximum number of epochs for fuzzy set learning
with a look-ahead of 30 epochs. We used automatic best-per-class rule learning

and exhaustive pruning. The fuzzy sets were not trained during pruning, only

once before and after pruning. For each variable we used two fuzzy sets.

During training a classifier was considered to have been improved if the

number misclassifications could be reduced even if the mean square error has

increased.

A 10-fold cross validation suggests that a NEFCLASS model will produce

an error rate of 22:65� 3:53% on unseen data, i.e., the classification is expected
to be correct in 77:35� 3:53%. The final pruned classifier was generated on the

complete data set. It contains nine rules using between five and six variables

and has a classification rate of 71.35% on the training data set. The confusion

matrix of this classifier is given in Table 3.

To obtain the final classifiers we used the whole data set for training and

obtained the following results.

• A multilayer perceptron with six hidden units trained for 300 epochs with

resilient propagation results in a classification rate of 79.16% (160 errors).
Because the learning outcome depends on the initial random weight config-

uration we picked the best network from 30 runs. Longer training did not

yield better results.

• A pruned decision tree with 177 nodes using all nine attributes delivers a

classification rate of 94.4% (43 errors).

• A linear discriminant function analysis uses five attributes to provide a clas-

sification rate of 77.3% (174 errors).

• NEFCLASS creates a classifier based on nine rules using between five and
six variables and provides a classification rate of 71.35% (220 errors).

We can see that the other models can fit the complete training data set

better. However, NEFCLASS provides the smallest estimated generalisation

error during cross-validation. Only the linear discriminant function gives a

similar result. This suggests that NEFCLASS – although it provides the worst

performance on the training data – does generalise best on unseen data for this

data set. This means, NEFCLASS would be a preferred classifier for this data

Table 3

The confusion matrix of the final NEFCLASS-J classifier generated on the complete PID data set

Predicted class

Negative Positive Not classified Sum

Negative 437 (54.43%) 49 (9.51%) 14 (1.17%) 500 (65.10%)

Positive 142 (16.02%) 111 (17.06%) 15 (1.82%) 268 (34.90%)

Sum 579 (75.39%) 160 (20.83%) 29 (3.78%) 768 (100.00%)

Correct: 548 (71.35%), misclassified: 220 (28.65%), SSE: 338.57.
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set, because it does not over-generalise on the training data compared to the

expected accuracy on unseen data. This can be explained by the limited re-
sources NEFCLASS is allowed to use for fitting the training data. In this ex-

ample we only let NEFCLASS use two fuzzy sets per variable. In addition,

NEFCLASS is not allowed to apply arbitrary modifications during training

that could improve the fit. NEFCLASS is restricted by constraints that aim at

generating meaningful fuzzy sets [20]. Neural nets and decision trees can

usually fit a data set arbitrarily well, which means they are prone to over-

generalisation. Although a linear discriminant function provides also a good

performance in relation to the other approaches, NEFCLASS still offers the
advantage of a relatively small interpretable fuzzy rule base of only nine rules.

Further inspection of the learning outcome can also improve the result as we

will show below.

Table 4 provides the details of the cross validation procedure for the four

mentioned approaches. For the training of the neural network we used six

hidden units and ran resilient propagation for 300 epochs. The decision trees

we generated using information gain ratio as attribute selection measure and

they were pruned with confidence level pruning. The discriminant analysis was
run with a stepwise inclusion of variables using Wilk’s lambda. For NEF-

CLASS we used the above-described settings.

By studying Table 4 we can see from the confidence interval of the error that

the selection of training data seems to influence all approaches, especially the

neural network. When we analyse the log file of the 10-fold cross validation for

NEFCLASS we find four classifier with two or three rules and six classifiers

with rule bases between five and eight rules. If we look for a small rule base

with similar performance as the final classifier, we can identify a classifier with
the following rule base:

• if body mass index is large and age is large then positive;
• if serum insulin is large and body mass index is large and diabetes pedigree

function is small and age is small then positive;

Table 4

Comparing the NEFCLASS learning outcome for the PID data set to some other approaches

Model Tool Remarks Error (%) Validation

Discriminant

analysis

SPSS Linear model five

variables

22.9 1-Leave-out

Multilayer

perceptron

NNTa Six hidden units,

RProp

31:23� 7:2 10-Fold

Decision tree DTIa 141–181 Nodes pruned 27:99� 4:7 10-Fold

NEFCLASS NEFCLASS-J 2–8 Rules using 1–6

variables

22:65� 3:53 10-Fold

The column ‘‘Error’’ contains an estimated error and its 99% confidence interval for unseen data

based on cross validation.
a Free software from Christian Borgelt, http://fuzzy.cs.uni-magdeburg.de/�borgelt.

126 D.D. Nauck / Internat. J. Approx. Reason. 32 (2003) 103–130



• if serum insulin is small and body mass index is small and diabetes pedigree

function is small then negative.
This rule base uses only four variables and has a classification rate of 71.6%

(218 errors) on the whole data set. Apparently, the pruning algorithm of

NEFCLASS is strongly influenced by the subsets used for training and vali-

dation. A similar pattern can be seen during cross validation for the decision

trees, where we find trees that yield rule bases between 63 and 84 rules.

In situations like this it is an advantage to use a classifier like NEFCLASS

that produces small and interpretable results. The user can review all solutions

generated during cross validation and use domain knowledge to identify
plausible solutions. The decision trees that are produced during cross valida-

tion are too large for manual inspection and the neural networks can hardly be

interpreted at all.

If we select the above-given rule base of three rules and enter it as prior

knowledge into NEFCLASS, we can obtain a classifier with a classification rate

of 71.8% (216 errors) on the whole data set. We used only 50% of the data for

training and reached a classification rate of 73.4% (102 errors) on the test set.

The fuzzy sets for the four variables are shown in Fig. 3. This experiment
shows that NEFCLASS is useful as an interactive tool for building small in-

terpretable fuzzy classifiers. The user cannot necessarily expect to obtain the

best solution automatically. But by inspecting several learning results and – if

possible – combining them with domain knowledge, a user can obtain suitable

solutions.

Fig. 3. Membership functions for four variables used in the experiment on the PID data set.
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7. Conclusions

The interpretability of a fuzzy system – especially if applied in data analy-

sis – is one of its key advantages. To support the readability of a fuzzy model

resulting from a training process, one should use approaches that keep the

learning algorithms simple – and therefore understandable – and do not touch

the semantics of the underlying fuzzy models. The algorithms used by NEF-

CLASS conform to this idea.

We view neuro-fuzzy approaches as a way to heuristically find parameters of

fuzzy models by processing training data with a learning algorithm. Neuro-
fuzzy approaches should be seen as development tools that can help to con-

struct a fuzzy model. They are not ‘‘automatic fuzzy model creators’’. The user

should always supervise and interpret the learning process. This view matches

the exploratory nature of IDA.

If we are only interested in using a neuro-fuzzy model for prediction, we

could – from an applicational point of view – ask: why bother with inter-

pretability and semantics? It is important that the model does its job. It is of

course possible to leave out all constraints in the learning procedures of a
neuro-fuzzy model, consider it only as a convenient tool that can be initialized

by prior knowledge and trained by examples, and not look at the final model,

as long as it performs to the satisfaction of the user. However, interpretability

and clear semantics provide us with obvious advantages like checking the

model for plausibility and maintaining it during its life cycle. These aspects are

also important if a model is only to be used for prediction.

In order to applying a neuro-fuzzy learning strategy one more important

aspect should be considered: for whatever reason we choose a fuzzy system to
solve a problem it cannot be because we need an optimal solution. Fuzzy

systems are used to exploit the tolerance for suboptimal solutions. So it does

not make much sense to select a very sophisticated and expensive training

procedure to squeeze the last bit of information from the training data. To do

this we must usually forsake the standard fuzzy system architectures but,

however, we are confronted with semantical problems instead. We prefer the

view that fuzzy systems are used because they are easy to implement, easy to

handle and easy to understand. A learning algorithm to create a fuzzy system
from data should also have these features.

A free academic version of NEFCLASS is available at http://fuzzy.cs.

uni-magdeburg.de/nefclass.
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