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Abstract—Existing Takagi–Sugeno–Kang (TSK) fuzzy models
proposed in the literature attempt to optimize the global learning
accuracy as well as to maintain the interpretability of the local
models. Most of the proposed methods suffer from the use of
offline learning algorithms to globally optimize this multi-criteria
problem. Despite the ability to reach an optimal solution in terms
of accuracy and interpretability, these offline methods are not
suitably applicable to learning in adaptive or incremental systems.
Furthermore, most of the learning methods in TSK-model are
susceptible to the limitation of the curse-of-dimensionality. This
paper attempts to study the criteria in the design of TSK-models.
They are: 1) the interpretability of the local model; 2) the global
accuracy; and 3) the system dimensionality issues. A generic
framework is proposed to handle the different scenarios in this
design problem. The framework is termed the generic fuzzy input
Takagi–Sugeno–Kang fuzzy framework (FITSK). The FITSK
framework is extensible to both the zero-order and the first-order
FITSK models. A zero-order FITSK model is suitable for the
learning of adaptive system, and the bias-variance of the system
can be easily controlled through the degree of localization. On the
other hand, a first-order FITSK model is able to achieve higher
learning accuracy for nonlinear system estimation. A localized
version of recursive least-squares algorithm is proposed for the pa-
rameter tuning of the first-order FITSK model. The local recursive
least-squares is able to achieve a balance between interpretability
and learning accuracy of a system, and possesses greater immunity
to the curse-of-dimensionality. The learning algorithms for the
FITSK models are online, and are readily applicable to adaptive
system with fast convergence speed. Finally, a proposed guideline
is discussed to handle the model selection of different FITSK
models to tackle the multi-criteria design problem of applying
the TSK-model. Extensive simulations were conducted using the
proposed FITSK models and their learning algorithms; their
performances are encouraging when benchmarked against other
popular fuzzy systems.

Index Terms—Degree of localization, localized learning, non-
linear system estimation, Takagi–Sugeno–Kang fuzzy models,
zero and first-order TSK models.

I. INTRODUCTION

THE Takagi–Sugeno–Kang (TSK) fuzzy model [1]–[3] is
a class of fuzzy models that assumes local model repre-

sentations with local function dynamics at the consequent or
rule-layer of the models. The idea of such a fuzzy model is
to consider the output by performing fuzzy interpolations of
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these simpler local functional models in the neighboring fuzzy
partitions. The main advantage of the TSK-model over other
classes of fuzzy models is its ability to model a system accu-
rately; either globally or locally. The accurate global learning
ability motivates the practical applications of TSK-model in
nonlinear system estimation [4]. The local learning ability pro-
vides a course of interpretability of the local models in the lo-
calized subspaces [5]–[8].

Existing TSK-model learning algorithms proposed in the lit-
erature can be classified using two criteria. The first criterion
is essentially the locality of learning. The second criterion is
being an online or an offline learning algorithm. The locality
of learning depends on the model’s learning objective func-
tion, which is a minimization problem of the global or the local
learning errors. The global parameter tuning considers the min-
imization of the global error of the model, such as the ANFIS’s
Kalman filter algorithm [9]. This benefits the global accuracy of
the system, but suffers from degradation in local interpretability.
This degradation exhibits an erratic local behavior, which causes
the local models to have difficulty in interpretability [5]. In con-
trast, the local parameter tuning takes the form of the minimiza-
tion problem of the local learning errors. This ensures that the
local models possess accurate representations and improves on
the local interpretability of the system. Examples of such local
parameter tuning are the direct update of zero-order TSK model
and the local learning algorithm in Yen’s model [5]. However,
minimization of local learning errors without consideration of
global behavior results in degradation of global learning accu-
racy.

An offline learning algorithm assumes that the data is pre-
sented in a batch form and can be repeatedly accessed. This
form of learning is easy to guarantee its success in reaching an
optimal solution based on its learning objective function. Fur-
thermore, it has the flexibility in recalling the stored training
examples to improve the quality of learning. However, the of-
fline learning is inapplicable to adaptive or incremental learning
systems. Moreover, it is prone to the curse-of-dimensionality
problem [10]. Examples of the offline learning methods are the
singular value decomposition approach [5] and the constraint-
optimization method [8]. Summarizing these, the existing TSK-
models encountered one or more of the following major prob-
lems despite being good modeling tools for nonlinear system
estimation. They are; namely: 1) offline learning; 2) low inter-
pretability of local model; 3) degradation in global learning ac-
curacy; and 4) inapplicable to higher dimensionality system.
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Hence, a novel TSK-model framework that is immune to the
above deficiencies is proposed in this paper. The framework
is termed the generic fuzzy input Takagi-Sugeno-Kang fuzzy
framework (FITSK). The FITSK framework can be readily ex-
tended to different classes of TSK-models to alleviate the above
deficiencies based on different design criteria. All the learning
algorithms of FITSK assume online learning paradigms with
fast convergence speed.

This paper is organized as follows. Section II describes the
general structure of the FITSK framework, the zero-order and
the first-order FITSK models, and their online learning algo-
rithms. Section III presents the simulation results of the FITSK
models with five different nonlinear system estimation tasks.
Section IV concludes this paper.

II. FITSK

This section introduces the generic FITSK framework; the
FITSK framework takes the form of a superset of all the TSK
fuzzy models [1]–[3]. A special case of the FITSK framework
is mapped to a zero-order FITSK model (denoted by )
on the assumption that the local models’ function dynamics are
zero-order (constant term). Subsequently, a degree of localiza-
tion of the zero-order FITSK model is introduced to balance the
bias-variance of the learning of the FITSK model. A first-order
FITSK model (denoted by ) is another adaptation of the
FITSK framework, where the local models are first-order linear
functions of the input vector. There are two classes of parameter
learning for the model. They are the global recursive
least-squares algorithm and the local recursive least-squares al-
gorithm. The latter is computationally more effective than the
former. A degree of localization is introduced in the local recur-
sive least-squares algorithm to control the interpretability of the

model. A guideline is proposed to select the choice of
different FITSK models with respect to the following three de-
sign criteria; namely 1) model interpretability; 2) learning ac-
curacy; and 3) data dimensionality. The guideline allows the
choice of the FITSK models with different settings to generate
a balanced system on the basis of these criteria.

A. Generic Structure of FITSK

Fig. 1 depicts the generic structure of FITSK. The FITSK
framework consists of six layers of nodes. The six layers are
the input fuzzifier , the input linguistic , the conjunc-
tion , the normalization , the functional or rule , and
the summation layers. The input fuzzifier nodes in the first
layer fuzzify the input vector into a corresponding vector of
fuzzy membership functions. Subsequently, the input linguistic
layer measures the similarity of each fuzzy membership func-
tions with its corresponding linguistic nodes. The conjunction
layer computes the conjunction of all incoming signals and gen-
erates the corresponding weights. The normalization layer nor-
malizes these weights. Each node of the functional or rule layer
implements a local model, which is a form of the TSK rule. The
outputs of the functional layer are weighted with their incoming
normalized weights. Finally, the summation layer summarizes
all the incoming signals. Therefore, the outputs of the FITSK are
computed by interpolating the local models with the normalized

fuzzy measures of the input vector. This paragraph briefly sum-
marizes the operations of the generic FITSK framework; sub-
sequent segment of this section formularizes these mathemati-
cally.

Each input fuzzifier node , , has
a single input. Vector repre-
sents the inputs to the FITSK. Each output node , where

computes a single output denoted by .
Vector denotes the outputs of the
FITSK with respect to the input vector . The variables , , ,
, , and are used to refer to arbitrary nodes in layers 1, 2, 3,

4, 5, and 6, respectively.
The total number of nodes for layers 1, 3, 4, and 6 are de-

noted with variables , , , and respectively. Each input
fuzzifier node may have different number of input linguistic

nodes . Hence, the total number of nodes for layer 2
is . Layer 3 consists of conjunction nodes , where

. Each layer 3 node is directly connected
to a layer 4 normalization node . Hence, the total number of
nodes in layers 3 and 4 are identical, . Each layer 4 node

is associated with number of layer 5 functional nodes,
. is identical to the number of layer 6 nodes, .

Hence, the total number of nodes in layer 5 is . Each
output node at layer 6 is a summation node, . Each summation
node is connected with number of layer 5 functional nodes.
The total number of nodes at layer 6, , depends on the dimen-
sion of output vector . The FITSK model adopts the TSK’s
fuzzy model and the trainable parameters are found in layer 5
of the model.

The output of a node is denoted as with the subscripts spec-
ifying its origin, for example is the output of node . All
the outputs of a layer are propagated to the inputs of the con-
necting nodes at the next layer with unity link-weight.

The generic operations of the FITSK can be defined as fol-
lows.

Layer 1 (Input fuzzifier layer)

(2.1)

where is the fuzzy membership function of input fuzzifier
node

Layer 1 nodes fuzzify a singleton input by adopting the input
as the center of the fuzzy membership function, such that

the membership function achieves maximum value at and
decreases while moving away from the center. However, when a
nonsingleton (fuzzy) input is presented, the node simply directs
the nonsingleton input as the output of the node.

Layer 2 (Input Linguistic layer)

(2.2)

where is a fuzzy linguistic label of node .
Layer 2 nodes take in the fuzzy membership function of layer

1 outputs as the inputs, and compute a fuzzy subsethood measure
[4] for each corresponding fuzzy linguistic label. The fuzzy sub-
sethood measure defines the degree that fuzzy set A is a subset
of fuzzy set B as

(2.3)
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Fig. 1. Generic structure of FITSK.

If the operator is used for intersection operation, then
(2.3) is described in detail in (2.4)

(2.4)

or can be approximated by (2.5)

(2.5)

Layer 3 (Conjunction layer):

(2.6)

Layer 3 nodes compute the conjunction of all the incoming sig-
nals using a product or a minimum inference.

Layer 4 (Normalization layer)

(2.7)

where is the normalized weight.
Layer 5 (Functional/Rule layer):

(2.8)

where is a local model function of node .

Layer 6 (Summation layer):

(2.9)

Two motivations drive the development of the FITSK model.
The first is to craft a systematic and generic framework for
an arbitrary order TSK model [1]–[3] with arbitrary parameter
learning capability. The second is to map the generic model with
a nonsingleton (fuzzy) input fuzzifier such that the degree of lo-
calization of the local model can be controlled with ease. A spe-
cial case of the generic FITSK is the ANFIS model [9] which
considers a singleton input fuzzifier at layer 1, a product infer-
ence scheme at layer 3, a first-order polynomial local model
function at layer 5, and a single output at layer 6.

B. A Zero-Order FITSK Model

The zero-order FITSK model is a special case of the generic
FITSK framework with zero-order polynomial functions (con-
stant terms) at layer 5, and product inference in layer 3. The
specific formulation at layer 1 and 2 are described as follows.

Layer 1 (Input fuzzifier layer): The choice of fuzzy member-
ship function is flexible. In this formulation, a Gaussian mem-
bership function is chosen

(2.10)
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where
spreads over the universe of possible range of ;
standard deviation of the Gaussian function.

The standard deviation reflects the width of the member-
ship function, and is dependant on the accuracy and generaliza-
tion to be achieved by a specific system. This is a bias-variance
dilemma problem. Smaller value of the standard deviation (bias)
implies higher focusing region for the local model in the local
subspace, and directly proportions to higher learning accuracy.
Conversely, a larger value (variance) anticipates higher noise or
generalization capability in the neighboring subspaces.

Layer 2 (Input linguistic layer): Each linguistic node is a sin-
gleton label to simplify the computation of fuzzy subsethood
measure. Let denotes the centre of the singleton of the
linguistic label of the input node, , with unity height.
The computations involving layer 1 and layer 2 nodes can be
simplified as

(2.11)

The system designer would have to specify the number of la-
bels in each dimension. The location of is evenly distributed
over the value range of the input dimension . The resultant res-
olution is computed as

(2.12)

where is the value range of the input dimension and
is the total number of labels in dimension .

Layer 5 (Functional layer)

(2.13)

where is the zero-order function (constant term) of
the local model in the node .

Let the vector denote the actual
outputs of the FITSK with respect to the input vector . The
training assumes a direct adaptive learning process, which has
more plasticity rather than stability. The learning process adapts
to new information rapidly by forgoing past information. Thus,
the zero-order FITSK model is effective in modeling nonlinear
adaptive system such as time-series data or temporally adaptive
system. The learning process for an arbitrary zero-order local
model is listed as

(2.14)

where is the time index and is the positive step size
learning constant.

If the stability of the learning system is crucial, the learning
constant can be modified to a monotonically decreasing function
to tighten the plasticity of the system.

The design of input fuzzifier with singleton linguistic formu-
lation is driven by two motivations. The first is to exclude the

need of online clustering process for the linguistic labels. The
second motivation is to ease the control of the degree of local-
ization in the neighboring subspaces.

Clustering process for the Mamdani’s fuzzy model [11] is
an unsupervised learning process by partitioning the input and
output spaces into reasonable clusters [12]–[14]. However, un-
supervised clustering process for TSK fuzzy model identifica-
tion is unjustifiable because the quality of the cluster is depen-
dant on the input data as well as the corresponding output dy-
namics of the system. Several clustering techniques [3], [15]
have been proposed for TSK model identification in a super-
vised learning manner, in which the quality of the output is
quantified with respect to the input clusters formation. However,
they suffer from adopting a heuristic search approach and are
computationally expensive [3], [15]. This demonstrates that the
supervised clustering problem for identification of TSK fuzzy
model structure is a combinatorial complex problem. As a re-
sult, the FITSK model presupposes an even space partitioning of
the singleton linguistic labels instead of performing an effective
online clustering technique. Normal TSK model maintains the
learning accuracy by fuzzy interpolation of neighboring local
models. The FITSK is able to maintain a similar fuzzy inter-
polation by having fuzzy input with singleton linguistic labels,
without the need of having a clustering process to structurally
define the optimal linguistic labels. This is because the fuzzifi-
cation is performed prior to the linguistic layer, and the mem-
bership functions are well-defined in the sense that the centers
of the membership functions represent the exact location of the
input vector.

The standard deviation in (2.11) is defined as a function of
the input value range in (2.15)

(2.15)

where
shrinking rate and ;
value range of the input dimension ;
degree of localization.

The maximum of the standard deviation is simply estimated
as such that the membership function is able to contain
the entire range of the input space. The minimum of the standard
deviation is chosen with respect to the concept of -complete-
ness. The level at the crossover point of neighboring fuzzy
membership functions implies a strong belief in the positive
sense of the fuzzy control rules, which are associated with the
controller. The degree of belief is chosen to be greater than 0.5
[16], [17] to achieve this. Thus, the weight or matching degree
of at least one of the label of an input dimension is selected to
be greater than 0.5.

Equations (2.16) and (2.17) summarize the derivation of
a minimum of the standard deviation, which is derived from
(2.11)

(2.16)
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Fig. 2. Motorcycle crash dataset.

The boundary condition for appears when is in
the middle of two adjacent labels, which is half of the resolution

. This is shown in (2.17)

(2.17)

Therefore, the standard deviation is set to be at least 0.4247
times of the resolution in that dimension.

Equation (2.15) is able to control the bias-variance of the
learning system by varying the degree of localization, . This
is illustrated with a motorcycle crash dataset from [18]. The
dataset consists of a one-dimensional time-series of 133 ac-
celerometer readings in an experiment on the efficacy of crash
helmets, as shown in Fig. 2.

Experiment was performed by randomly splitting the dataset
into 67 training dataset and 66 testing dataset; setting the
shrinking rate, ; and the no. of labels to 20. Each set
of the results was acquired by setting a degree of localization,

, and being trained for 200 iterations.
Fig. 3 illustrates that the bias-variance of the learning system

by simply modifying the degree of localization, which directly
controls the width of the membership function. The training ac-
curacy of the system is proportional to the width of the mem-
bership function. However, the testing error increases when the
degree of localization is more than 16, representing a scenario
of overfitting or overtraining.

Thus, the bias-variance dilemma is a system dependant de-
sign issue. The FITSK model simplifies the design process by
using the degree of localization to control the bias-variance. The
degree of localization defines the locality or the vagueness of the
input vector to neighboring subspaces. Higher degree of local-
ization refers to higher accuracy (bias) and less generalization
(variance), and vice-versa. The locality of local models can be
controlled with ease by varying the degree of localization of the
FITSK model without the need of repositioning or redefining
the linguistic labels.

A possible usage of varying the degree of localization is to
relate it to the progress of training in an adaptive system, such
that the degree of localization is gradually increased as learning
progresses. This ensures that the generalization capability of the
learning system is guaranteed when learning commences, and
gradually moves toward higher learning accuracy.

Fig. 3. Training and testing MSEs of FITSK.

C. A First-Order FITSK Model

The FITSK framework takes the form of a first-order FITSK
model by adopting first-order local models at layer 5 (functional
layer) of the framework. This is achieved by substituting a first-
order linear function into (2.8) of the generic FITSK framework

(2.18)

where
refers to the parameter vector of an arbitrary node, , in layer
5 of the FITSK. The inference performed by the FITSK model
is an interpolation of all the relevant local linear models based
on the relevance of input data to the fuzzy subspaces associated
with the linear model. The output nodes at layer 6 take the form
of (2.19)

(2.19)

For simplicity of discussion, assume that the FITSK has two
inputs and , and a single output , with only two rules, then

(2.20)

Consider that the learning system is presented with
number of training examples,

, where
index;

input vector, ;
desired output value.
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Equation (2.20) can be easily arranged in a matrix form of

(2.21)

or

...
...

...
...

...
...

...
...

...
...

...
...

...

...

(2.22)

with dimensions of matrices , , and being , ,
and respectively, where is total the number of linear
parameters.

Since the number of training examples is usually greater than
the number of parameters to be identified, (2.22) is an over-de-
termined problem and there is no exact solution. However, on-
line estimation of the solution is possible with the formulation of
recursive-least-squares algorithm (a special case of the Kalman
filter algorithm) in order to perform iterative linear least-square
estimation (LSE), as described in [9] and formally listed in [19].

Let be the row vector of matrix , then can be iter-
atively estimated using (2.23)

(2.23)

with initial conditions of and , where is a
large positive number and is the identity matrix of dimension

.
The strengths of using the recursive least-squares algorithm

for the first-order FITSK parameter identification are its on-
line learning capability, fast convergence speed with minimal
learning iterations, and optimal global learning performance [4],
[7], [20]. However, it encounters two major problems. Firstly,
the recursive-least-squares algorithm has high computational
and space complexities. For example, a first-order TSK fuzzy
model of -input, -rules will have an matrix of dimension

, and the computational cost is in order of
. Secondly, the system identified using the algorithm has

erratic local behavior and the local models have low local in-
terpretability [4], [7]. This jeopardizes the initial motivation of
using the TSK model to gain insights into the local models, such
that interpretability of the TSK model is possible [4]. Therefore,
the parameter learning algorithm of TSK model is a multi-ob-
jective identification problem; which would require a balance
between good global learning accuracy and local model inter-
pretability [7].

Fig. 4. Time-complexity of FITSK with recursive least-squares learning.

A simple experiment was performed to demonstrate the
exponential growth in computational complexity with FITSK
when adopting the recursive least-squares parameter learning
(described in (2.23)). Consider a multidimensional function of
the form described by (2.24)

(2.24)

where is the dimension of the function.
Fig. 4 illustrates the time-complexity of first-order FITSK

with recursive least-squares algorithm for parameter learning of
function (2.24) with different number of input dimension. There
are three labels for each dimension at layer 2 of FITSK in this
experiment. The time-complexity of the learning process suf-
fers from an exponential order as the dimension increases. This
demonstrates the seriousness of the curse-of-dimensionality
problem [10] in the FITSK model with recursive least-squares
learning. Similar significance of the problem can be easily
extensible to the general TSK model using a global learning
algorithm, for example, the ANFIS model [9], [21].

With the hindsight from the above discussion, the modeling of
the first-order FITSK should be positioned as a multi-objective
problem; namely: 1) relaxing the computational complexity; 2)
improving the local model interpretability; and 3) maintaining
the global learning accuracy. These motivate the derivation of a
localized version of recursive least-squares, which is design to
achieve the three criteria, and simultaneously being an online
algorithm with fast convergence to optimal performance.

Consider a local approximation of an arbitrary local model
(denoted by ) in layer 5 of FITSK. Each training example
is being influenced by the weight . Thus, the local approxima-
tion can be represented as input-output relationships as shown
in (2.25)

...
...

...

...
...

...

...

...

(2.25)
in a form of that can be identified by the least-squares algorithm,

.
Letting be the row vector of matrix , and

. To simplify the discussion, the subscript
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is omitted from (2.26) onwards since each local model is
updated locally

(2.26)

then can be iteratively estimated by substituting the solution
from (2.23) with (2.26)

(2.27)

and the local learning error is shown in (2.28)

(2.28)

which is an approximation of the global learning error as

(2.29)

Therefore, (2.27) can be simplified into

(2.30)

which is the optimal recursive solution to the least-squares
problem . Therefore, the mean-squared-error
(MSE) criterion is the optimal objective function for this
least-squares-minimization problem. Subsequently, the optimal
locally weighted MSE criterion of a local model is computed
with (2.31)

(2.31)

The local_MSE criterion is the objective measure of the
learning accuracy of a locally weighted local model. The total
locally weighted MSE of all the local models is the sum of all
local_MSEs.

(2.32)

where
total number of local models;
indexing of the local model.

On the other hand, (2.30) can be generalized with a degree of
localization,

(2.33)

with initial conditions of and , and a degree of
localization of value 2 will always result in the optimal error as
shown in (2.31).

Equation (2.33) is a proposed localized version of recursive
least-squares algorithm. Each local model has its local copy of

matrix and vector. The parameter tuning is computed lo-
cally instead of globally with respect to all the local models.
The influence of an individual local model for a training ex-
ample is measured with its weight. The degree of localization
indicates the locality of the learning to the local model, and is
indirectly proportional to the influence of training examples that
are further away in the input spaces to a particular local model.
A higher degree of localization will often result in better inter-
pretability of local models.

Consider that number of data points nearest to the centre
of a local model in the local subspaces is responsible for in-
fluencing the interpretability of the local model. Then, the in-
terpretability of the local models is measured with a -cen-
tral-nearest MSE criterion, which is computed
by (2.34)

(2.34)

where
error of the local model w.r.t. the data point;
total number of data points under consideration;
index.

The level of interpretability of local models is related to the
degree of localization, and will be demonstrated with a simula-
tion in Section III-C using the criterion described in (2.34).

The first-order FITSK fuzzy model with local recursive least-
squares of -input, -rules will have number of matrices,
each with dimension of . The local recursive least-
squares is repeated for each local model during the training
process, the computational cost is in order of . Fur-
thermore, the weight of most local models is zero or near-to-zero
for high-dimensional FITSK model during a particular training
instance. The computational cost can be further reduced by by-
passing the training of these near-to-zero weight local models.
This significantly reduces the computational and space com-
plexities, especially for higher-dimension FITSK model.

Fig. 5 illustrates the time-complexity of a first-order FITSK
with the local recursive least-squares algorithm for the pa-
rameter learning of the function described by (2.24) with
different number of input dimension. There are 3 labels for
each dimension at layer 2 of FITSK in this experiment. The
time-complexity of the learning process is still of exponential
order. However, the computational cost has been significantly
reduced by comparing with the time-complexity of FITSK with
global recursive least-squares as shown in Fig. 4. By comparing
Fig. 5 and Fig. 4, the computational cost for a 10-dimensional
data with local recursive least-squares algorithm is lower than
the cost of the global recursive least-squares algorithm with
5-dimensional data. This demonstrates that the FITSK model
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Fig. 5. Time-complexity of FITSK with local recursive least-squares learning.

Fig. 6. Flowchart on 3-criteria model selection of FITSK.

adopting the local recursive least-squares algorithm has better
immunity to the curse-of-dimensionality.

This research focuses on providing a general FITSK frame-
work such that a specific model can be formulated with ease
depending on different design criteria and considerations. The
criteria for considerations are the interpretability, accuracy
and dimensionality of the system; all these criteria are design
or problem-dependant. Formulating this design problem as a
multi-objective optimization problem is not justifiable practi-
cally since these objectives are system-dependant. Therefore, a
guideline is provided to cater for the selection of FITSK model
based on these three criteria.

Fig. 6 illustrates the design guideline on the model selection
of FITSK based on three criteria. If the interpretability of a
learning system is of the highest priority, a first-order FITSK
model with localized version of recursive least-squares is
adopted with a high degree of localization. This is to ensure that
the learning is performed locally for each regional subspace.
However, a zero-order FITSK model is chosen when both inter-
pretability and accuracy is not important, and a straightforward
and fast adaptive system is required. Finally, a first-order FITSK
model is necessary on the condition that accuracy remains an
important criterion. The global recursive least-squares learning
algorithm is adopted when the system has low dimensionality
since this approach is computational costly. On the other hand,

TABLE I
SPECIFICATIONS OF TASKS

for higher dimensional system, the local recursive least-squares
is chosen, and since interpretability is not a main consideration,
a low degree of localization will adequately accommodate such
need.

III. SIMULATION RESULTS AND ANALYSIS

Five nonlinear estimation tasks are studied in this section;
the first three benchmarking tasks are taken from [22], they are;
namely: 1) a nonlinear system; 2) a human-operated chemical
plant; and 3) a daily price of a stock. These are benchmarked
against five models [22] in a thesis [23] and the results are sum-
marized in Section III-A. The fourth task is a Mackey–Glass
time series prediction taken from [9], and is compared against
the ANFIS model and -FCMAC model as proposed by
[24]. The last task is a motorcycle crashing simulation taken
from [18], to comprehend the interpretability issue [5] of the
first-order FITSK model. The detail descriptions of each task
are to be referred to each respective research [9], [18], [22].

The specifications of these tasks are shown in Table I.
The third column of Table I shows the selected dimensions of

the original problem via structure identification [22]. The MSE
and Pearson correlation coefficient are used to benchmark the
results, The MSE measures the performance accuracy in terms
of training or testing result. The Pearson product moment corre-
lation coefficient is a dimensionless index that ranges from 1.0
to 1.0 and reflects the extent of a linear relationship between two
sequences of data.

Defining MSE and root-MSE between two data vectors as
(3.1)

(3.1)

where
MSE function;
root-MSE function;

, two data vectors;
number of elements in the vector.

The Pearson correlation coefficient is defined in (3.2)

(3.2)

where
Pearson correlation coefficient function;

, two sequence of data vectors;
covariance between two data vectors.

The two data vectors for performance evaluations are the
desired and the actual outputs from the model respectively. The

model refers to the zero-order FITSK model with a
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TABLE II
RELATIVE MSE FOR THREE TASKS

TABLE III
RELATIVE PEARSON CORRELATION COEFFICIENT FOR THREE TASKS

learning rate of 0.2, and standard deviation of 0.4247 times the
resolution. The -GRLS denotes the first-order FITSK
model with global recursive least-squares learning (based on
(2.23)), and -LRLS represents the first-order FITSK
model with local recursive least-squares learning (based on
(2.33)).

A. Nakanishi’s Nonlinear Estimation Tasks

The three nonlinear systems were described in [22]. They
are; namely: 1) a nonlinear system; 2) a human operated
chemical plant; and 3) a daily price of a stock. The result of

model is compared against five other models, the
Sugeno’s P&P-G, P, P-G, Mamdani’s model, and Turksen’s
IVCRI model. These models differ in terms of modeling and
theoretical basis, the details can be found in [22]. Turksen’s
PVAAR and IVAAR models are not included in the evaluation
due to the large number of missing values in their results. This
is because the performance results of these two models will
significantly degrade by considering such missing values to be
out-of-range, and are substituted with default value of zeros.

Detailed result discussions of these three tasks are presented
in [23]. Table II summarizes the performances of models in the
three tasks with MSE. The table normalizes each MSE with the
best result within the row. Summarizing all the three tasks as
discussed above, is able to achieve the lowest MSE for
all the tasks with significant accuracy improvements over all the
other models. Table III summarizes the performances of models
in the three tasks with Pearson correlation coefficient. The table
normalizes each coefficient with the best result within the row.
As shown in the table, the model is the only model that
is capable of achieving the optimal performances for all the three
tasks. Models such as Sugeno’s (P), (P-G) or Turksen’s (IVCRI)
performed well for a particular task and but not the others. This
demonstrates that the model is outperforming other
popular models despite being a simple zero-order local model
TSK network for nonlinear system estimation.

B. Mackey–Glass Time Series Prediction

The dynamics of Mackey–Glass differential delay equation is
defined in (3.3).

(3.3)

This time series is a popular benchmark problem considered
by several researchers [9], [24].

The time series is obtained similarly as in Jang’s thesis [9].
The fourth-order Runge-Kutta method was applied to compute
the numerical approximation with time step of 0.1, initial con-
dition , , and for , for
a time period of . From the computed series,
1000 input-output data pairs from were ex-
tracted with the following format:

. The goal of the task is to use known values
of the time series of past 18, 12, 6, and current time to predict
the 6th instance ahead in time. The first 500 data pairs are used
as training datasets while the remaining 500 data pairs are used
as testing datasets.

The models to be studied are -FCMAC [24],
ANFIS [9], , -GRLS and -LRLS.

-LRLS implements the first-order FITSK model
with the proposed local recursive least-squares approach
with a localization factor of 9. The models to be com-
pared consist of TSK-type fuzzy models of zero-order
( -FCMAC, ), and first-order (ANFIS,

-GRLS, -LRLS).
The training datasets were randomly permutated into 100

different training datasets in -FCMAC simulation, while
the other models had three different permutations of training
datasets. All the models are running on the same computer
platform, with debug version of executables being generated
from C++ source codes (C for ANFIS).

Table IV lists the testing results of Mackey–Glass series for
the various models. The training process lasted for 20 epochs for
the zero-order models. The second column of the table lists the
number of labels of the respective models for each input dimen-
sion at the layer 2 of the models; and the number of rules of the
models are computed as since there are
four input dimensions. -FCMAC had 218 rules as those
zero-weight rules were not included in the computation of the
total number of rules.

Comparing the zero-order models, the is able to
achieve a lower testing error despite using lesser number of rules
than the -FCMAC, which is due to the Gaussian mem-
bership function adopted in layer 2 of the model. The average
training time of is acceptably low despite the usage of
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TABLE IV
TESTING RESULTS OF MACKEY-GLASS SERIES

Gaussian membership function, which is computational costly
comparing with the trapezoidal or triangular fuzzy functions in

-FCMAC.
Next, it is appropriate to compare the two first-order models

with two linguistic labels, the ANFIS model at the fourth row
and -GRLS model at the fifth row. It is shown that both
models have similar accuracy and training time since they both
adopt the global recursive least-squares learning algorithm. The
minor differences may be due to programming differences. The
6th row demonstrates the -GRLS model with three lin-
guistic labels at layer 2, and thus larger number of rules (local
models). As expected, the accuracy improves significantly over
the previous 2 models as the number of local models increases.
However, the drawback of this is the significant growth in com-
putational cost, which increases from 0.33 s to 9.78 s.

The next two models are the -LRLS with two and
three linguistic labels in each dimension; both adopting local
recursive least-squares parameter learning with degree of local-
ization being set to numeric value 2. The computational time of
these two models demonstrate a significant reduction comparing
with models with global recursive least-squares approach. On
the other hand, the growth in computational cost due to the in-
creased number of local models is insignificant (from 0.09 s
to 0.13 s). This clarifies that the parameter learning algorithm
with local recursive least-squares approach is insignificantly af-
fected by the curse-of-dimensionality having in the global recur-
sive least-squares approach. Moreover, by using the recursive
least-squares parameter learning approaches, all the first-order
models are able to achieve fast learning convergence within a
single training epoch. This inherits the online learning capa-
bility from the recursive least-squares parameter identification
technique. The online learning capability is made possible by
discarding each training instances after it is processed without
repeatedly reassessing it, and the weights are subsequently up-
dated based on the current training instances [25].

C. Motorcycle Crashing Simulation

The final task is the motorcycle crashing simulation data
taken from [18], which has been briefly introduced in Sec-
tion II-B. The data is revisited here to illustrate the inter-
pretability issue in the first-order TSK model. The same dataset
has been used in [5] to study the interpretability issue of TSK
fuzzy model.

Firstly, eight linguistic labels in layer 2 of the FITSK model
are equally position across the space of range [2.4 57.6]. The
standard deviation for the Gaussian membership function is

chosen to be the minimum, which is 0.4247 of the resolution,
as shown in (2.16). The global MSE of the system identified is
459.126 by using the global recursive least-squares parameter
identification [(2.23)]. The global learning error is slightly
better than the one identified by Yen’s model [5], which is
460.62. Yen adopted a singular value decomposition method
to identify redundant fuzzy partitions using a firing strength
matrix. However, the method is a form of unsupervised clus-
tering; no output value or output performance indication has
been used to influence the result of clustering. Thus, the method
could only identify the redundant fuzzy partitions among all
the fuzzy partitions, but could not recognize the relevancy of
the fuzzy partitions with respect to the output of the system. It
can be examined from the result in [5] that, the fuzzy partitions
identified by Yen’s model is not optimal; i.e., there should
be a fuzzy partition at a time near-to 26 ms since the output
around this region changes drastically. However, the method is
unable to monitor such drastic transition at the output space.
Thus, Yen’s fuzzy partition method performed no better than
an equally spaced partition with a fuzzy input formulation as
in the FITSK model. This is supported by the higher learning
accuracy of the FITSK model than the one by Yen’s model.

The interpretability of the first-order FITSK local models
is investigated in Fig. 7. Fig. 7 illustrates the learning result
of with different settings. The original dataset is
represented using black dots in the figure; the learnt-models
are plotted with solid curves; and the corresponding eight
local models are indicated by straight bold lines in the figure
and denoted numerically from (1) to (8). Fig. 7(a) repre-
sents the training result of -GRLS, which is the
first-order FITSK model with global recursive least-squares as
the parameter learning algorithm. Fig. 7(b), (c), and (d) are
first-order FITSK models with local recursive least-squares
( -LRLS), the degree of localization of these models
are 2, 6, and 10, respectively. By observation, it is easy to infer
that the learnt systems have significant differences in the first,
second, and fourth local models given different system settings.
The global learning in Fig. 7(a) has good global learning
error, but the interpretation of local models (1) and (2) are
inappropriate. On the other extreme, the local models (1) and
(2) in Fig. 7(d) have best interpretability given a high degree of
localization . Local model (4) in Fig. 7(d) is misin-
terpreted to the neighboring region; however, if the observation
is focused on a small regional subspace, it can be argued that
the output data values are almost constant within this region.
This coincides with the learning result of local model (4) in
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Fig. 7. Global and local learning results of first-order FITSK models. (a) Global learning (FITSK -GRLS); (b) local learning (FITSK -LRLS, Id = 2); (c)
local learning (FITSK -LRLS, Id = 6); (d) local learning (FITSK -LRLS, Id = 10).

Fig. 7(d), which is almost a constant term model. The results
of Fig. 7(b) and (c) are in between the two extreme cases in
Fig. 7(a) and (d), this is made possible with smaller settings of
degree of localization for these models. By visual inspection, if
the influence is confined to a regional subspaces proportional
to the weight (matching degree) of the local models as shown
in Fig. 7(b), then the -LRLS model with degree of
localization 2 has the best local learning accuracy. The local
models for this model have a good balanced between learning
accuracy and model interpretability. A -LRLS with
degree of localization equals 2 has optimal locally weighted
MSE as formulated in (2.32).

The learning results of different settings are illus-
trated with four different error criteria in Fig. 8. The criteria are
the [(3.1)], [(2.32)],
[(2.34) with ], and being defined by [8], as
shown in (3.4). The is similar to
except that the weight of is order of 2

(3.4)

The learning errors of -GRLS are plotted in ,
and represents the -LRLS models with

Fig. 8. Learning errors of FITSK with different degree of localization.

degree of localization ranging from 1 to 10 accordingly. As
shown with the criterion, the with
global recursive least-squares learning has the best global
learning accuracy. However, the accuracy gradually reduces
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as the degree of localization increases. On the other hand, the
and criteria demonstrate that the

local recursive least-squares learning with degree of localiza-
tion 2 has the optimal locally weighted LSE. This is supported
by the observation from Fig. 7(b), which demonstrates that a
degree of localization of 2 will result in model with a
balanced learning accuracy and local model interpretability. The

criterion is the strictest formulation of the general
criterion. It uses the two data points nearest to

the centre of a local model to measure the interpretability of
a local model. The criterion illustrates that, the
interpretability of the local models increases as proportional to
the degree of localization. This coincides with Fig. 7(d), which
shows that the local models have best interpretability to the
smallest confined region at the centre of the local models.

These conclude that (2.34) is a good indicator of inter-
pretability, and (2.32) is a good criterion to measure the locally
weighted least-squares accuracy of the local models. The
simulation demonstrates that the model with local
recursive least-squares can be easily reformulated to have
different degree of interpretability and local model accuracy by
varying the degree of localization; and is flexible to the system
designer based on different design considerations.

IV. CONCLUSIONS

This paper proposes a generic TSK framework, the FITSK
framework. The framework is subsequently mapped to a zero-
order FITSK model and a first-order FITSK model. The zero-
order and first-order FITSK models assume online parameter
learning formulae. In this way, the FITSK models are suitable
for adaptive system learning and nonlinear system estimation.

The key strength of the FITSK framework is the flexibility of
adopting different formulations and settings to achieve different
design criteria. The three design criteria are 1) interpretability;
2) global accuracy; and 3) immunity to curse-of-dimension-
ality. The zero-order FITSK model is suitable for fast adaptive
system without a major consideration of interpretability. The
first-order TSK model with global recursive least-squares is ap-
propriate for a low-dimensionality, low-interpretability system
with optimal global learning accuracy. A proposed localized
version of the recursive least-squares algorithm has been shown
to achieve optimal accuracy for locally weighted LSE crite-
rion. Furthermore, the local recursive least-squares has been
demonstrated to have better immunity than the global recur-
sive least-squares to the curse-of-dimensionality issue. The first-
order FITSK model adopting this local recursive least-squares
can be readily applied to higher-dimensionality system with
lower computational resources comparing with the one using
global recursive least-squares learning. The degree of localiza-
tion in the local recursive least-squares provides a flexibility
to balance the interpretability and system accuracy in the local
models. A guideline is discussed based on these three design
criteria for model selection of these FITSK models.

The performance of the FITSK models are evaluated using
five nonlinear system simulations: 1) a nonlinear system; 2)
human operation of a chemical plant; 3) daily price of a stock;
4) Mackey–Glass time series prediction; and 5) motorcycle

crashing simulation. The first three simulations demonstrate
that the zero-order FITSK model has encouraging perfor-
mances in terms of learning error and correlation measure. The
fourth simulation highlights the computational advantages of
the local recursive least-squares in the first-order FITSK model.
The final simulation illustrates the modeling flexibility of the
first-order FITSK model to tackle the balancing between local
model interpretability and learning accuracy.

A possible future work is to automate the model selection of
FITSK, which is described in Fig. 6. This is especially impor-
tant in automatically determining whether the system is likely
to suffer from the curse-of-dimensionality issue. Currently, this
process is performed manually based on the subjective percep-
tion of the designer. A formal approach should be adopted with
supporting studies in the future.

The online leaning capability of the FITSK is currently
demonstrated with a benchmarking Mackey–Glass time series
prediction problem. Further research is desired by applying the
FITSK to several process control applications. These include
the fluidised bed combustor and the three tanks flow system;
such that the FITSK is able to be contrasted against other pop-
ular models such as the distributed logic processors [26]–[28]
and the blackboard-based BBIPS model [29].
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