
More on Designing Fuzzy Controllers using Genetic Algorithms : Guided
Constrained Optimisation

Gregory V. TAN and Xiheng HU
Department of Electrical Engineering,

University of Sydney, NSW 2006, Australia
gregt@ee.usyd.edu.au, hxh@ee.usyd.edu.au

Abstract

The design of fuzzy controllers using the Genetic
Algorithm is appearing as a systematic method. This
method easily provides an optimised design and forms the
framework for further progress. This paper attempts to
provide some methods to improve interpretability in
Genetic Algorithm-designed fuzzy logic controllers as
well as to reduce the amount of genetic material required
to represent a complex fuzzy controller. This paper also
introduces the concept of Guided Constrained
Optimisation.

1. Introduction

Designing Fuzzy Logic Controllers (FLCs) manually
requires expert knowledge and usually results in control
rules and membership functions which model human
thinking. This ensures that the design produced is easily
understood and can further be modified to meet specific
requirements and changes in environment. However,
there is to-date no generalised systematic method beyond
ad hoc trial and error ones. Systematic methods for
designing and tuning FLCs using automatic methods is
still a currentresearch area [l , 2,4, 8, 11, 21,231. One of
the foremost of these methods is the Genetic Algorithm
(GA) [15, 161. This technique has been applied to fuzzy
classifiers [9], fuzzy neural networks [131, fuzzy modeling
[171, fuzzy expert systems [191, adaptive fuzzy controllers
[12, 161 and optimised non-adaptive fuzzy controllers [6,
7, 15, 18,201, showing a great potential.

However, we should be aware of the possible side
effects of such techniques as any optimisation algorithm
may have a strong impact on the system it is optimising.
It may even alter the structure of the original system
designed. With fuzzy systems being derived directly from
human thinking and having strong physical meaning, this
effect may be even more significant. We have posed the
questions of what impact the GA may have on FLCs [24].
Our investigations have shown that in many cases FLCs

designed by GAS are difficult for a human expert to
understand. The membership functions often lose physical
meaning, which is the fundamental nature of fuzzy sets
theory. The rule base was disordered and seemed
arbitrary, possibly resulting in rough control, as greatly
differing inference were next to each other. The outcome
of the design was difficult to interpret and analyse, let
alone modify. A serious question would be : will industry
accept such a design as reliable and the technique
implementable[24]?

To overcome these problems, some special treatment
must be introduced to the design procedure. A basic
suggestion made by the authors [24] is to incorporate
linguistic knowledge of the systems into the optimisation
algorithm. This will restore the principle of fuzzy systems
back into the design using GA technique. We may call
this treatment Guided Constrained Optimisation.
Constraints can be incorporated are system dependent and
rely on how much the system is understood. Some general
aspects may include ordering and symmetry of the
membership functions, fixed partitions for certain
membership functions, and, the control rule base can be
pre-structured according to the heuristic knowledge, but
allowing some degree of freedom for the GA to perform.
These aspects will be discussed in section 3 and 4 of this
paper. Before that, we shall review current works on
Genetic Algorithms in the next section. An example of
the implementation of the use of Guided Constrained
Optimisation design on the inverted pendulum control
system will also be studied in section 5. Lastly, we will
discuss the method and results, conclude and provide
some future plans.

2. Genetic Algorithms (GAS)

The genetic algorithm is a probabilistic computer-
driven search and optimisation technique modelled after
the mechanics of genetic evolution [3]. The algorithm
works on the coding of parameters to be optimised, rather
than the parameters themselves as traditional optimisation
techniques, such as the simplex method or gradient

0-7803-3796-4/97/$10.0001997EEE 497

FUZZ-I EEE'9 7

methods. The parameters coded together form what is
called a chromosome. Thus, a population of chromosomes
are formed, each representing a possible solution to the
problem. Each chromosome is then evaluated on how
good a solution it presents to the problem, giving a value
called the fitness. In a simple GA [5], the population will
then undergo operations similar to genetic evolution,
namely 'reproduction', 'crossover' and 'mutation'. In
'reproduction', a new 'generation' of chromosomes are
formed by randomly selecting chromosomes according to
their fitness. These are operated on by 'crossover', which
involve exchanging parts of two chromosomes structure,
resulting in an exchange of information (Fig. 1).
'Mutation' is a local operator which is randomly applied
with a low level of probability. It randomly flips bits from
one generation to the next. 'Mutation' is usually associated
with helping re-inject any information that may have been
lost in previous generations and moving around local
minima within the search space [3 ,5] .

, crossoverpoint

mutated birs

@)

Fig. 1 Genetic operators : (a) crossover (b) mutation

3. Guided Constrained Optimisation

The aim of Guided Constrained Optimisation is to
achieve an optimised GA-designed fuzzy logic controller
which is incorporates human knowledge, which should
result in the controller being interpretable. The structure
of the proposed method is shown in Fig. 2. Section (3) of
Fig. 2 is the standard GA-FLC design method. Section (4)
describes the knowledge base, which can be built up off-
line or interactively on-line. This knowledge base will
'guide' the GA optimisation procedure, usually through
the coding procedure.

I KnowledaeBase I '

Fig. 2 Configuration of a Genetic Algorithm designed
Fuzzy Logic Controller (FLC), with Guided
Constrained Optimisation

Just as the usual trial and error method of designing a
fuzzy controller, the expert gains knowledge from the
performance of the GA in designing the FLC. Then he
refines the knowledge base and the process is repeated
until a satisfactory FLC is obtained (Fig. Z(4)). Thus the
designer implements his knowledge in terms of the
internal structural constraints of the controller and then
allows the genetic algorithm to operate within these
constraints.

The following few aspects can be used to implement
such specific structure on the FLC; this list is not
exhaustive :

a) Ordering of partitions : This should be implemented
as linguistic labels are required to be able to define
implications in fuzzy terminology and can be performed
by a reconstruction operator during decoding of the
chromosome. More comments on the coding will be given
in a later section. This required less computer processing
overheads then an ordered operator. With ordering, a
FLC, for example, with seven partitions for its
membership functions can be linguistically labelled as :
1- Large Negative
2- Medium Negative
3- Small Negative
4- Zero

b) Using symmetry : By virtue of a problem beinp
symmetrical, as most problems are, the genetic materia.
required to represent each partition can be reduced by
allowing the membership function to be reflected across
the zero point. Thus this reduces the required
representation by half and reduces convergence time.

c) Fixing of parts of partitions : As certain linguistic
labels have stronger significance then others, it would be
beneficial to fix certain points. As an example, the peak of
the Zero (4) partition should be fixed at the zero point. In
addition, the peaks of the Large Negative (1) and Large
Positive (7) can be fixed at their respective ends of their
universes of discourse. The bases for these partitions
should then be movable to be optimised.

d) Re-structuring of the rule base lookup table : This
we perform as greatly differing neighbouring implications
in the table possibly indicate rough control. Thus for
smooth control, we ensure that change over between
inferences do not move from or imply at the same time,
say Large Negative and Large Positive or other largely
differing implication. Using a 2-input I-output FLC with
7 partitions per input/output membership function as an
example, we show how this can be implemented. Suppose
we know the system should have a result Large Negative
when both inputs are Large Negative, and Large Positive
what the inputs are Large Positive. In addition, the system
is somewhat symmetrical and requires the steady state to
be about zero. With this knowledge, we can pre-structure
the rule base table allowing a limited range of possible

5- Small Positive
6- Medium Positive
7- Large Positive

498

FUZZ-IEEE'97

implication at different areas. A few possibilities for such
pre-structuring can be shown in Fig. 3.

Input

1

Fig. 3. Possible pre-structures for rule base lookup
table. Each implication has linguistic labels as
suggested in 3(a) Ordering partitions.

4. Application of GA to design of Fuzzy
Logic Controllers (FLCs), with
Guided Constrained Optimisation

A general structure for a FLC would include a
fuzzification interface, a knowledge base, a rule base,
which contain decision making logic, and a
defuzzification interface [IS]. When the GA is used to
design a FLC, the GA would usually replace the
knowledge base. However, with Guided Constrained
Optimisation, the knowledge base is not removed.
Instead, the GA is simply added to the system, being
interfaced with the knowledge base at the coding point
(Fig. 2 (1)). This point of interface is the decoding of a
single chromosome into a FLC. This decoding provides
the pre-structuring of the FLC into a format determined
by the expert, which comply which his heuristic
knowledge of the system. Another interface would be at
the output of the controlled system (Fig. 2 (2)). This takes
the form of an objective function which determines the
fitness of particular solution.

4.1 Decoding

For simplicity, we shall use triangular membership
functions. As both the fuzzification and defuzzification
interfaces are similar, they were coded in the same way. A
single byte was used to represent each point. For each
membership function, the byte determines the position of
the peak by the quantised level it represents between the
beginning and the end of its particular universe of

discourse. Two other bytes are used to represent the
distance of the two bases of the triangular partition of
membership functions. Thus each partition in the
membership function can be represented by 3 bytes, as
shown in Fig. 4(a). Then on decoding from the
chromosome into the FLC, each partition would be
ordered in ascending order depending on each peak of
each partition. Also, some points, based on their linguistic
meanings, may be fixed, such as the partition Zero, Large
Negative and Large Positive. If the system under control
is symmetrical, we may just use half the number of
partitions and reflect the membership function about the
zero point, giving us a symmetrical membership function.
The rule base was coded using integers to represent an
implication between a particular input and output. A zero
in the rule base indicates that there is no implication
between those inputs and outputs. This is shown in Fig
4(b). As for pre-structuring, certain areas on the rule base
table would be limited to allows only certain possible
implications. For examples of such pre-structuring, one
can refer to Fig 3(a) and (b). Each membership function is
then concatenated to form a chromosome. For a system
with 2 inputs and one output with 7 partitions, this is
shown in Fig. 4(c). For ease of compacting, each possible
implication may be represented by half a byte. Thus the 2-
input, 1-output, 7 partition fuzzy controller, requires at
most 3 x 3 x 7 + !h x 7 x 7 = 87% or 88 bytes, to round it
off.

left base centre rightbase
l O l l O l O l ~ l O l l O l O l ~ l O l l O 1 O l

(a) Membenhip Function (MI=)
fuzzy inp. 2 ~ MF1 MF7

An entry in the
table indicates
an inference(lR)

g %

. r : ;
B -
-. . between the - inputs and the

output MF no.
' & (O=no inference)

@)Rule base lookup table
fuzzy inp. 1 fuzzy inp. 2 rule base defie out

I MFl...MF7 1 MFl ... M R IIR1.1 IR7.7 IMF1 ...MF71

(c) Gene Map
Fig 4. Maximal Coding for 2-input 1-output 7-partition
FLC.

4.2 Objective Function

In designing FLCs using GAS, usually a simulation of the
system to be controlled is executed. The objective function
can be designed based on standard control parameters
such as rise time, overshoot and steady-state zero error.
Another important parameter which influences the
resulting design is the starting state of the simulation,
which should be varied sufficiently.

499

FUZZ-IEEE’97

5. Design of Inverted Pendulum FLC
5.3 Raw GA-designed FLC

In this section, we first present the system and
common objective function used, then the GA-designed
FLC for the inverted pendulum system. Then the resulting
FLC designed by GA with Guided Constrained
Optimisation and the methods used.

5.1 Brief Description of System

The classic inverted pendulum was chosen as the
sample control system. A schematic of the system is
shown in Fig. 5. The FLC is a two input (8 ,e), one
output (force) controller. The input and output
membership functions for simplicity were chosen to be
triangular.

1

Fig. 5 Complete System Fig. 6
Schematic Inverted

The inverted pendulum system can be liken to a pole
on a movable cart, the pole restricted to the vertical plane
(Fig. 6). The state of the system is described by the pole’s
angle, 8, and its angular velocity, 8 , allowing for
infinite movement of the cart. The system was simulated
using differential equations and approximated by a two-
step forward Euler integration. A more complete and
mathematical description can be found in the references

Pendulum

[lo].

5.2 Objective Function of Inverted Pendulum

The objective function used in the simulation was
similar to Lee and Takagi [14]. The same possible
outcomes still apply : the pole balances, the time expires
or the pole falls. Thus each trial was evaluated using the
following modified function :

al (‘max - ‘end) i- a2‘eward
reward (6) 1 . ‘end (c)

fitness =

where a i , a2, b and reward are constants, and (a) pole
balanced, tzm is time required to achieve steady state zero
error, (b) tmax = tend, and (c) pole fell over (If3 I 2 goo). If
the controller balances the pole, a shorter time is better
than a longer one. In addition, if the pole fell over, the
controller was credited according the time it kept the pole
from falling. However, unlike Lee and Takagi, there were
no penalties for the number of rules in the system [14].

5.3.1 Procedure. The GA used was a generational
one based on the Simple GA[7], with three-point
crossover, mutation and elitism. The population was set to
30 and crossover and mutation probabilities to 0.8 and
0.01 respectively. All members were initialised with
random values. The GA was given complete freedom to
place membership functions anywhere within the
available range and any implication between input and
output membership functions was allowed. Initial pole
angles were set at both positive and negative angles, thus
completing two trials for every evaluation. The GA was
allowed to execute for 1000 generations, allowing the
solution to converge and stabilise. The fittest controller
was then selected as the final design result. The inference
operator used was the max-product rule and the de-
fuzzification method used was the centre of area method.
The FLC had 7 partitions per input and output, and this,
as well as the rule base, were coded as for a general case.
Thus each possible design was represented by 88 bytes.

Fig. 7(a) Input membership functions : input 1 - 8

Fig. 7(b) Input membership functions : input 2 - e

Fig. 8 Output membership functions
5.3.2 Results. The resulting design could balance the
pole in less than 0.4 seconds. The membership functions
of the input and the output are presented in Fig. 7 and

500

FUZZ-IEEE'97

Fig. 8 respectively, while rule base in Fig. 9 and the

Fig. 9 Rule base

W"' - I... -

Fig. 10 Control surface for GA-designed FLC (Inverted
Pendu lu m)

5.4 Design by Guided Constrained GA

5.4.1 Procedure. The GA used here was the same one
as use for the raw GA-designed FLC, with the same
parameters for crossover, mutation and no. of generations.
Inference operators and well as selection of the final
design result was identical. With what knowledge we
have of the system and to improve interpretability,
ordering of partitions in the membership function as per
3(a) , the use of symmetry (3(b)), as well as the fixing of
the peak of the Zero (4) partition, and of Large Negative
(1) and Large Positive (7). The rule base table was pre-
structured as in Fig. 3(a).

5.4.2 Resulting Design. The resulting design could
balance the pole in less than 0.4 seconds. The
membership functions of the input and the output are
presented in Fig. 11 and Fig. 12 respectively, while the
rule base is in Fig. 13 and the control surface in Fig. 14.

Fig. l l (a) Input membership functions : input 1 - 8

Fig. l l (b) Input membership functions : input 2 - 6

Input
1

e

Fia. 13 Rule base

Fig. 14 Control surface for GA-designed FLC (Inverted
Pendulum)

6. Discussion

We can see that by using the method of Guided
Constrained Optimisation, we can improve the
interpretability of a GA-designed FLC immensely.
However, the idea of this method is to use what little we
do know of the system to be controlled and to incorporate
it into the design process. The methods proposed, apart
from ordering, are actually derived from heuristic
knowledge of the system, ie. the inverted pendulum
system. This method is not rigid, but also involves a little
trial and error, however not as much as used when

501

FUZZ-IEEE'97

designing a FLC by hand. Also, this shows how a
complex controller may be designed by a GA, while
retaining it inherent linguistic value. The constraining of
the rule base lookup table performed here is by no means
to only way to do it. The constrains placed on the table
relate to the how coarse or fine the control requires, and
the knowledge of what general implications work for the
system under control. Lastly, another way to improve
interpretability would be to set a penalty on the number of
implications in the rule base. The more rules, the higher
the penalty. this would reduce the number of rule in the
rule base. However, it is aim of the authors that the
method be applied to a reasonably complex controller in
order to gauge how well the method works.

7. Conclusions & Future Work

From the example, we can see that Guided Constrained
Optimisation has achieved a Fuzzy Logic Controller
which, although complex, can be understood and
interpreted. This also suggest that the resulting design
could also be modified by humans. Thus with the new
method of Guided Constrained Optimisation, it is hoped
that some of the problems faced by the implementation of
GA-designed FLCs would be reduced. This would
hopefully allow the method of using GAS to design fuzzy
controller to gain wider acceptance not only among the
academic community, but in industry as well. As this is
but a theoretical foundation for such a method, we are
continuing to seek to implement the method practically.

REFERENCES
[IjBurkhardt, D. G. and P. P. Bonissone : Automated fuzzy
knowledge base generation and tuning. Roc. IEEE Int'l. Conf.
on Fuzzy Systems, pp. 179-188,1992.
[2]Chen, Y. Y., K. Z. Lin and S. T. Hsu : A self-learning fuzzy
controller. Proc. IEEE Int'l. Cod. on Fuzzy Systems, pp. 189-
196,1992.
[3]Davis, L. : A handbook of generic algorithms. Van Nostrand
Reinhold, New York, 1990.
[4]Esogbue, A. O., W. E. Hemes and Q. Song : A
Reinforcement Learning Fuzzy Controller for Set-Point
Regulator problems. Proc. IEEE Int'l. Cod. on Fuzzy Systems,

[S]Goldberg, D. E. : Genetic algorithms in search, optimization
and machine learning. Addison-Wesley, 1989.
[6]Homaifar, A. and E. McComick : Simultamous design of
membership fiuztions and rule sets for fuzzy controllers using
genetic algorirhms. IEEE Trans. Fuzzy Systems, vol. 3, no. 2,
May 1995.
[7]Hwang, W. R. and W. E. Thompson : Design of intelligent
fuzzy logic controllers using genetic algorirhms. Roc. IEEE
Int'l. Conf. on Fuzzy Systems, pp. 1383-1388, 1994.
[8]Ishibuchi, H. and M. Nu : Learning of Fuzzy Connecrion
Weights in Fuzzijied Neural Networks. Proc. IEEE Int'l. Cod. on
Fuzzy Systems, pp. 373-379, 1996.

pp. 2136-2142,1996.

[9]Ishibuchi, H., K. Nozaki, N. Yamamoto and H. Tanaka :
Acquisition of fuzzy classification h w l e d g e using genetic
algorithms. Proc. IEEE Int'l. Cod. on Fuzzy Systems, pp. 1963-
1968,1994.
[lO]Jang, J.-S. R. : Fuzzy controller design without domain
experts. Roc. IEEE Int'l. Conf. on Fuzzy Systems, pp. 1963-
1968,1994.
[ll]Kang, H. and G. Vachtsevanos : Adaptive fuzzy logic
control. Proc. IEEE Int'l. Conf. on Fuzzy Systems, pp. 407-414,
1992.
[12]Karr, C. L. : Design of an adaptive fuzzy logic coMroller
using a genetic algorithm. Roc. 4th Int'l. Conf. on Genetic

[13]Krishnamraju, P. V., J. J. Buckley, K. D. Reilly and Y
Hayashi : Genetic learning algorithm for fuzzy neural nets. .
hoc. IEEE Int'l. Conf. on Fuzzy Systems, pp. 1969-1974, 1994.
[14]Lee. M. A. and H. Takagi : Integrating design stages of
fuzzy systems using genetic algorithms. Proc. IEEE Int'l. Conf.
on Fuzzy Systems, pp. 612-617,1993.
[ISILinkens, D. A. and H. 0. Nyongesa : Genetic algorithms of
fuzzy control Part 1 : Ofline system development and
application. IEE Proc.Contro1 Theory Appl., Vol. 142, No. 3,
pp. 161-176, May 1995.
[16]Linkens, D. A. and H. 0. Nyongesa : Genetic algorithm of
fuzzy control Part 2 : Online system development and
application. IEE Proc.-Control Theory Appl., Vol. 142, No. 3,
pp. 177-185, May 1995.
[17]Liska, J. and S. S. Melsheimer : Complete design of fuzzy
logic systems using genetic algorithms. h c . IEEE Int'l. Conf.
on Fuzzy Systems, pp. 1377-1382, 1994.
[18]Ng, K. C. and Y. Li : Design of sophisticared fuzzy logic
controllers using genetic algorithms. Proc. IEEE Int'l Conf. on
Fuzzy Systems, pp. 1708-1712,1994.
[ISIPemeel, C., J. Themlin, J. Renders, and M. Acheroy :
Optimisation of fuzzy eqer t systems using genetic algorithms
and neural networks. IEEE Trans. Fuzzy Systs., Vol. 3, No. 3,

[ZOISatyadas, A. and K. Kishna Kumar : GA-oprimised fuzzy
controller for spacecraft attitude control. Proc. IEEE Intl Conf.
on Fuzzy Systems, pp. 1979-1984,1994.
[21]Shi, T., M. Mizumoto, N. Yubazaki and M. Otani : A
Learning Algorithm for Tuning Fuzzy Rules Based on the
Gradient Descent Method. hoc. IEEE Int'l. Conf. on Fuzzy
Systems, pp. 55-61, 1996.
[22]Shieh, C. Y. and S. S . Nair : A new serf tuning fuzzy
controller design and experiments. Roc. IEEE Int'l. Conf. on
Fuzzy Systems, pp. 309-314,1993.
[23]Smith, S. M. and D. J. Comer : An algorithm for automated
f u z z y logic controller tuning. Proc. IEEE Int'l Conf. on Fuzzy
Systems, pp. 615-622, 1992.
[24] Tan, G. V. and X. Hu : On Designing Fuzzy Controllers
Using Genetic Algorithms. Proc. IEEE Int'l. Cod. on Fuzzy
Systems, pp. 905-911, 1996.

Algorithms, pp. 450-457.1991.

pp. 300-312, August 1995.

502

