Fuzzy Rule Extraction by a Genetic Algorithm and
Constrained Nonlinear Optimization of Membership Functions

Oliver Nelles, Martin Fischer, and Bernd Miiller
Technical University of Darmstadt, Institute of Automatic Control
Laboratory of Control Engineering and Process Automation
Landgraf-Georg-Str. 4, D-64283 Darmstadt, Germany
Phone: +49/6151/16-4524, Fax: +49/6151/293445
E-mail: nelles@irtl.rt.e-technik.th~darmstadt.de

Abstract

In this paper we propose a new method for fuzzy rule
extraction from data by a genetic algorithm and a fine
tuning of the extracted membership functions by a
constrained nonlinear optimization. This approach is able to
select the most significant rules out of a set of all possible
ones, that is it learns the rule structure by itself. The genetic
algorithm does not limit the kind of operator and the
number and form of the membership functions for the
inputs. However, in order to utilize linear optimization
techniques, singletons and center of gravity defuzzification
are used on the output side. Since each rule premise may
include a conjunction of a variable number of inputs
(between one and the input dimension), the “curse of
dimensionality” [1] can be overcome, that is the number of
rules does not increase exponentially with the input
dimension. This feature makes the proposed algorithm
especially attractive for interpretation of high dimensional
nonlinear mappings that are hard to visualize. The strategy
followed by the nonlinear optimization of the fuzzy input
membership functions focuses on a good interpretability
rather than on best approximation performance. This will be
demonstrated on a real world data example.

1. Introduction

In the last few years much attention has been paid to the
construction of fuzzy systems that are able to learn. The
main reason for the attractiveness of such systems is the
combination of interpretable rules and adaptation to data.
On one side, convergence and therefore speed of learning
can be considerably improved by a priori knowledge in
form of fuzzy rules [2]. The possibility to incorporate all a
priori knowledge into a system is always a highly desirable
feature. On the other hand, missing knowledge can be
compensated by building a data driven model and coarse
knowledge can be refined by adaptation.

0-7803-3645-3/96 $5.00©1996 IEEE

213

There are two main directions of research on learning
fuzzy systems, the neuro-fuzzy or fuzzy-neuro approaches
that try to combine neural network architecture with fuzzy
systems [2], [3] and the evolutionary optimization
approaches using genetic algorithms (GA) or evolutionary
strategies that advance the problem in a more direct manner
[4]. Usually neuro-fuzzy systems are trained like neural
networks by gradient based local optimization algorithms,
e.g. backpropagation. Therefore, they often are limited to
differentiable membership functions and fuzzy operators,
like Gaussians and product operator for conjunction
respectively. GAs and other global optimization techniques
typically do not impose any restrictions of that kind. Thus,
for the rule extraction method presented in this paper any
kind of input membership function and any t-norm can be
applied.

2. Classification of Learning Fuzzy Systems

It is very important to distinguish the existing neuro-

fuzzy and GA-fuzzy systems by the kind of parameters that
are subject to the optimization. It is suggested to classify all
approaches in the following three categories:
1. Structure learning: The terms in the premise of each
rule are learned. Optionally the number of rules is
learned as well. This leads to the combinatorial
optimization problem to choose a set of significant
rules. Combinatorial optimization may be performed
by a GA.

Input membership function learning: The membership
functions can be described by functions with unknown
parameters, e.g. Gaussians with position and width as
free parameters. These parameters are optimized. This
can be performed by global (e.g. GA) or local (e.g.
backpropagation) nonlinear optimization.

3. Qutput membership function learning: If singletons are
used on the output side, this reduces to the problem of
finding the singletons' positions. These -positions
influence the output of the fuzzy system in a linear
way. Therefore, this problem can be solved by a
standard linear least-squares (LS) technique.

The complexity of the problems decreases from category
1 to 3. Of course all three strategies can be combined in
various ways. Approach 3 is simple and most straight
forward. Tt benefits from all advantages of linear
optimization, that is convergence to the global minimum,
very low computational cost and possible recursive
formulation. However, its flexibility is limited, since all
input membership functions are fixed. This restriction can
be overcome by approach 2, that may be efficiently
combined with approach 3. However, due to the nonlinear
nature of this problem an iterative nonlinear optimization
algorithm must be applied. If convergence to bad local
minima should be avoided, GAs may be used. Furthermore,
the search should be constrained in such a way, that
interpretability is not lost, e.g. by moving membership
functions out of the interval of physical meaning.

Both approaches 2 and 3 are the basis of most neuro-
fuzzy or GA-fuzzy systems. Since the number of rules of a
complete rule set is equal to

Hlm)

where m, is the number of membership functions for input
i and # is the number of inputs, they underlie the “curse of
dimensionality”. Thus, those approaches become impracti-
cal for higher input dimensions for two reasons. First, the
number of parameters to be estimated becomes too large
(the more parameters the larger the estimation variance [5]).
Second, even if the parameters could be estimated due to a
huge amount of high quality data and fast computers the
number of rules. would be too large to allow an easy
interpretation. Thus, for systems with many (more than two
or three) inputs those approaches are not manageable.
Therefore in this paper a new method for structure learning
is developed, that overcomes these problems. It can be
categorized as a combination of all the above mentioned
approaches, whereas approach 1 and 3 are used in the
genetic algorithm in order to learn the structure of the fuzzy
system and approach 2 and 3 are applied afterwards for the
tuning of the input and output membership functions.

For rule extraction all possible rules are coded in a binary
string. The length of this binary string is equal to the
number of all possible rules and selected rules are
represented by setting the corresponding gene to “1” while
not selected rules are symbolized by a “0”. Thus, the
number of “1”s in each binary string is equal to the number
of selected rules. These binary strings are subject to
optimization of the GA introduced in the following section.

3. Genetic Algorithms

Genetic algorithms [6] are probabilistic search methods
that employ a search technique based on ideas from natural
genetics and evolutionary principles. They were conceived
by Holland [7] in 1973 and since then, they have emerged
as general purpose, robust optimization and search
techniques. In contrast to gradient based algorithms the
GAs' strength is the global character that prevents them
from being trapped in local optima, but of course GAs
cannot guarantee to find the global optimum in finite time.
However, usually at least a good local optimum can be
discovered.

Structure learning can be formulated as the combinatorial
optimization problem to find the significant rules out of a
large given rule set. Since this problem can be naturally
formulated in terms of binary strings, GAs seem to be
perfectly suited. The rule set of all possible M rules is
coded as shown in figure la. Since each bit has its own
interpretation, i.e. it activates or deactivates a rule,
crossover and mutation make physical sense. Mutation
switches rules on or off (figure 1b). Crossover combines
parts of the rule set of one individual with parts of the rule
set of another (figure 1c). These are desired features that
should lead to fast convergence of the algorithm.

For the examples presented ‘in this paper a population
size of 30 and a crossover probability 6f 0.9 was applied.
The mutation rate was not determined for each bit, but for
each individual. Each rule set on average was mutated with
a probability of 0.2. The mutation probability can be
calculated by dividing the individual mutation probability
by the number of possible rules M.

The fitness of each individual was evaluated in the
following way. First, the binary string was translated to the
selected rules by finding the rule numbers that are set to
“1”. For these rules a least-squares (LS) optimization of the
singletons is performed [8]. Then the normalized mean
square error of this fuzzy system is evaluated. A penalty
function that is proportional to the number of rules selected
is added as well as another penalty function for singletons
that have no physical meaning. The inverse of this loss
function value is the fitness of the corresponding rule set.
The penalty factor that determines how strong large rule
sets. should be penalized is chosen by the user. Large
penalty factors will lead to small rule sets, while small
penalty factors will lead to large rule sets. The penalty for
the singletons is calculated in the following way: A range is
given for every output by the minimum and maximum
values of the corresponding output data. This range is
expanded by a percentage factor set by the user. In this
paper the factor 0.2 is used, so that the singletons are
allowed to exceed the output range by 20 percent.
Singletons that exceed these bounds lead to an additional
penalty term. This penaltiy term is equal to the distance of

214

the singletons to the violated range limit. This procedure
controls the conformity of the learned structure with the
given by the data.

Although an LS optimization for each fitness evaluation
is time-consuming, this approach guarantees a linear
optimized fuzzy rule set for each individual and therefore
leads to fast convergence. Coding the singleton positions
within the GA would ignore the information about the
linear dependency of the output on these parameters. In
order to further accelerate the fitness evaluation a maxi-
mum number of rules can be chosen by the user. Rule sets
with a larger number of selected rules than this maximum
are not LS optimized. Instead a fitness value of zero is
returned. The GA will find a good or even the optimal rule
set corresponding to the penalty value with a rule set size
between one and the maximum number of rules.

Rule No.:
3 4 5 6

1 2
Ltfofrfr]o]o]

Fuzzy Rule Set

M2 M1 M

[r]of]

Figure 1a. Binary string for rule set coding.

77
[TeCTeTe]

Fuzzy Rule Set 1

el -

New Fuzzy Rule Set 1

[rfofr]

[0 [To]1]

Figure 1b. Mutation operator.

1A« — 1B
IllOlO}lOl 110101
Fuzzy Rule Set 1

2A «— —

DODODE)

Fuzzy Rule Set 2

LT -~ TolelT]

New Fuzzy Rule Set 1

Ll - T el1]

New Fuzzy Rule Set 2

[o[o

Figure 1c. Crossover operator.

4. Rule Extraction

For sake of simplicity, the rule extraction process will be
demonstrated for a system with only two inputs x, and x,,
one output y and three membership functions for each input
M,,, ..., Mj; and M,,, ..., M,,, respectively. The set of all
possible rules from which the extration process selects the
significant ones contains 15 rules, that is 3 rules with x, in
the premise only, 3 rules with x, in the premise only and 9
rules with all combinations of x, and x, in the premise. It is
important to notice that such rules as (see figure 2)

IF x,=M,, THEN y=? (rule 1)
cover the same area as the three rules

IF x,=M,, \ x,=M,, THEN y=7 (rule 2)

IF x,=M,, \ x,=M,, THEN y =2 (rule 3)

IF x,=M,, N\ x,=M,, THEN y=7? (rule 4)

The singletons “?” will be optimized by the LS
minimization. If the singletons of the rules 2-4 are about the
same value, those three rules can be approximated by the
first one. This is the mechanism to overcome the “curse of
dimensionality”. Generally speaking, one rule with just one
term in the premise can cover the same area as m""' rules
with » terms in the premise, where m is the number of
membership functions for each input. Therefore, the
number of rules required can be drastically reduced and this
reduction effect increases exponentially with the input
dimension #. Furthermore, a few rules with a small number
of terms in the premise are much easier to interprete than
many rules with complete premises.

F x1= M AND x:= M.

F x1=Mu AND x:= Ma

F x:=M:

Figure 2. Three rules for a fuzzy system
with two inputs.

215

- This kind of information compression is the only way to
handle high-dimensional problem with fuzzy systems, that
relay on one-dimensional membership function.

For the.case of » inputs, m membership functions per
input (of course they are-in general allowed to be different
in shape and number for each' input) the number of possible
rules-is equal to Lo

o (g g

1term 2 terms

n
1

n

2 @)

nterms

Conventional neuro-fuzzy and GA-fuzzy systems only
consider the last term of the sum in (2), that is dominant for
n>n. With the proposed approach it is, in principle,
possible for the GA to detect, if an input x; is irrelevant,
since then x; will not appear in the optimized rule set, if the
global optimium is found.

Since under some conditions a fuzzy system is equivalent
to an RBF network [8] if all » terms appear in all premises,
it is interesting to ask for an interpretation of premises with
less than # terms from the neural network point of view.
Indeed, in [9] so called Gaussian bar units are proposed for
radial basis function networks to overcome the “curse of
dimensionality”. Those Gaussian bar units corespond to »
1-term premises as proposed in this paper from the fuzzy
point of view. In [9] experimental results are given in order
to proof, that this semilocal approach is much less sensible
to the problem of “curse of dimensionality” than the pure
local method.

However, the approach in [9] includes only 1 and n-term
premises and gives no rule interpretation of the RBF
network at all. The method presented here allows any
number of terms in each rule premise ranging from 1 to 7.
This can be seen of a decreasing degree of locality, since a
rule with 1 term in the premise covers 1/m, a rule with 2
terms in the premise covers 1/m* and a rule with » terms in
the premise covers only 1/m" of the input space. Therefore,
the GA also controls the degree of localness of the fuzzy
system for all input region separately.

5. Constrained Nonlinear Optimization

In order to tune the input membership functions, a
nonlinear optimization problem has.to be solved. The
parameters of the optimization are the centers and widths
(standard deviations) of the Gaussian membership
functions. If the approximation quality is the only objective
of optimization, the search space of the parameters to be
optimized is not limited. Though the approximation quality
for such an approach can expected to be quite good, the

216

interpretability of the fuzzy rules may get lost. This is due
to the fact, that if the range of the membership functions is
not restricted, often widely overlapping membership
functions give good numerical results. Fuzzy membership
functions as shown in figure 7 lacking any.physical inter-
pretation and loosing locality are possible. To avoid this,
different kinds of constraints should be put on the
optimization: equality constraints, inequality constraints
and parameter bounds. Another strategy is to add a penalty
measure to the objective function. However, this normally
reduces the efficiency of the optimization algorithm [10].

In order to efficiently solve this constrained nonlinear
optimization problem in which the objective function and
constraints may be nonlinear functions of the variables, a
sequential quadratic programming (SQP) algorithm as
presented in [11]-is applied. It iteratively solves the Kunh-
Tucker equations and builds up second order information
for fast convergence.

6. Tuning of the Fuzzy Membership Functions

To increase the performance of the extracted rule set the
following strategy is applied: Optimization of the input
membership functions by a sequential quadratic program-
ming (SQP) algorithm in which an LS optimization of the
output membership functions is embedded. The objective
function of the optimization is the normalized mean square
error. To prevent a large overlap or even coincidental
membership functions, different strategies were used:

Minimum distance of membership functions: The
centers of the Gaussian membership functions must
have a minimum distance to the centers of the
adjoining membership functions.

1.

2. Parameter bounds. The centers' values as well as the
widths' values of the Gaussians of each membership
function are limited within a given range.

3. The sum of the optimized membership functions for

each input should be around one: The original
normalized membership functions sum up to one. This
is an appealing property that makes human
interpretation easier. Thus the squared difference

~ between one and the sum of the optimized membership
functions is integrated. This value is a penalty which is
weighted with a sum penalty factor and then added to
the objective function.

Strategy 3 has turned out to be the most powerful one in
terms of interpretation quality but also the most restrictive.
To further increase the interpretation quality a penalty
factor for singletons without physical meaning as explained
in section 3 is used. In almost every combination of the

different strategies this penalty factor leads to faster
convergence of the optimization problem.

7. Real World Data

Figure 3 shows the relationship of exhaust-gas pressure
dependent on the engine speed and the injection mass for a
diesel engine in a lookup-table. The 320 (32x10) data
points have been measured at a diesel engine test stand.

£l
0,25
jo)
3
% 2
&
w
g 1.5
g !
20
C i 4000
Ye, o 3000
2 g 2000 d\\lm\“
S /2 0 108 gpee
gy eng

Figure 3. Measured lookup-table.

Since the relationship seem to be quite smooth only four
(very small, small, high, very high) normalized Gaussian
membership functions with considerable overlap were
placed on each input axis. The resulting rule set contains 24
(4+4+16) possible rules. For a high penalty - factor
FUREGA leads to the following rule set of only four rules:

IF speed = small

THEN exhaust-gas pressure = 1.113 bar (rule 1)
IF speed = high

THEN exhaust-gas pressure = 1.696 bar (rule2)
IF speed = very small A injection = very small
THEN exhaust-gas pressure = 1.012 bar (rule 3)

IF speed = very high N injection = very high
THEN exhaust-gas pressure = 2.566 bar (rule 4)

It has to be stated clearly, that this rule set is the best
result obtained during a few runs of the GA and it could not
always be reached. It is very easy to interpret and has the
nice property that the more relevant input “engine speed” is
used for all rules, while the less relevant input “injection
mass” only appears in two rules in combination with the

other input. Figure 4 shows the lookup-table generated by
those four selected fuzzy rules with a normalized mean
square error- of 0.0243 and figure 5 shows the
corresponding fuzzy membership functions for the input
“engine speed”. The tuning of the membership functions
(see figure 7) without constraints leads to a normalized
mean square error of 0.0018. The upper curve is the sum of
all membership functions for this input. The corresponding
approximation performance is shown in figure 6. By. this
optimization interpretability gets lost. For example the
optimized singleton for rule 1 is 0.390 bar. This value has
nothing to do with the output range of the lookup-table
which varies approximately between 1 bar and 2.5 bar.

There are two more figures which show examplary the
tuned membership functions of the input “engine speed”.
All constraints mentioned in section 6 were active. Only the
sum penalty factor for strategy 3 was varied. Figure 8
shows the optimized membership functions for a sum
penalty factor of 0.01. The singletons vary between
1.032 bar and 2.542 bar. Figure 9 shows the optimized
membership functions for a larger sum penalty factor of
0.1. Here the singletons vary between 1.047 bar and
2.537 bar. The normalized mean square error was 0.0077
and 0.0144, respectively. This is a considerable improve-
ment compared to the result of the GA.

As the range of the singletons and the Gaussian
membership functions show, the results are easily
interpretable. These results clearly show that one has to pay
for increasing interpretability by decreasing performance.
In this example nonlinear optimization without constraints
could improve the approximation accuracy by a factor of
3.5, while improvement with constraints was between 1.8
and 1.3 dependent on the sum penalty factor (these numbers
correspond to the normalized root mean square error ratios).

8. Conclusions

A new approach of learning fuzzy systems was
developed. The key feature of this method is the fuzzy rule
extraction by a genetic algorithm, called FUREGA. It is
combined with a linear least-squares optimization of the
singletons on the output side. It was shown that the “curse
of dimensionality” can be overcome if rules with fewer
terms in the premise are included. FUREGA leads to very
small rule sets that are easy to interpret. This inter-
pretability could be kept after nonlinear optimization of the
fuzzy membership functions if constraints were applied. It
has been shown that choosing the constraints and penalty
factors allows a trade-off between performance and
interpretability. The performance of FUREGA was
demonstrated for a measured. lookup-table for diesel
engines.

217

References

[1] Bellman R.E.: "Adaptive Control Processes", Princeton [6] Goldberg D.E.: "Genetic Algorithms in Search, Optimization
University Press, 1961 : and Machine Learning", Reading Massachusetts, Addison-
[2]1 Brown M., Harris C.: "Neurofuzzy Adaptive Modelling and Wesley, 1989

Control", Prentice Hall, 1994 {7] Holland J.H.: "Adaptive in Natural and Artificial Systems",”

[3] Ayoubi M.: "Rule Extraction for Fault Diagnosis with a Ann Arbor, University of Michigan Press, 1973

Neuro-Fuzzy Structure and Application to a Turbocharger", (8] Kecman V., Pfeiffer B.M.: "Learning Fuzzy Rules Equals
Second European Congress on Fuzzy and Intelligent Radial Basis Function Neural Network Training", IEEE
Techniques, EUFIT, 1994 World Congress on Computational Intelligence, 1994

[4] Trift P.: "Fuzzy Logic Synthesis with Genetic Algorithms", 91 Hartman E., Keeler 'J’-D-l "Predicting the Future: Advantages
Forth International Conference on Genetic Algorithms, 1991 of Semilocal Units", Neural Computation 3, pp. 566-578,

[5] Isermann R.: "Identifikation dynamischer Systeme I", 2. ed., 1991

Springer, 1992 (in German) [10] Gili P.E.: "Practical Optimization", Academic Press, 1988

[11] Grace A.: "MATLAB: Optimization Toolbox User's Guide",
The MATHWORKS Inc., 1994 '

exhaust-gas pressure [bar]
N exhaust-gas pressure [bar]

Figure 4. Approximation with four rules. Figure 6. Approximation with four rules after
nonlinear otimization without constraints.

16;
1.6
141 .)
‘ 14
. 121
% 1.2
Q.
Ee] 0.8 . very small very high >
g X : _g 0.8 very small very high
E os small high 2
“5 “5 0.6 small
@ 04p
.ig_, g 0.4
g o2 § 0.2
s} + N
1500 2000 2500 3000 3500 4000 0 1500 2000 2500 3000 3500 4000
engine speed [1/min] engine speed [1/min)
Figure 5. Membership functions for the input Figure 7. Membership functions for the input
“engine speed” before optimization. “engine speed” after nonlinear optimization

without constraints.

218

1867
14}

1.2

0.8F

0.6}

04

0.2

degree of membership

1500 2000 2500 3000 3500 4000
engine speed [1/min]

Figure 8. Membership functions for the input
“engine speed” after nonlinear optimization
with constraints and a sum penalty factor

of 0.01.

219

161
14}

1.2

S swall ’ ‘ very high

0.6}

04¢

0.2

degree of membership

1500 2000 2500 . 3000 3500 4000
engine speed [1/min]

Figure 9. Membership functions for the input
“engine speed” after nonlinear optimization
with constraints and a sum penalty factor

of 0.1.

