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Abstract 

The design of fuzzy controllers using the Genetic 
Algorithm is appearing as a systematic method. This 
method easily provides an optimised design and forms the 
framework for further progress. This paper attempts to 
provide some methods to improve interpretability in 
Genetic Algorithm-designed fuzzy logic controllers as 
well as to reduce the amount of genetic material required 
to represent a complex fuzzy controller. This paper also 
introduces the concept of Guided Constrained 
Optimisation. 

1. Introduction 

Designing Fuzzy Logic Controllers (FLCs) manually 
requires expert knowledge and usually results in control 
rules and membership functions which model human 
thinking. This ensures that the design produced is easily 
understood and can further be modified to meet specific 
requirements and changes in environment. However, 
there is to-date no generalised systematic method beyond 
ad hoc trial and error ones. Systematic methods for 
designing and tuning FLCs using automatic methods is 
still a currentresearch area [ l ,  2,4, 8, 11, 21,231. One of 
the foremost of these methods is the Genetic Algorithm 
(GA) [15, 161. This technique has been applied to fuzzy 
classifiers [9], fuzzy neural networks [ 131, fuzzy modeling 
[ 171, fuzzy expert systems [ 191, adaptive fuzzy controllers 
[12, 161 and optimised non-adaptive fuzzy controllers [6, 
7, 15, 18,201, showing a great potential. 

However, we should be aware of the possible side 
effects of such techniques as any optimisation algorithm 
may have a strong impact on the system it is optimising. 
It may even alter the structure of the original system 
designed. With fuzzy systems being derived directly from 
human thinking and having strong physical meaning, this 
effect may be even more significant. We have posed the 
questions of what impact the GA may have on FLCs [24]. 
Our investigations have shown that in many cases FLCs 

designed by GAS are difficult for a human expert to 
understand. The membership functions often lose physical 
meaning, which is the fundamental nature of fuzzy sets 
theory. The rule base was disordered and seemed 
arbitrary, possibly resulting in rough control, as greatly 
differing inference were next to each other. The outcome 
of the design was difficult to interpret and analyse, let 
alone modify. A serious question would be : will industry 
accept such a design as reliable and the technique 
implementable[24]? 

To overcome these problems, some special treatment 
must be introduced to the design procedure. A basic 
suggestion made by the authors [24] is to incorporate 
linguistic knowledge of the systems into the optimisation 
algorithm. This will restore the principle of fuzzy systems 
back into the design using GA technique. We may call 
this treatment Guided Constrained Optimisation. 
Constraints can be incorporated are system dependent and 
rely on how much the system is understood. Some general 
aspects may include ordering and symmetry of the 
membership functions, fixed partitions for certain 
membership functions, and, the control rule base can be 
pre-structured according to the heuristic knowledge, but 
allowing some degree of freedom for the GA to perform. 
These aspects will be discussed in section 3 and 4 of this 
paper. Before that, we shall review current works on 
Genetic Algorithms in the next section. An example of 
the implementation of the use of Guided Constrained 
Optimisation design on the inverted pendulum control 
system will also be studied in section 5. Lastly, we will 
discuss the method and results, conclude and provide 
some future plans. 

2. Genetic Algorithms (GAS) 

The genetic algorithm is a probabilistic computer- 
driven search and optimisation technique modelled after 
the mechanics of genetic evolution [3]. The algorithm 
works on the coding of parameters to be optimised, rather 
than the parameters themselves as traditional optimisation 
techniques, such as the simplex method or gradient 
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methods. The parameters coded together form what is 
called a chromosome. Thus, a population of chromosomes 
are formed, each representing a possible solution to the 
problem. Each chromosome is then evaluated on how 
good a solution it presents to the problem, giving a value 
called the fitness. In a simple GA [5],  the population will 
then undergo operations similar to genetic evolution, 
namely 'reproduction', 'crossover' and 'mutation'. In 
'reproduction', a new 'generation' of chromosomes are 
formed by randomly selecting chromosomes according to 
their fitness. These are operated on by 'crossover', which 
involve exchanging parts of two chromosomes structure, 
resulting in an exchange of information (Fig. 1). 
'Mutation' is a local operator which is randomly applied 
with a low level of probability. It randomly flips bits from 
one generation to the next. 'Mutation' is usually associated 
with helping re-inject any information that may have been 
lost in previous generations and moving around local 
minima within the search space [3 ,5] .  

, crossoverpoint 

mutated birs 

@) 

Fig. 1 Genetic operators : (a) crossover (b) mutation 

3. Guided Constrained Optimisation 

The aim of Guided Constrained Optimisation is to 
achieve an optimised GA-designed fuzzy logic controller 
which is incorporates human knowledge, which should 
result in the controller being interpretable. The structure 
of the proposed method is shown in Fig. 2. Section (3) of 
Fig. 2 is the standard GA-FLC design method. Section (4) 
describes the knowledge base, which can be built up off- 
line or interactively on-line. This knowledge base will 
'guide' the GA optimisation procedure, usually through 
the coding procedure. 

I KnowledaeBase I ' 

Fig. 2 Configuration of a Genetic Algorithm designed 
Fuzzy Logic Controller (FLC), with Guided 
Constrained Optimisation 

Just as the usual trial and error method of designing a 
fuzzy controller, the expert gains knowledge from the 
performance of the GA in designing the FLC. Then he 
refines the knowledge base and the process is repeated 
until a satisfactory FLC is obtained (Fig. Z(4)). Thus the 
designer implements his knowledge in terms of the 
internal structural constraints of the controller and then 
allows the genetic algorithm to operate within these 
constraints. 

The following few aspects can be used to implement 
such specific structure on the FLC; this list is not 
exhaustive : 

a) Ordering of partitions : This should be implemented 
as linguistic labels are required to be able to define 
implications in fuzzy terminology and can be performed 
by a reconstruction operator during decoding of the 
chromosome. More comments on the coding will be given 
in a later section. This required less computer processing 
overheads then an ordered operator. With ordering, a 
FLC, for example, with seven partitions for its 
membership functions can be linguistically labelled as : 
1- Large Negative 
2- Medium Negative 
3- Small Negative 
4- Zero 

b) Using symmetry : By virtue of a problem beinp 
symmetrical, as most problems are, the genetic materia. 
required to represent each partition can be reduced by 
allowing the membership function to be reflected across 
the zero point. Thus this reduces the required 
representation by half and reduces convergence time. 

c) Fixing of parts of partitions : As certain linguistic 
labels have stronger significance then others, it would be 
beneficial to fix certain points. As an example, the peak of 
the Zero (4) partition should be fixed at the zero point. In 
addition, the peaks of the Large Negative (1) and Large 
Positive (7) can be fixed at their respective ends of their 
universes of discourse. The bases for these partitions 
should then be movable to be optimised. 

d) Re-structuring of the rule base lookup table : This 
we perform as greatly differing neighbouring implications 
in the table possibly indicate rough control. Thus for 
smooth control, we ensure that change over between 
inferences do not move from or imply at the same time, 
say Large Negative and Large Positive or other largely 
differing implication. Using a 2-input I-output FLC with 
7 partitions per input/output membership function as an 
example, we show how this can be implemented. Suppose 
we know the system should have a result Large Negative 
when both inputs are Large Negative, and Large Positive 
what the inputs are Large Positive. In addition, the system 
is somewhat symmetrical and requires the steady state to 
be about zero. With this knowledge, we can pre-structure 
the rule base table allowing a limited range of possible 

5- Small Positive 
6- Medium Positive 
7- Large Positive 

498 



FUZZ-IEEE'97 

implication at different areas. A few possibilities for such 
pre-structuring can be shown in Fig. 3. 

Input 

1 

Fig. 3. Possible pre-structures for rule base lookup 
table. Each implication has linguistic labels as 
suggested in 3(a) Ordering partitions. 

4. Application of GA to design of Fuzzy 
Logic Controllers (FLCs), with 
Guided Constrained Optimisation 

A general structure for a FLC would include a 
fuzzification interface, a knowledge base, a rule base, 
which contain decision making logic, and a 
defuzzification interface [IS]. When the GA is used to 
design a FLC, the GA would usually replace the 
knowledge base. However, with Guided Constrained 
Optimisation, the knowledge base is not removed. 
Instead, the GA is simply added to the system, being 
interfaced with the knowledge base at the coding point 
(Fig. 2 (1)). This point of interface is the decoding of a 
single chromosome into a FLC. This decoding provides 
the pre-structuring of the FLC into a format determined 
by the expert, which comply which his heuristic 
knowledge of the system. Another interface would be at 
the output of the controlled system (Fig. 2 (2)). This takes 
the form of an objective function which determines the 
fitness of particular solution. 

4.1 Decoding 

For simplicity, we shall use triangular membership 
functions. As both the fuzzification and defuzzification 
interfaces are similar, they were coded in the same way. A 
single byte was used to represent each point. For each 
membership function, the byte determines the position of 
the peak by the quantised level it represents between the 
beginning and the end of its particular universe of 

discourse. Two other bytes are used to represent the 
distance of the two bases of the triangular partition of 
membership functions. Thus each partition in the 
membership function can be represented by 3 bytes, as 
shown in Fig. 4(a). Then on decoding from the 
chromosome into the FLC, each partition would be 
ordered in ascending order depending on each peak of 
each partition. Also, some points, based on their linguistic 
meanings, may be fixed, such as the partition Zero, Large 
Negative and Large Positive. If the system under control 
is symmetrical, we may just use half the number of 
partitions and reflect the membership function about the 
zero point, giving us a symmetrical membership function. 
The rule base was coded using integers to represent an 
implication between a particular input and output. A zero 
in the rule base indicates that there is no implication 
between those inputs and outputs. This is shown in Fig 
4(b). As for pre-structuring, certain areas on the rule base 
table would be limited to allows only certain possible 
implications. For examples of such pre-structuring, one 
can refer to Fig 3(a) and (b). Each membership function is 
then concatenated to form a chromosome. For a system 
with 2 inputs and one output with 7 partitions, this is 
shown in Fig. 4(c). For ease of compacting, each possible 
implication may be represented by half a byte. Thus the 2- 
input, 1-output, 7 partition fuzzy controller, requires at 
most 3 x 3 x 7 + !h x 7 x 7 = 87% or 88 bytes, to round it 
off. 

left base centre rightbase 
l O l l O l O l ~ l O l l O l O l ~ l O l l O 1 O l  

(a) Membenhip Function (MI=) 
fuzzy inp. 2 ~ MF1 ............. MF7 

An entry in the 
table indicates 
an inference(lR) 

g %  

. r : ;  
B -  
-. . between the - inputs and the 

output MF no. 
' &  (O=no inference) 

@)Rule base lookup table 
fuzzy inp. 1 fuzzy inp. 2 rule base defie out 

I MFl...MF7 1 MFl ... M R  IIR1.1 IR7.7 IMF1 ...MF71 

(c) Gene Map 
Fig 4. Maximal Coding for 2-input 1-output 7-partition 
FLC. 

4.2 Objective Function 

In designing FLCs using GAS, usually a simulation of the 
system to be controlled is executed. The objective function 
can be designed based on standard control parameters 
such as rise time, overshoot and steady-state zero error. 
Another important parameter which influences the 
resulting design is the starting state of the simulation, 
which should be varied sufficiently. 
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5. Design of Inverted Pendulum FLC 
5.3 Raw GA-designed FLC 

In this section, we first present the system and 
common objective function used, then the GA-designed 
FLC for the inverted pendulum system. Then the resulting 
FLC designed by GA with Guided Constrained 
Optimisation and the methods used. 

5.1 Brief Description of System 

The classic inverted pendulum was chosen as the 
sample control system. A schematic of the system is 
shown in Fig. 5. The FLC is a two input (8 ,e ), one 
output (force) controller. The input and output 
membership functions for simplicity were chosen to be 
triangular. 

1 

Fig. 5 Complete System Fig. 6 
Schematic Inverted 

The inverted pendulum system can be liken to a pole 
on a movable cart, the pole restricted to the vertical plane 
(Fig. 6). The state of the system is described by the pole’s 
angle, 8,  and its angular velocity, 8 , allowing for 
infinite movement of the cart. The system was simulated 
using differential equations and approximated by a two- 
step forward Euler integration. A more complete and 
mathematical description can be found in the references 

Pendulum 

[lo]. 

5.2 Objective Function of Inverted Pendulum 

The objective function used in the simulation was 
similar to Lee and Takagi [14]. The same possible 
outcomes still apply : the pole balances, the time expires 
or the pole falls. Thus each trial was evaluated using the 
following modified function : 

al (‘max - ‘end) i- a2‘eward 
reward ( 6 )  1 . ‘end (c) 

fitness = 

where a i ,  a2, b and reward are constants, and (a) pole 
balanced, tzm is time required to achieve steady state zero 
error, (b) tmax = tend, and (c) pole fell over (If3 I 2 goo). If 
the controller balances the pole, a shorter time is better 
than a longer one. In addition, if the pole fell over, the 
controller was credited according the time it kept the pole 
from falling. However, unlike Lee and Takagi, there were 
no penalties for the number of rules in the system [14]. 

5.3.1 Procedure. The GA used was a generational 
one based on the Simple GA[7], with three-point 
crossover, mutation and elitism. The population was set to 
30 and crossover and mutation probabilities to 0.8 and 
0.01 respectively. All members were initialised with 
random values. The GA was given complete freedom to 
place membership functions anywhere within the 
available range and any implication between input and 
output membership functions was allowed. Initial pole 
angles were set at both positive and negative angles, thus 
completing two trials for every evaluation. The GA was 
allowed to execute for 1000 generations, allowing the 
solution to converge and stabilise. The fittest controller 
was then selected as the final design result. The inference 
operator used was the max-product rule and the de- 
fuzzification method used was the centre of area method. 
The FLC had 7 partitions per input and output, and this, 
as well as the rule base, were coded as for a general case. 
Thus each possible design was represented by 88 bytes. 

Fig. 7(a) Input membership functions : input 1 - 8 

Fig. 7(b) Input membership functions : input 2 - e 

Fig. 8 Output membership functions 
5.3.2 Results. The resulting design could balance the 
pole in less than 0.4 seconds. The membership functions 
of the input and the output are presented in Fig. 7 and 
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Fig. 8 respectively, while rule base in Fig. 9 and the 

Fig. 9 Rule base 

W"' - I... - ... . . 

Fig. 10 Control surface for GA-designed FLC (Inverted 
Pendu lu m) 

5.4 Design by Guided Constrained GA 

5.4.1 Procedure. The GA used here was the same one 
as use for the raw GA-designed FLC, with the same 
parameters for crossover, mutation and no. of generations. 
Inference operators and well as selection of the final 
design result was identical. With what knowledge we 
have of the system and to improve interpretability, 
ordering of partitions in the membership function as per 
3(a) , the use of symmetry (3(b)), as well as the fixing of 
the peak of the Zero (4) partition, and of Large Negative 
(1) and Large Positive (7). The rule base table was pre- 
structured as in Fig. 3(a). 

5.4.2 Resulting Design. The resulting design could 
balance the pole in less than 0.4 seconds. The 
membership functions of the input and the output are 
presented in Fig. 11 and Fig. 12 respectively, while the 
rule base is in Fig. 13 and the control surface in Fig. 14. 

Fig. l l (a )  Input membership functions : input 1 - 8 

Fig. l l (b )  Input membership functions : input 2 - 6 

Input 
1 

e 

Fia. 13 Rule base 

Fig. 14 Control surface for GA-designed FLC (Inverted 
Pendulum) 

6.  Discussion 

We can see that by using the method of Guided 
Constrained Optimisation, we can improve the 
interpretability of a GA-designed FLC immensely. 
However, the idea of this method is to use what little we 
do know of the system to be controlled and to incorporate 
it into the design process. The methods proposed, apart 
from ordering, are actually derived from heuristic 
knowledge of the system, ie. the inverted pendulum 
system. This method is not rigid, but also involves a little 
trial and error, however not as much as used when 
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designing a FLC by hand. Also, this shows how a 
complex controller may be designed by a GA, while 
retaining it inherent linguistic value. The constraining of 
the rule base lookup table performed here is by no means 
to only way to do it. The constrains placed on the table 
relate to the how coarse or fine the control requires, and 
the knowledge of what general implications work for the 
system under control. Lastly, another way to improve 
interpretability would be to set a penalty on the number of 
implications in the rule base. The more rules, the higher 
the penalty. this would reduce the number of rule in the 
rule base. However, it is aim of the authors that the 
method be applied to a reasonably complex controller in 
order to gauge how well the method works. 

7. Conclusions & Future Work 

From the example, we can see that Guided Constrained 
Optimisation has achieved a Fuzzy Logic Controller 
which, although complex, can be understood and 
interpreted. This also suggest that the resulting design 
could also be modified by humans. Thus with the new 
method of Guided Constrained Optimisation, it is hoped 
that some of the problems faced by the implementation of 
GA-designed FLCs would be reduced. This would 
hopefully allow the method of using GAS to design fuzzy 
controller to gain wider acceptance not only among the 
academic community, but in industry as well. As this is 
but a theoretical foundation for such a method, we are 
continuing to seek to implement the method practically. 
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