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Abstract

Fuzzy ordered classifiers were used to assign fuzzy labels to river sites expressing their suitability as a
habitat for a certain macroinvertebrate taxon, given up to three abiotic properties of the considered river
site. The models were built using expert knowledge and evaluated on data collected in the Province of Ove-
rijssel in the Netherlands. Apart from a performance measure for crisp classifiers common in the aquatic
ecology domain, the percentage of correctly classified instances (% CCI), two performance measures for
fuzzy (ordered) classifiers are introduced in this paper: the percentage of correctly fuzzy classified instances
(% CFCI) and the average deviation (AD). Furthermore, results of an interpretability-preserving genetic
optimization of the linguistic terms, applying once binary encoding and once real encoding, are presented.
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1. Introduction

New requirements at the EU level, mainly covered by the Water Framework Directive
[1], urge the member states to extend their assessment methodologies to implement the
desired river management. A methodology of interest in this context is the modelling of
habitat suitability. Habitat suitability models describe which abiotic conditions are appro-
priate for a certain taxon or species to establish a population [2]. In this study benthic
macroinvertebrates living in aquatic ecosystems are considered. Benthic macroinverte-
brates are invertebrate organisms that inhabit mainly bottom substrates of freshwater hab-
itats [3]. The term ‘macro’ assumes that they are large enough to be seen without
magnification and that they are retained in a net with mesh size of 500 lm. Because of their
central role in aquatic ecosystems, macroinvertebrates are widely used as indicators for
assessing freshwater quality [4].

The development of habitat suitability models is not an easy task. The available know-
ledge is usually only verbally described, with terminology and meaning differing from
source to source. On the other hand, data available is not only scarce, but insufficiently
representative for all river conditions, and can therefore play at most a role in model opti-
mization, but not in model identification [5,6]. Taking into account these limitations and
the ultimate use of these models in decision support, requiring understandability to the end
user, we opted for linguistic fuzzy models and a knowledge-based design approach fol-
lowed by an interpretability-preserving data-driven optimization of the membership
functions.

As will be explained further on, this modelling problem asks for a model that gives a
shaded indication of a certain river site’s suitability as habitat for a certain macroinvertebrate
taxon. Therefore, fuzzy classifiers were applied in this study, instead of classical models with
crisp outputs or crisp classifiers. A more detailed description of the habitat suitability models,
built using expert knowledge described in literature, is given in Section 2. In Section 3, the
data collected in the Province of Overijssel in the Netherlands [7] on which the models were
evaluated, referred to in this work as the EKOO data set, is discussed. The three measures
used to evaluate the models, percentage of correctly classified instances (% CCI), percentage
of correctly fuzzy classified instances (% CFCI) and average deviation (AD) are presented in
Section 4. The membership functions of the input variables of the models of 12 taxa were
optimized using a classic genetic algorithm with binary chromosomes, as well as a real-coded
genetic algorithm. During the model optimization the accuracy of the models was tried to be
improved, while preserving their interpretability. Section 5 deals with the different aspects of
the optimization of the linguistic terms: the selection of the models to be optimized, the prop-
erties of the genetic algorithms and the obtained results. Finally, conclusions are summarized
in Section 6.

2. Habitat suitability models

The models considered in this study describe the suitability of river sites along source
brooks up to small rivers in the Central and Western Plains of Europe, a region defined in
[8], as a habitat for the 86 macroinvertebrate taxa listed in Appendix A. The model
development was based on eight knowledge sources (references are given in [9]) summa-
rizing ecological studies carried out in the Netherlands, France, Germany and Belgium,
describing which river conditions are preferred and which situations are tolerated by
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different macroinvertebrate taxa. Hereafter, different aspects of the model identification
process are discussed: the selection of variables, the assignment of linguistic values and
corresponding membership functions to all variables and the construction of rule
bases.

As described in detail in [9], the selected input variables should be of high ecological
importance to the macroinvertebrate taxa under study as well as to the whole macroinver-
tebrate community and should be of importance to river management. Furthermore,
knowledge about their preferences for certain environmental conditions needs to be avail-
able and the variables need to be included in the EKOO data set. Physical variables do
provide effective assessment criteria when rivers are not affected by physical–chemical deg-
radation [10]. However, in the Central and Western Plains of Europe, the main threats for
biological communities in rivers are the deteriorated physical–chemical water quality con-
ditions. This is mainly due to increased nutrient and organic loading mainly caused by
agricultural activities and pollution originating from households. Therefore, apart from
stream width and stream velocity, two variables determining the river type and reflecting
the water quantity conditions, an additional input variable is used, expressing the physi-
cal–chemical conditions at a river site. Physical–chemical conditions and their effect on
the macroinvertebrate population at a certain river site can be expressed by the saprobic
status (measured by the ammonium concentration), the trophic status (measured by the
nitrate and phosphate concentration) or the ionic status (measured by the electrical con-
ductivity). As, in the region considered in this habitat suitability modelling problem, high
(resp. low) nitrate concentrations generally coincide with high (resp. low) phosphate,
ammonium and overall nutrient concentrations, all four variables can be used individually
as a measure of one of the factors influencing the abundance of macroinvertebrates, i.e.,
the nutrient and organic load in the river. For each macroinvertebrate taxon, four different
models were constructed, an A-model, an N-model, a P-model and a C-model, containing
stream width, stream velocity and either ammonium concentration (A), nitrate concentra-
tion (N), phosphate concentration (P) or electrical conductivity (C) as input variables. The
occurrence of some of the 86 considered macroinvertebrate taxa is independent of the
stream width. In these models stream width is not included and only two input variables
are used.

Due to the different context of the studies described in the eight publications used as a
source of expert knowledge, meanings given to the used linguistic terms are not identical in
all eight publications. However, in all considered studies, a similar number of linguistic
values is assigned to variables as stream width, stream velocity and nutrient and organic
loading and in most cases similar expressions are applied to refer to the different situations
distinguished. To all variables three to five linguistic values are assigned. An overview of
the linguistic values is given in Table 1. All values are defined by trapezial membership
functions forming a Ruspini partition [11], as illustrated in Fig. 1(a) for the five linguistic
values for ammonium concentration (in order of increasing organic load): oligosaprobic,
b,a-oligosaprobic, b-mesosaprobic, a-mesosaprobic and polysaprobic conditions. The values
of the membership function parameters of all variables summarized in Table 2, are based
on crisp boundaries found in literature. The kernel of each of the membership functions is
the intersection of the crisp intervals used in the different literature sources to define the
corresponding linguistic term. As we have opted for fuzzy partitions, the supports of
the membership functions are determined by the kernels of the membership functions of
the adjacent linguistic values and the lower and upper bounds of the underlying domain.



Table 1
Linguistic values assigned to the input and output variables

Variable Linguistic values

Stream width {spring/small stream, upper course stream, middle course stream,
lower course stream/small river}

Stream velocity {low, moderate, high}
Ammonium concentration {oligosaprobic, b,a-oligosaprobic, b-mesosaprobic, a-mesosaprobic, polysaprobic}
Nitrate concentration {oligotrophic, b-mesotrophic, a-mesotrophic, eutrophic, hypertrophic}
Phosphate concentration {oligotrophic, b-mesotrophic, a-mesotrophic, eutrophic, hypertrophic}
Electrical conductivity {oligoionic, b-mesoionic, mesoionic, a-mesoionic, polyionic}
Abundance {absent, low, moderate, high}

Table 2
Parameters of the membership functions defining the linguistic values in Table 1

Variable Membership function parameters

Width (m) {0, 0, 2, 2, 4, 4, 6, 201}
Velocity (m/s) {0, 0, 0.25, 0.25, 0.5, 1.2}
Ammonium conc. ðmg NHþ4 -N=LÞ {0, 0, 0.10, 0.10, 0.15, 4, 5, 8, 10, 30}
Nitrate conc. ðmg NO�3 -N=LÞ {0, 0, 0.15, 0.15, 0.3, 0.3, 0.4, 0.4, 0.45, 112}
Phosphate conc. ðmg PO3�

4 -P=LÞ {0, 0, 0.008, 0.008, 0.015, 0.015, 0.025, 0.025, 0.045, 5.45}
Conductivity (lS/cm) {0, 150, 250, 450, 550, 750, 850, 1050, 1150, 2880}
log10(abundance + 1) (–) {0, 0, 0.477121, 0.477121, 0.778151, 1.041393, 1.322219, 3.602169}

Fig. 2 shows how the parameters should be interpreted.

a b

A

Fig. 1. Definition of the five linguistic values assigned to ammonium concentration and the four fuzzy abundance
classes through membership functions.
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A site’s suitability as a habitat for macroinvertebrates cannot be measured directly. As
output variable of the developed habitat suitability models, the abundance of a macroin-
vertebrate taxon at a river site is used. The abundance is a measure for habitat suitability:
the higher the abundance of a taxon, the higher the site’s suitability as a habitat. Further-
more the EKOO data set contains the number of sampled individuals of the 86 taxa con-
sidered at all investigated river sites. It cannot be the purpose of a habitat suitability model
to predict a precise numerical value for the occurrence of a given taxon. No ecologist is
interested in or would even trust a model stating an occurrence of, e.g., 37 individuals.
It is rather the magnitude of the abundance which is of interest. In this paper four linguis-
tic values were assigned to the variable: absent, low, moderate and high. They are defined



Fig. 2. To characterize n trapezial membership functions forming a fuzzy partition, 2n parameters were used.
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by the membership functions shown in Fig. 1(b) with the help of the same experts assign-
ing the membership functions of the input variables. In order to take into account the non-
linear response of macroinvertebrate taxa to environmental conditions [12], the abundance
values were log-transformed. When comparing abundance values relative differences
rather than absolute differences should be considered, since the difference between 1 and
2 individuals found at a river site is more significant than the difference between 101
and 102 recorded individuals. We also want to stress that these abundance values are
not equal to the exact number of individuals present at a site, but are proportional to
the number of individuals present at a site (see the sampling procedures in Section 3).

The four linguistic values of stream width, the three linguistic values of stream velocity
and the five linguistic values of the variables describing the nutrient and organic concen-
tration, define 60 environmental situations. For the procedure followed during the rule
base development, i.e., the assignment of a linguistic abundance value to this 60 environ-
mental situations, we refer to [9]. In the A-, N-, P- and C-models of the 86 macroinverte-
brate taxa, including respectively, ammonium concentration, nitrate concentration,
phosphate concentration and electrical conductivity as input variables, the same member-
ship functions were used. The rule bases of the models of the different taxa differed, but
were identical for the four models of a certain taxon [13]. All constructed rule bases were
complete and contained 60 rules of the following type:

IF width IS upper course stream
AND velocity IS low
AND nitrate concentration IS eutrophic

THEN abundance IS moderate

In Fig. 3 the rule base of Proasellus meridianus is shown. Proasellus meridianus is an
example of a taxon whose occurrence is independent of the stream width, as one can
see from the rule base. Furthermore, according to the rules derived from the eight con-
sulted knowledge sources, its abundance is the same in oligosaprobic (resp. oligotrophic
and oligoionic) conditions as in b,a-oligosaprobic (resp. b-mesotrophic and b-mesoionic)
conditions. If two consecutive linguistic values of a variable yield the same model output
for all combinations of linguistic values of the other input variables, then the correspond-
ing rules are merged and a new linguistic value is introduced defined as the convex hull of
the membership functions of the original linguistic values. Therefore, in the reduced model
the variables ammonium, nitrate and phosphate concentration and conductivity, take four



Fig. 3. Rule base of the four models describing the habitat suitability for Proasellus meridianus.
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values instead of five, for ammonium concentration these linguistic values are ‘oligosapr-
obic to b,a-oligosaprobic’, ‘b-mesosaprobic’, ‘a-mesosaprobic’ and ‘polysaprobic’ condi-
tions. The linguistic value ‘oligosaprobic to ‘b,a-oligosaprobic’ conditions is defined as
the convex hull of the membership function of ‘oligosaprobic’ conditions and the member-
ship function of ‘b,a-oligosaprobic’ conditions. As a result of the reduction of input vari-
ables and linguistic values, the number of rules in the rule base decreases. The rule base of
the resulting, fully reduced model for Proasellus meridianus is shown in Fig. 4. This model
reduction procedure is carried out for the models of all 86 taxa, resulting in models with
different numbers of input variables, membership functions and number of rules.

Given the available qualitative expert knowledge and uncertainty in the definitions of
the used linguistic expressions, linguistic fuzzy models are the most appropriate model
types for the modelling problem. As no crisp abundance value, but a shaded indication
of a site’s habitat suitability is desired in river management, we opted for a fuzzy
classification. The model output ymodel is a set of four values ranging between 0 and 1
Fig. 4. Reduced rule base of the four models describing the habitat suitability for Proasellus meridianus.
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and summing up to 1: {(absent, A1(ymodel)), (low, A2(ymodel)), (moderate, A3(ymodel)), (high,
A4(ymodel))}. Due to the inherent order on the terms ‘absent’, ‘low’, ‘moderate’ and ‘high’,
this is a clear example of fuzzy ordered classification. When calculating the fulfilment
degrees of the rules, the minimum t-norm was applied for the conjunction. For each lin-
guistic abundance value, the maximum fulfilment degree of the rules containing this lin-
guistic abundance value in their consequent is determined. Finally, the model output is
obtained by normalizing these maximum fulfilment degrees. Note that the membership
functions in the output domain are not used to determine the model output.

3. The EKOO data set

The data used in this study to evaluate and optimize the habitat suitability models were
collected in running waters in the Province of Overijssel in the Netherlands. They are part
of a larger data set described by Verdonschot [7], which apart from the 445 data points
collected along running waters and used in this study, also includes data collected in pools
and lakes, canals and large standing waters.

At each site, 70 abiotic variables were measured, as stream width, depth, temperature,
transparency of the water column, bank shape, substratum, dissolved oxygen concentration,
pH, nitrate concentration and phosphate concentration, and samples were taken of the
major habitats, the water body and the bottom habitat to collect macroinvertebrates. In
shallow sites, habitats with vegetation were sampled by sweeping a hand net (20 · 30 cm,
mesh size 500 lm) through each vegetation type, several times over a length of 0.5–1 m. Bot-
tom habitats were sampled by vigorously pushing the hand net through the upper few cen-
timeters of each type of substratum over a length of 0.5–1 m. Next, the habitat samples were
combined for the site to give a single sample with a standard area of 1.5 m2 (1.2 m2 of veg-
etation and 0.3 m2 of bottom). At sites lacking vegetation, the standard sampling was con-
fined to the bottom habitats. In deeper sites, five samples from the bottom habitats were
taken with an Ekman-Birge sampler. These five grab-samples were equivalent to one 0.5
hand net bottom sample. The macroinvertebrate samples were taken to the laboratory,
sorted by eye, counted and identified to species level, except for some chironomid taxa.

In this work the term ‘EKOO data set’ does not refer to the complete data set described
in [7], but only to those data used in this study: the values of the six abiotic variables,
stream width, stream velocity, ammonium concentration, nitrate concentration, phosphate
concentration and electrical conductivity, and the number of sampled individuals of the 86
macroinvertebrate taxa listed in Appendix A at 445 sites along running waters.

Hours of field work and meticulous determination in the lab of the sampled animals
were needed to obtain this data set, which makes it a large data set in its domain, but
unfortunately still rather small for model evaluation and certainly for model identification
purposes. Apart from being sparse, the data hold another awkward property typical to
their origin: due to seasonal variations, weather differences at sampling moment and dif-
ferent sediments, data holding similar values for the considered environmental variables
show highly variable registered abundances. This is illustrated in Fig. 5 for the A-model
of Proasellus meridianus. Therefore, this data cannot be expected to reveal an unambigu-
ous relationship between the selected abiotic variables and macroinvertebrate abundance.
At a vast majority of the sites no individuals were recorded for all 86 taxa considered in
this study as illustrated for Proasellus meridianus and Plectronemia conspersa in Fig. 6 and
discussed in more detail in Section 5.2.
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Fig. 6. Distribution of the data points over the crisp abundance classes absent, low, moderate and high for
(a) Proasellus meridianus and (b) Plectronemia conspersa (see Eq. (2) for the defuzzification procedure).
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4. Evaluation of fuzzy ordered classifiers

4.1. Format of the reference output

In order to compare the output obtained with the fuzzy ordered classifiers to the infor-
mation in the EKOO data set, model and reference output should have the same format.
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In this study the membership degrees of the crisp abundance values in the data set to the
linguistic abundance values, defined by membership functions shown in Fig. 1(b), are used
as reference output.

4.2. Three performance measures

In this section three performance measures applied in this study are introduced. In the
formulae below, N is the number of data points, n the number of fuzzy classes, Ai(ydata,j)
the membership degree of the jth output to the ith linguistic output value and Ai(ymodel,j)
the membership degree to the ith linguistic output value obtained as model output for the
jth input of the data set.

4.2.1. Percentage of correctly classified instances
In ecology the percentage of correctly classified instances (% CCI) is frequently used to

compare the performance of crisp classifiers [14]. Correctly classified data points have a
contribution of 1 to the global performance, while data points assigned to a wrong class
have a contribution of 0. In order to be able to compare our fuzzy classifiers to crisp clas-
sifiers in literature, the outputs were defuzzified and the % CCI was calculated as follows:

% CCI ¼ 100

N

XN

j¼1

1� 1

2

Xn

i¼1

jAcrisp;iðydata;jÞ � Acrisp;iðymodel;jÞj
 !

ð1Þ

with

Acrisp;iðyÞ ¼
1 if i ¼ minfkjAkðyÞ ¼ max

n

l¼1
AlðyÞg;

0 otherwise:

(
ð2Þ
4.2.2. Percentage of correctly fuzzy classified instances
As we are dealing with fuzzy classifiers, we defined a new performance measure inspired

by the % CCI and similar to the measure presented in [15]: the percentage of correctly
fuzzy classified instances (% CFCI). If the model output is identical to the reference out-
put, the data point has a contribution of 1 to the global performance. As long as there are
classes to which both model output and reference output have a non-zero membership
degree, the corresponding data point has a positive contribution. Only if no class exists
to which both model output and reference output have a non-zero membership degree,
the corresponding data point has a contribution of 0 to the global performance:

% CFCI ¼ 100

N

XN

j¼1

1� 1

2

Xn

i¼1

jAiðydata;jÞ � Aiðymodel;jÞj
 !

: ð3Þ
4.2.3. Average deviation

The % CFCI has the advantage that it can be understood intuitively. However, it is not
an appropriate objective function for the optimization of a fuzzy ordered classifier, as
% CFCI is not sensitive to the position of the classes where the wrong classification occurs.
When visually comparing the reference output in Table 3 with the model outputs b and d
and given the fact that the output classes are ordered from A1 to A4, one would certainly



Table 3
Four fuzzy classification examples and their corresponding performances expressed by % CCI, % CFCI and AD

ydata ymodel % CCI % CFCI AD

A1 A2 A3 A4 A1 A2 A3 A4

a 0 0.2 0.8 0 0.8 0.2 0 0 0 20 1.6
b 0 0.2 0.8 0 0 0.4 0.6 0 100 80 0.2
c 0 0.2 0.8 0 0 0.1 0.8 0.1 100 90 0.2
d 0 0.2 0.8 0 0 0 0.8 0.2 100 80 0.4

74 E. Van Broekhoven et al. / Internat. J. Approx. Reason. 44 (2007) 65–90
say that model output b approximates the reference output better than model output d.
However, that same % CFCI is assigned to examples b and d, as the sum of the absolute
differences in membership degree in the reference and model output to the four individual
classes is identical, as shown in Fig. 7.

Therefore, another performance measure for fuzzy classifiers with an ordered set of
classes is introduced, returning the average deviation (AD) between the position of the
class obtained with the model and the position of the class stored in the reference data
set. The AD varies from 0 to n � 1 and is calculated as follows:

AD ¼ 1

N

XN

j¼1

Xn�1

i¼1

Xi

k¼1

Akðydata;jÞ �
Xi

k¼1

Akðymodel;jÞ
�����

�����: ð4Þ

The measure AD is illustrated in Table 3 on the same examples as the two other perfor-
mance measures. At first sight it seems hard to get insight in AD. When considering the
cumulative membership degrees, i.e., the sum of the membership degrees to a class and
a b c d

Fig. 7. Illustration of the performance measures % CFCI and AD for the fuzzy classification examples in Table 3.
In the figures in the top row, illustrating % CFCI, the thin and thick lines indicate the reference and model output,
respectively. In the figures in the second row, illustrating AD, the thin and thick lines are the cumulative functions
of the reference and model output, respectively.
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its lower classes as in Fig. 7, instead of the membership degrees, one sees that the AD is
nothing else but the area between the cumulative functions of model and reference output.

The AD is zero if the model output equals the reference output and increases with
increasing distance between the reference output and the model output. The AD distin-
guishes between examples b and d, whereas the % CFCI does not. On the other hand,
the same AD, but a different % CFCI, is obtained for examples b and c. In example b
the membership degree assigned to class A2 is 0.2 too high. This surplus of membership
degree should in fact be assigned to the adjacent class A3. In example c the membership
degree assigned to class A4 is 0.1 too high and this surplus of membership degree should
in fact have been assigned to class A2, i.e., two classes lower. The distance between the ref-
erence output is therefore 1 · 0.2 for example b and 2 · 0.1 for example c. The % CFCI
however is a measure of the sum of the errors made for each individual class. For example
b the error in membership degree is 0.2 for the two classes A2 and A3, whereas in example d
the errors are 0.1 for the two classes A2 and A4.

Note that the AD is insensitive to the direction of the wrong classification as the abso-
lute values of the differences are taken. If classifying an instance in a too high class is worse
(or better) than classifying it in a too low class, the AD should be computed using the same
formula as Eq. (4) but without taking absolute values of the differences.

4.3. Model performance

In Fig. 8 the three performance values obtained for the four models of the 86 macro-
invertebrate taxa are plotted. One sees that similar values are obtained for % CCI as
for its fuzzy alternative, % CFCI, and that AD tends to decrease with increasing % CFCI.
The % CFCI of the A-, N-, P- and C-models of all taxa are shown in Fig. 9. For almost all
taxa, higher % CFCI-values are obtained for models including nitrate or phosphate con-
centration as input variable than for those including ammonium concentration or conduc-
tivity. The obtained model performances are discussed in more detail in [16].
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5. Optimization of the linguistic terms

5.1. Introduction

In this section we want to improve the accuracy of the habitat suitability models for
the region where the EKOO data set was collected, while maintaining the interpretability,
i.e., the descriptive power of the models [5,6,17]. In the framework of this study, interpret-
ability means that the river manager consulting the models is familiar with all compo-
nents of the designed models and is able to get insight in the models just by looking at
the different components. Given the uniformity of the qualitative information in the eight
consulted knowledge sources, the rules in the rule bases of the developed models can be
considered generally applicable to the Central and Western Plains of Europe. The know-
ledge sources also clearly reveal that the definition of linguistic values of environmental
variables slightly differ from one river basin to another. Therefore the rule bases were
kept unchanged, yet only the membership functions of the input variables were optimized
in such a way that after optimization all fuzzy sets still represent the meaning assigned by
experts to the corresponding linguistic values. As no straightforward relation exists
between the membership functions and the output of a linguistic fuzzy model, a genetic
algorithm [18–20] was used as optimization method as it works on the complete solution
of the optimization problem, in this case being the whole set of membership function
parameters.

5.2. Model selection

As mentioned in Section 3, the EKOO data set is characterized by ambiguous data as
well as by a highly non-uniform distribution of the data over the four abundance classes
absent, low, moderate and high.
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The more different phenomena described by the model are included in a data set and the
more uniform the distribution of the examples in the data set over the different phenomena
is, the more appropriate the data set is for optimization. The input values of an ideal train-
ing data set are distributed uniformly over the different regions of the input space
described by the antecedents of the rules. The different regions of the three-dimensional
input space are hereby described by the 0.5-cuts of the membership functions of the lin-
guistic values of the three input variables. Therefore, one could opt to select those taxa
with the most uniformly distributed input values for model optimization. As the same
input values and the same membership functions are used in respectively all A-, N-, P-
and C-models, the distribution of the input values over the different regions of the input
space is the same for all models of a given type. Therefore, in this case, the uniformity
of the distribution of the data points over the input space is an inappropriate selection
criterion.

Clearly, the distribution over the abundance classes needs to be taken into account to
establish a decisive selection criterion. Therefore, the taxa whose data sets reveal the most
uniform distribution over the crisp abundance classes, defined by the 0.5-cuts of the
membership functions of the fuzzy abundance classes, were selected for optimization.
As a measure for the uniformity of the distribution, entropy was used (convention
0 Æ log2 0 = 0):

entropy ¼ � 1

log2n

Xn

i¼1

pi � log2pi ð5Þ

with

pi ¼
1

N

XN

j¼1

Acrisp;iðydata;jÞ:

The entropy is 1 for a uniform distribution and 0 if all data points are assigned to the same
abundance class as is the case for Odontomesa fulva. For Proasellus meridianus and Plec-

tronemia conspersa, of which the data point distributions are shown in Fig. 6, an entropy
of respectively, 0.835 and 0.322 is obtained. In Table 4 entropy values for some other taxa
are given. Note that entropy is a non-linear concept. When a distribution is highly non-
uniform, as for Agabus affinis, the shift of 1 data point from the most frequent class to
a less frequent class results in an entropy increase of at least 0.009. Given a more uniform
Table 4
Distributions of data points over four crisp classes and the corresponding entropy

Taxon name Number of data points classified as

absent low moderate high Entropy

Odontomesa fulva 445 0 0 0 0.000
Agabus affinis 444 1 0 0 0.012
Elmis aenea 443 2 0 0 0.021
Proasellus meridianus 247 78 80 40 0.835
Erpobdella octoculata 237 106 64 38 0.841
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Fig. 10. Entropy and % CFCI of the 86 models including the ammonium concentration as input variable. The 12
models selected for optimization are indicated with a box.
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initial distribution, a larger shift towards a more uniform distribution, gives a smaller en-
tropy increase, for instance an entropy increase with 0.006 for Erpobdella octoculata com-
pared to the entropy for Proasellus meridianus.

In Fig. 10 the entropy of the data distribution over the abundance classes for the 86
macroinvertebrate taxa is plotted as a function of the % CFCI of the A-model of the cor-
responding taxon. The figure gives an insight into the obtained values for the performance
measures. One can see that a good performance according to the values of the performance
measure often coincides with a low entropy. These good performing models are all models
of macroinvertebrate taxa of which no individuals were collected at almost all 445 sampled
sites and which are therefore not really evaluated by the data set. The 12 models selected
for optimization have an entropy larger than 0.7 and are indicated with a box in Fig. 10.
The threshold 0.7 was chosen arbitrarily: it separates 12, more or less clustered taxa from
taxa with lower entropies. The selected taxa are: Physa fontinalis, Anisus vortex, Asellus

aquaticus, Erpobdella octoculata, Gammarus pulex, Glossiphonia heteroclita, Helobdella
stagnalis, Planorbis planorbis, Proasellus meridianus, Radix peregra, Sigara striata and Val-

vate piscinalis.
5.3. Properties of the genetic algorithm

The ni membership functions of an input variable of the considered models are charac-
terized by a vector of 2ni reals, ai ¼ ½a1;i; a2;i; . . . ; a2ni;i�, satisfying the following two
constraints:



Fig. 11. Illustration of the optimization intervals used for the membership function parameters during the
bounded simulation.
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8j 2 N; 1 6 j 6 ni : a2j�1;i 6 a2j;i; ð6Þ
8j 2 N; 1 6 j < ni : a2j;i < a2jþ1;i: ð7Þ

In this study both a binary-coded as well as a real-coded genetic algorithm are applied.
The representation of the membership function parameters by a binary vector (using Gray
encoding), restricts the values the parameters can take to a limited set of values defined by
the upper and lower bound of the optimization interval and the length of the binary string,
but has the advantage that it allows the use of very straightforward crossover and muta-
tion strategies. The real-coded genetic algorithm is directly applied to a vector containing
the real values of the optimized parameters, which allows for a finer tuning of the param-
eters. Two optimizations were carried out: a bounded and a free optimization. During the
bounded optimization the kernels of the optimized membership functions are always sub-
sets of the 0.5-cuts of the corresponding original membership functions (as illustrated in
Fig. 11), whereas during the free optimization only the number of membership functions
of the fuzzy partition is fixed for each input variable. The free optimization was carried out
to investigate how the optimization process evolves if no constraints are set. The member-
ship function parameters were coded as binary strings of 7 and 10 bits per parameter,
respectively for the bounded and free optimization, respectively.

The structure of the genetic algorithm used to optimize the parameters of the trape-zial
membership functions of the input variables of the A-, N-, P- and C-models of the 12
selected taxa is shown in Algorithm 1. A thorough investigation of the influence on the
genetic algorithm performance of different mutation, crossover and selection procedures
and the optimization of their parameters was outside the scope of this study. We carried
out some fragmentary investigation of the parameter settings of the selected mutation an
crossover procedures with some of the 48 models and applied the best setting obtained to
optimize the membership functions of all 48 models.
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The same procedure was followed by the binary-coded and real-coded algorithm,
except for the recombination and mutation. Each optimization starts with a population
of 100 randomly generated strings, which, in case they do not represent a feasible solution,
are tried to be restored by replacing them by (the binary representation of) a vector
consisting of substrings of sorted real values of the unfeasible string for each variable.
Note that this restoration procedure does not always result in a string satisfying
Eq. (7).

During the search, each model was evaluated on each of the 445 data points, using a
weighted average deviation (wAD) in which the weights guarantee that each region of
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the input space defined by the 0.5-cuts of the membership functions of the non-optimized
models has the same contribution to the fitness:

wAD ¼
XN

j¼1

wj �
Xn�1

i¼1

Xi

k¼1

Akðydata;jÞ �
Xi

k¼1

Akðymodel;jÞ
�����

����� ð8Þ

with

wj ¼
1

N j � nregions

:

In the definition of the weights wj, Nj is the number of data points in the same region of the
input space as the jth input of the data set and nregions is the number of regions in which the
input space is divided.

At each generation step, 100 parents were selected by tournament selection. Two by two
the parents were recombined and mutated, resulting in two children. In the binary-coded
algorithm, uniform crossover is applied (crossover probability = 0.95). Each bit of the
strings obtained after recombination, or, in case no crossover was carried out, the strings
of the parents, were changed with a mutation probability being the reverse of the length of
the binary string. In the real-coded algorithm, one child is created with heuristic crossover
and one with arithmetical crossover (crossover probability = 0.95). The procedure of the
heuristic crossover described in [20] was slightly adapted to guarantee that each real value
achild1;l in the string of the child derived from the corresponding values aparentb;l and aparentw;l

of the best and, respectively, the worst performing parent of the two parents, is an element
of the optimization interval [bl,Bl]. In Eq. (10), r1 is a random number between 0 and 1 and
identical for all values of a string during a recombination:

ainterval;l ¼ maxðbl;minðBl; 2aparentb;l � aparentw;lÞÞ; ð9Þ
achild1;l ¼ minðaparentb;l; ainterval;lÞ þ r1ðmaxðaparentb;l; ainterval;lÞ

�minðaparentb;l; ainterval;lÞÞ; ð10Þ

achild2;l ¼
1

2
ðaparentb;l þ aparentw ;lÞ: ð11Þ

The real strings of the children, or, in case no recombination was carried out, the strings of
the parents, were mutated as described in Eq. (12). Each value al is replaced by a randomly
selected (uniform probability distribution) value a0l from an interval around al being at most
as large as pmut% of the interval [bl,Bl] (pmut = 3 and pmut = 0.4 for the bounded and, respec-
tively, the free optimization). In Eq. (12), r2 is a random number between 0 and 1 and r3 a
random binary digit, both being identical for all values of a string during a recombination:

a0l ¼
min al þ 1

2
r2pmutðBl � blÞ;Bl

� �
if r3 is 0;

max al � 1
2
r2pmutðBl � blÞ; bl

� �
if r3 is 1:

(
ð12Þ

Children not satisfying Eqs. (6), (7) are tried to be restored, following the same procedure
as during the initialization of the population. Furthermore, elitism is applied in the algo-
rithm. The genetic algorithm was stopped if only small improvements of the fitness of the
best individual (n fitness <0.001) were obtained during the last 50 consecutive generations
or if the 1000th generation was reached. Hundred repetitions were carried out for each
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Fig. 12. Percentage of correctly fuzzy classified instances for the original models (s) and the models obtained
through bounded optimization with the binary-coded GA (j), free optimization with the binary-coded GA (m),
bounded optimization with the real-coded GA (h) and free optimization with the real-coded GA (n) for the 12
selected taxa: (a) A-models, (b) N-models, (c) P-models and (d) C-models.
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optimization and the model with the highest % CFCI among the 100 candidate models was
retained as result of the optimization.

5.4. Optimization results

The results obtained for the four models of the 12 selected taxa are summarized in
Fig. 12. One expects the models obtained with the real-coded genetic algorithm to perform
at least as good as the corresponding models obtained with the binary-coded genetic algo-
rithm as the search space of the binary-coded genetic algorithm is a subset of the search
space of the real-coded genetic algorithm. Furthermore, the model obtained through free
optimization is expected to outperform the corresponding model obtained through
bounded optimization, which on its turn is expected to score better than the original model.
Strictly speaking, the performance of the genetic algorithm can only be compared based on
the performance of the original and optimized models according to the performance mea-
sure wAD, used as fitness function. In Fig. 12, however, the % CFCI of the original and
optimized models are given, as % CFCI can be understood intuitively and resembles the
performance measure % CCI commonly used in ecology. When analyzing the results in
Fig. 12, one should always keep in mind the variability of the relationship, illustrated in
Fig. 8(b), between the two performance measures non-weighted AD and % CFCI.

The models obtained with the real-coded GAs do not perform worse than those obtained
with the binary-coded GAs, except for the A-model for Erpobdella octoculata obtained
through free optimization. For this model, the optimized model obtained with the real-
coded genetic algorithm shows a negligible worse performance of 0.1% compared to the
model obtained with the binary-coded genetic algorithm (Fig. 12(a)). When considering
the wAD as performance measure, 8 of the 96 real-coded GAs do not return a better solu-
tion than their binary-coded counterpart, which indicates that the implemented control
structures were maladjusted to these eight membership function optimization problems.

For the models obtained with the binary-coded genetic algorithm, the expected order of
the % CFCI-values of, respectively, the original model and the models obtained through
bounded and free optimization, is not respected by the results recorded for the A-model
of Radix peregra, the N-models of Anisus vortex, Erpobdella octoculata, Gammarus pulex,
Glossiphonia heteroclita, Helobdella stagnalis, Physa fontinalis, Planorbis planorbis and
Radix peregra, nor for the P-models of Anisus vortex, Glossiphonia heteroclita and Physa fon-

tinalis. When applying the real-coded genetic algorithm only the % CFCI-values of the ori-
ginal, bounded and freely optimized N-models of Gammarus pulex and Glossiphonia

heteroclita do not respect the expected order. When considering the wAD, all optimized
models perform better than the corresponding original models and the expected perfor-
mance order was recorded for all optimizations, except for the N-models of Anisus vortex,
Asellus aquaticus, Physa fontinalis and Radix peregra. For these four models, a smaller
wAD is obtained for the models returned by bounded optimization with the binary-coded
GA than for the models obtained by free optimization with the binary-coded GA. The
reversed order of the performances might be caused by the binary coding, restricting the val-
ues taken by the membership function parameters in the optimized models to a limited set of
values. Thus, when using binary encoding the search space of the binary-coded genetic algo-
rithm applied during the free optimization might simply not contain a solution outperform-
ing the solution returned by the bounded optimization. The fact that all wAD-values
obtained by the real-coded GAs respect the expected order, supports the above argument.
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Fig. 13. Membership functions of the A-model of Proasellus meridianus: (a) original model and models obtained
through (b) bounded optimization with the binary-coded GA, (c) free optimization with the binary-coded GA, (d)
bounded optimization with the real-coded GA and (e) free optimization with the real-coded GA.
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Fig. 14. Distribution of the data points over the abundance classes in the different regions of the input space
defined by 0.5-cuts of the membership functions of (a) the original model, (b) the model obtained through
bounded optimization with the binary-coded GA and (c) free optimization with the binary-coded GA of the A-
model of Proasellus meridianus.
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In Figs. 13 and 14 the results obtained for the A-model of Proasellus meridianus are
shown. Note that the membership function describing the oligosaprobic to b,a-oligosaprobic
conditions (hereafter called oligosaprobic) in the original model has such a small support that
it can hardly be noticed in Fig. 13(a). For the A-model of Proasellus meridianus, as for most
models of the other selected taxa, the results obtained with the real-coded genetic algorithm
are very similar to the results obtained with the binary-coded genetic algorithm. This is espe-
cially true in case of the bounded optimization where the membership function parameters of
the optimized models obtained with both algorithms are often equal to the lower or upper
bound, or the second or next-to-last value of the corresponding optimization interval.
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In Fig. 13 one sees that the membership functions of the velocity value low and the oli-

gosaprobic conditions are extended towards higher velocities and ammonium concentra-
tions, respectively. The membership functions in Figs. 13(c) and (e) no longer reflect the
meaning given by the experts to the linguistic values. During the bounded optimization
the extension is however limited by the constraints described in Section 5.3, which guaran-
tees the interpretability of the fuzzy partitions of the optimized models. In Fig. 14 the num-
ber of data points belonging to the four defuzzified abundance classes Acrisp,i (see Eq. (2) for
the defuzzification procedure) in the different regions of the input space are given and visu-
alized by means of histograms for the original models and the two models obtained with the
binary-coded genetic algorithm. No histograms are shown for the models obtained with the
real-coded genetic algorithm, as similar membership functions were obtained with the bin-
ary-coded and real-coded genetic algorithm. One sees that, by extension of the support of
the velocity value low and the oligosaprobic conditions, more data points and in particular
more data points belonging to the abundance class absent, fire the rule

IF vel IS low AND ammon IS oligotrophic THEN abundance IS absent,

instead of the rules

IF vel IS low AND ammon IS b-mesotrophic THEN abundance IS low,
IF vel IS moderate AND ammon IS oligotrophic THEN abundance IS low,
IF vel IS moderate AND ammon IS b-mesotrophic THEN abundance IS moderate,

which results in a better score for the used fitness wAD as well as for the other perfor-
mance measures % CCI, % CFCI and AD.

The differences between the results obtained with the bounded and free optimizations
illustrate that one should not only focus on the accuracy of a model when evaluating its
performance, but that the global performance of a model implies a balance between its
interpretability and its accuracy. In the framework of this study, interpretability means
that the river manager consulting the models is familiar with all components of the
designed models and is able to get insight in the models just by looking at the different
components. In order to guarantee interpretability, the definition of the linguistic values,
i.e., the membership functions, should correspond to those used in the domain of biolog-
ical water quality assessment. Therefore, the models obtained with bounded optimization
are considered to have a better performance than those obtained with free optimization,
even if higher accuracies are obtained for the latter.

6. Conclusions

In this study fuzzy ordered classifiers were used to classify river sites according to their suit-
ability as a habitat for macroinvertebrates. The classifiers were evaluated using data collected in
the Province of Overijssel in the Netherlands. Two performance measures were introduced in
this paper: the percentage of correctly fuzzy classified instances, % CFCI, for fuzzy (ordered)
classification, and the average deviation, AD, for fuzzy ordered classification.

Furthermore, one type of interpretability-preserving data-driven optimization, as well
as an accuracy-oriented optimization, were applied using both a binary-coded and a
real-coded genetic algorithm. For four models the binary-coded genetic algorithms
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returned less accurate solutions for the accuracy-oriented optimization than for the con-
strained optimization, due to the fact that the optimized membership function parameters
only take values from a limited set of values. A shortcoming which, as shown by the exper-
iments, can be remedied by applying real encoding instead of binary encoding. The real-
coded GAs applied in this study, however, showed maladjusted to eight of the 96
addressed membership function optimization problems, as an exhaustive investigation
of the control structures of the genetic algorithms was outside the scope of this study.

A purely accuracy-oriented optimization is no option when one wants to preserve the
interpretability of the habitat suitability models under study with the EKOO data set.
In this case, expert knowledge was a prerequisite to build interpretable models in order
to define the rule bases and determine the optimization intervals of the membership func-
tion parameters. The accuracy-oriented optimization, however, gives a better insight in the
driving force during the bounded optimization, i.e., the tendency to classify as much data
points as possible in the abundance class absent by increasing the regions were the input is
mapped to absent, and stresses the importance of uniformly distributed and unambiguous
training data for model optimization.
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Appendix A. List of macroinvertebrate taxa

In Table A.1 all 86 macroinvertebrate taxa considered in this study are listed. In the first
column the index is given as used in this manuscript, followed by the full taxon name and
the abbreviation used in this study in the second and third column. The 12 taxa selected
for optimization of the membership functions are indicated in bold.
Table A.1
Macroinvertebrate taxa

Taxon name Taxon code

1 Agabus didymus agabdidy

2 Agabus guttatus agabgutt

3 Agabus paludosus agabpalu

4 Amphinemura sulcicolis amphsulc

5 Anacaena globulus anacglob

6 Ancyclus fluviatilus ancyfluv

7 Baetis rhodani baetrhod

8 Brillia longifurca brillong

9 Crunoecia irrorata crunirro

(continued on next page)



Table A.1 (continued)

Taxon name Taxon code

10 Dugesia gonocephala dugegono

11 Elmis aenea elmiaena

12 Elodes minuta elodminu

13 Ephemera vulgata epravulg

14 Gammarus roesellii gammroes

15 Halesus radiatus haledira

16 Hydroporus nigrita hyponigr

17 Hydropsyche pellucidula hypspell

18 Ironoquia dubia irondubi

19 Limnephilus extricates liluextr

20 Limnephilus fuscifornis lilufusc

21 Limnephilus lunatus liluluna

22 Notidobia ciliaris nodocili

23 Odontomesa fulva odmefulv

24 Orectochillus villosus orecvill

25 Physa fontinalis physfont

26 Platambus maculatus pltamacu

27 Plectrocnemia conspersa pltrcons

28 Nebrioporus depressus ponedepr

29 Rheocricotopus group fuscipes rhcrgfus

30 Sericostoma personatum setopers

31 Acroloxus lacustris aclolacu

32 Agabus affinis agabaffi

33 Agabus bipustulatus agabbipu

34 Anabolia nervosa anabnerv

35 Anacaena bipustulatus anacbipu

36 Anisus vortex ansuvote

37 Asellus aquaticus aselaqua

38 Corixa punctata coripunc

39 Dugesia lugubris/polychroa dugelupo

40 Erpobdella octoculata erpoocto

41 Galba trunculata galbtrun

42 Gammarus pulex gammpule

43 Gerris lacustris gerrlacu

44 Glossiphonia complanata glsicomp

45 Glossiphonia heteroclita glsihete

46 Glyphotaelius pellucidus glphpell

47 Haliplus flavicollis haliflav

48 Haliplus fluviatilis halifluv

49 Haliplus lineatocollis halilito

50 Haementaria costata hamecost

51 Helobdella stagnalis hebdstag

52 Hemiclepsis marginata heclmarg

53 Helophorus aquaticus/grandis heruaqgr

54 Helophorus brevipalpis herubrev

55 Hydroporus palustris hypopalu

56 Hydropsyche angustipennis hypsangu

57 Hygrotus inaequalis hytuinae

58 Ilybius fenestratus ilybfene

59 Ilybius fuliginosus ilybfuli

60 Limnephilus rhombicus lilurhom

61 Lype reducta lyperedu

62 Notonecta glauca notoglau

88 E. Van Broekhoven et al. / Internat. J. Approx. Reason. 44 (2007) 65–90



Table A.1 (continued)

Taxon name Taxon code

63 Physa acuta physacut

64 Piscicola geometra piscgeom

65 Planorbis carinatus plbicari

66 Planorbis planorbis plbiplan

67 Plectrocnemia geniculata pltrgeni

68 Proasellus meridianus proameri

69 Radix peregra radipere

70 Sialis fuliginosa sialfuli

71 Sialis lutaria sialluta

72 Sigara falleni sigafall

73 Sigara lateralis sigalate

74 Sigara semistriata sigasemi

75 Sigara striata sigastri

76 Stagnicola palustris stagpalu

77 Valvata piscinalis valvpisc

78 Velia caprai velicapr

79 Brillia modesta brilmode

80 Aspectrotanypus trifascipennis apsetrif

81 Dicrotendipes group notatus ditegnot

82 Polypedilum laetum agg. popelaea

83 Parametriocnemus stylatus paocstyl

84 Aplexa hypnorum aplehypn

85 Prodiamesa olivacea prodoliv

86 Rhantus suturalis rhansura

E. Van Broekhoven et al. / Internat. J. Approx. Reason. 44 (2007) 65–90 89
References

[1] EU, Directive of the European Parliament and of the Council 2000/60/EC establishing a framework for
community action in the field of water policy, European Union, The European Parliament, The Council, PE-
CONS 3639/1/00 REV 1 EN, 2000, 62 p. + annexes.

[2] A. Guisan, N.E. Zimmerman, Predictive habitat distribution models in ecology, Ecological Modelling 135
(2000) 147–168.

[3] R.H. Rosenberg, V.H. Resh (Eds.), Freshwater Biomonitoring and Benthic Macroinvertebrates, Chapman
and Hall, New York, NY, USA, 1993.

[4] N. De Pauw, G. Vanhooren, Method for biological quality assessment of watercourses in Belgium,
Hydrobiologia 100 (1983) 153–168.

[5] J. Casillas, O. Cordón, F. Herrera, L. Magdalena (Eds.), Interpretability Issues in Fuzzy Modeling, Studies
in Fuzziness and Soft Computing, vol. 128, Springer Verlag, Heidelberg, 2003.

[6] J. Casillas, O. Cordón, F. Herrera, L. Magdalena (Eds.), Accuracy Improvements in Fuzzy Modeling,
Studies in Fuzziness and Soft Computing, vol. 129, Springer Verlag, Heidelberg, 2003.

[7] P.F.M. Verdonschot, Ecological characterization of surface waters in the Province of Overijssel (the
Netherlands), Ph.D. dissertation, Landbouwuniversiteit Wageningen, Wageningen, The Netherlands, 1990.

[8] J. Illies, Limnofauna Europaea, second ed., Fischer, Stuttgart, 1978.
[9] V. Adriaenssens, E. Van Broekhoven, P.F.M. Verdonschot, B. De Baets, N. De Pauw, Knowledge and rule base

development for macroinvertebrate habitat suitability modelling in river management, submitted for
publication.

[10] J.R. Karr, K.D. Fausch, P.L. Angermeier, P.R. Yant, L.J. Schlosser, Assessing biological integrity in
running waters: a method and its rationale, Special publication 5, Illinois Natural History Survey,
Champaign, Illinois, USA, 1986.

[11] E. Ruspini, A new approach to clustering, Information and Control 15 (1969) 22–32.



90 E. Van Broekhoven et al. / Internat. J. Approx. Reason. 44 (2007) 65–90
[12] B. Statzner, J. Gore, V. Resh, Hydraulic stream ecology: observed patterns and potential applications,
Journal of the North American Benthological Society 7 (1988) 307–360.

[13] E. Van Broekhoven, V. Adriaenssens, B. De Baets, P.F.M. Verdonschot, Rule bases of habitat suitability
models for macroinvertebrate taxa. Available from URL: <http://users.ugent.be/~bdebaets/habitatsuitabil-
itymodels/rulebases.pdf>.

[14] S. Manel, H.C. Williams, S.J. Ormerod, Evaluating presence–absence models in ecology: the need to account
for prevalence, Journal of Applied Ecology 38 (2001) 921–931.

[15] U. Bodenhofer, E.P. Klement, Genetic optimization of fuzzy classification systems – a case study, in: B.
Reusch, K.-H. Temme (Eds.), Computational Intelligence in Theory and Practice, Advance in Soft
Computing, Physica Verlag, Heidelberg, 2001, pp. 183–200.

[16] E. Van Broekhoven, V. Adriaenssens, B. De Baets, P.F.M. Verdonschot, Fuzzy rule-based macroinverte-
brate habitat suitability models for running waters, Ecological Modelling, in press, doi:10.1016/
j.ecolmodel.2006.04.006.

[17] M. Drobics, U. Bodenhofer, E.P. Klement, FS-FOIL: an inductive learning method for extracting
interpretable fuzzy descriptions, International Journal of Approximate Reasoning 32 (2003) 131–152.

[18] O. Cordón, F. Gomide, F. Herrera, F. Hoffmann, L. Magdalena, Ten years of genetic fuzzy systems: current
framework and new trends, Fuzzy Sets and Systems 141 (2004) 5–31.

[19] D.E. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning, Addison-Wesley
Longman, 1989.

[20] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, third ed., Springer, Berlin,
1996.

http://users.ugent.be/~bdebaets/habitatsuitabilitymodels/rulebases.pdf
http://users.ugent.be/~bdebaets/habitatsuitabilitymodels/rulebases.pdf
http://dx.doi.org/10.1016/j.ecolmodel.2006.04.006
http://dx.doi.org/10.1016/j.ecolmodel.2006.04.006

	Interpretability-preserving genetic optimization of linguistic terms in fuzzy models for fuzzy ordered classification: An ecological case study
	Introduction
	Habitat suitability models
	The EKOO data set
	Evaluation of fuzzy ordered classifiers
	Format of the reference output
	Three performance measures
	Percentage of correctly classified instances
	Percentage of correctly fuzzy classified instances
	Average deviation

	Model performance

	Optimization of the linguistic terms
	Introduction
	Model selection
	Properties of the genetic algorithm
	Optimization results

	Conclusions
	Acknowledgements
	List of macroinvertebrate taxa
	References


