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Abstract

Typically, Takagi–Sugeno–Kang (TSK) fuzzy rules have been used as a powerful tool for function approximation
problems, since they have the capability of explaining complex relations among variables using rule consequents
that are functions of the input variables. But they present the great drawback of the lack of interpretability, which
makes them not to be so suitable for a wide range of problems where interpretability of the obtained model is a
fundamental key. In this paper, we present a novel approach that extends the work by Bikdash (IEEE Trans. Fuzzy
Systems 7 (6) (1999) 686–696), in order to obtain an interpretable and accurate model for function approximation
from a set of I/O data samples, which make use of the Taylor Series Expansion of a function around a point to
approximate the function using a low number of rules. Our approach also provides an automatic methodology
for obtaining the optimum structure of our Taylor series-based (TaSe) fuzzy system as well as its pseudo-optimal
rule-parameters (both antecedents and consequents).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Function approximation deals with the identification of the underlying model present in a set of training
I/O data points. Several approaches and paradigms have been applied to solve this problem[7,36,37].
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Among them, soft computing techniques[40] have proved successful in dealing with this topic. Though
each one of them has its own well-known number of advantages, Fuzzy Logic has the advantage that
the underlying model of the final designed system is transparent to the scientist/engineer designer. Fuzzy
Logic is simple on its roots and has also the possibility of using linguistic values to describe the input
and output of the system, thus improving the understandability of the system [11].

When using Fuzzy Logic for function approximation, two main approaches might be taken. On one
hand, we have clustering techniques that perform a marginal subdivision of the input space, depending
on the number of rules used to reach the objective [1,3,13,26,32,33]. This approach has the drawback
that the whole input space might not be covered properly. On the other hand, grid-based fuzzy systems
(GBFS) provide a thorough coverage of the whole input space which has made them widely used in the
literature [29,31,37].

However this last approach, i.e., GBFS, has an important drawback; the number of rules increases
exponentially with the number of input variables and the number of membership functions (MFs) per
variable, also known as the curse of dimensionality problem [2]. For a medium-complexity problem, we
might end up with hundreds or even thousands of rules which leads to two main problems: first, this
high number of rules makes any further computational treatment of this set of rules extremely difficult
and second and more important, the transparency of fuzzy logic becomes useless when having such a
huge number of rules for medium-sized problems. The understandability of the system vanishes and the
advantage of using fuzzy logic disappears.

Takagi–Sugeno–Kang (TSK) rules and the fuzzy inference method proposed by these authors [35]
are widely utilised in function approximation problems using fuzzy logic. The main difference with
more traditional (i.e., [22]) fuzzy rules is that the consequent of the rules are a function of the input
variables values. This approach has demonstrated to have a powerful representative capability, being able
to describe non-linear mappings using a small number of simple rules. But in spite of this, TSK rules
suffer from the lack of interpretability [39].

Nevertheless, the still excessive number of rules and the lack of interpretability caused by the usage of
zero or one-order TSK rules, though providing excellent performance results for function approximation,
make the usage of fuzzy logic useless for several types of problems where the understandability and
interpretability or the possibility of providing a manageable model for further work is a must. In this
paper, we present an approach that can overcome these two problems: the curse of dimensionality and
thecurse of interpretability, keeping the original key idea of GBFSs.

Many works have addressed the problem of the loss of interpretability in fuzzy modelling [14], most
of them based on Mamdani-type fuzzy systems [27]. In general, there are different aspects related to the
interpretability concept in TSK systems, some of which also apply to Mamdani FS. We have already
mentioned the need of maintaining a low number of rules in the system in order to keep its global
interpretability, but the transparency [41] (generation of interpretable fuzzy sets, i.e., transparent partition
of the input space) and the interaction of the global and local models, are also key concepts in the
interpretability of a TSK fuzzy model [18,39].

In relation to the transparency concept, several works have addressed this problem [27,33]. In this
work, we propose to use a grid partitioned (GBFS) input space that avoids overlapping. With respect to
the decrease in the number of rules for a GBFS, little work has been done with respect to the operation
of high-order TSK rule consequents for function approximation. We will demonstrate the aptitude of this
kind of fuzzy rules for function approximation and their good performance, while reducing the number
of rules needed to perform the approximation. The proposed method furthermore, brings interpretability
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to the local models that compose the global TaSe System, using a key concept in modelling non-linear
systems, as is the Taylor series expansion of a function around a point.

We also present an automatic approach for parameter optimisation given a set of I/O training data and
an initial configuration of MFs per input variable. This automatic algorithm will find a pseudo-optimal
localisation of the centres of the MFs for each variable to get the lowest error (in the sense of least squares)
possible for the given configuration.

Structure identification has also been a focus of study in the literature. It deals with which the best
structure for a GBFS given some requirements on accuracy, interpretability and/or complexity of the
final model is. In our case we have designed a structure identification approach for our proposed adapted
high-order TSK fuzzy system. It automatically identifies the pseudo-optimal simplest structure given a
training set of I/O data points.

The structure of the remaining of the paper stays as follows: Section 2 describes high-order TSK
fuzzy rules with the algorithm to identify the optimal coefficients for the polynomial consequents and
the possible advantages of using this type of rules. Section 3 deals with the interpretability of the system,
property achieved thanks to the use of a specific type of MFs and a rule consequent structure that resembles
the Taylor Series Expansion around a point (the centres of the MFs), thus stating the basis of the Taylor
series-based (TaSe) fuzzy systems. Section 4 explains the method used for parameter identification, that
is, the localisation of the pseudo-global optimum of the parameters defining the fuzzy system. Section 5
presents the part of the algorithm that deals with the structure identification problem and which finally will
identify the simplest configuration. Section 6 presents and analyses the results obtained when applying
the presented method to three examples commonly used in the literature. Finally, some conclusions are
drawn in Section 7.

2. Fuzzy systems with high-order TSK rules

A TSK fuzzy model consists of a set of ‘K’ IF-THEN rules that typically have the form

Rk : IF x1 is MFk
1 AND . . . AND xn is MFk

n THENy = �k0 + �k1x1 + · · · + �knxn, (1)

where theMFk
i are fuzzy sets characterised byMFk

i (xi), �ki are real-valued parameters andxi are the
input variables. The consequent of the rules in the majority of the systems presented in the literature is
simply a scalar, i.e., zero-order TSK rules. The performance of this type of systems has been demonstrated
to be reasonable for several problem examples[28,31,36].

The greatest drawback that emerges when using GBFSs with this kind of TSK rules (somehow atten-
uated for linear-consequent rules, as in (1)) is the unmanageable number of rules that arises for problems
with moderated complexity. The number of rules for a problem withn input variables andmfi for each
input variable is equal to

K =
n∏

i=1

mfi. (2)

The number of rules is hence an exponential function of the number of input variables and the number
of MFs per input variable. The resulting number of rules might render the system non-understandable
and unmanageable, thus loosing its usability. Several approaches that have attempted to overcome this



406 L.J. Herrera et al. / Fuzzy Sets and Systems 153 (2005) 403–427

obstacle have arisen in the literature in previous years with partial success[5,9,10]. Nevertheless, most
of them break the original Grid-based structure to solve the problem, thus losing the advantages and
intuition that GBFS provide.

Now, notice that as Buckley noted [6], the consequent of TSK fuzzy rules can be generalised as follows:

Rk : IF x1 is MFk
1 AND . . . AND xn is MFk

n THENy = Yk (�x) , (3)

whereYk (�x) is a polynomial of any order. Fors-order polynomial consequents, they can be expressed as

Yk (�x) = wk
0 + �wk

1 · �x + �xTWk
2 �x + · · · +

〈
Wk

s · (�x ⊗ · · · ⊗ �x)
〉
, (4)

wherewk
0 is a zero-order coefficient,�wk

1 is a vector of 1-order coefficients,Wk
2 is a triangular matrix

of 2-order coefficients andWk
s is a triangulars-dimensional matrix of coefficients and⊗ is the tensor

product.
In this paper, we will make use of high-order polynomial rule consequents to overcome the curse-of-

dimensionality problem. The main advantage of this type of fuzzy rules, compared to that offered by zero
and first-order TSK rules, is the increase in expressive power that each rule can provide by itself. That is,
a fewer number of rules might be able by themselves to identify the implicit function underlined by a set
of I/O training points (additional advantages of high-order rules will be discussed in further sections).

In order to take an insight of how this kind of fuzzy systems work, let us recall the expression of the
output of a fuzzy system for a given input�x, considering weighted-average defuzzification

F(�x) =
∑k

k=1 �k (�x) · Yk (�x)∑K
k=1 �k (�x)

(5)

being�k (�x) the activation value of the rulek, which can be expressed as (using the product as the T-norm)

�k (�x) = MFk
1 (x1) · MFk

2 (x2) · . . . · MFk
n (xn) . (6)

For the sake of simplicity, now consider a one-dimensional (1-D) input space and a triangular-partitioned
input variable[31,32] with two MFs. In this case, two rules(k = 1,2) will be activated by any single
point in the input interval.

Considering zero-order TSK fuzzy rules, the output can then be expressed as (given the addition-to-
unity property [29])

F (x)= �1 (x) · y1 + �2 (x) · y2 = �1 (x) · y1 + (
1 − �1 (x)

) · y2

= y2 + �1 (x) · (y1 − y2) . (7)

F (x) thus resulting in a first-order polynomial expression inx (since�1(x) is a first-order polynomial,
see[29]).

Considering nows-order polynomial consequent rules, the output becomes

F (x) = Y2 (x) + �1 (x) · (Y1 (x) − Y2 (x)) , (8)

F (x)will hence result in as+1-order polynomial expression with coefficients coming from the parameter
coefficients of the two rules, therefore being a clearly more powerful approximator.
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Now let us go over on how to estimate from a given set of I/O training data points, the optimal values
for the high-order polynomial rule coefficients. The least-squares error (LSE) approach is commonly the
method used to optimise such consequents. LSE tries to minimise the error function

J =
∑
m∈D

(
ym − F

(�xm
))2

, (9)

whereym is the desired output for point�xm in the data setD, andF (�xm) (5) is the output of our
approximator system.

In the particular case of second-order polynomial coefficients, the number of parameters to be optimised
by least squares is given by

K ·
(
1 + n + 1

2

(
n2 + n

))
, (10)

whereK is the number of rules andn is the dimension of the input space.
Notice the great complexity of the problem when having a high number of input variables with a

moderated number of MFs per variable. The degree of redundancy in the parameters could be considerable,
making the problem ill-conditioned. Due to the fact that the output function (5) is linear with respect to all
the consequent parameters (see appendix), several well-known mathematical methods could be applied
to extract one optimum solution. Among these methods, singular value decomposition [12] (SVD) has
been successfully implemented since it allows us to discard little significant values avoiding redundancy
and unmanageable solutions. The efficiency of this method will be shown in the examples.

When facing a specific problem, it could be arguable if it is more convenient to use a big amount
of zero or first-order TSK rules than a few number of high-order rules. From the computational point
of view, the difference for a given error tolerance is not obvious (see Section 6). From the number-of-
fuzzy-rules point of view it has been already noticed the dramatic decrease that could be achieved using
high-order TSK rules. Finally, from the interpretability point of view, traditionally zero-order fuzzy rules
have been chosen due to its easier understandability. However, as the number of fuzzy rules increases, the
interpretability property dramatically vanishes (the curse of interpretability problem). High-order TSK
rules are commonly regarded as non-interpretable [39] but, as we will see in the next section, under certain
conditions it will be possible to endow this class of fuzzy rules with interpretability, thus gathering both
the low number-of-rules property and the interpretability property in the same fuzzy system.

3. Interpretability issues for TaSe fuzzy systems

So far, we have presented how to use high-order polynomial consequent rules in TSK fuzzy systems,
and the performance advantages that it might provide. Now let us analyse the extra properties that can
be added to our fuzzy system by using a specific type of MFs. As we will see, these extra properties will
make this type of GBFS suitable and convenient for a wide range of problems.

3.1. A brief introduction to Taylor series expansion

Let f (x) be a function defined in an interval with an intermediate pointa, for which we know the
derivatives of all orders. The first-order polynomial

p1 (x) = f (a) + f ′ (a) (x − a) (11)
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Fig. 1. Taylor series expansion example. The original function (solid line) isf (x) = x3. See how the polynomialp1(x) for
a = 0.5 is tangent tof (x) at this point (dashed line).p2(x) (dashed-dotted line) performs a very good approximation for the
points in the vicinity ofa = 0.5. Note that sincef (x) is a third-order polynomial,p3(x) would be exactly the same asf (x).

has the same value asf (x) in the pointx = a and also the same first-order derivative at this point. Its
graphic representation is a tangent line to the graph off (x) at the pointx = a.

Considering the second derivative forf (x) in x = a, the second-order polynomial

p2 (x) = f (a) + f ′ (a) (x − a) + 1
2 f ′′ (a) (x − a)2 (12)

has the same value asf (x) in x = a, and the same first- and second-order derivatives at this point. For
the points in the vicinity ofx = a, f (x) will be more similar top2(x) thanp1(x). Therefore, we can
expect that forming anth-order polynomialpn(x) from thenth first derivatives off (x) in x = a, in the
same way as we did forp1(x) andp2(x), the resulting polynomial will get very close tof (x) in the
neighbourhood ofx = a. See Fig.1 as an example.

Taylor theorem states that if a functionf (x) defined in an interval has derivatives of all orders, it can
be approximated near a pointx = a, as its Taylor series expansion around that point

f (x)= f (a) + f ′ (a) (x − a) + 1

2
f ′′ (a) (x − a)2 . . .

+ 1

n! f
(n) (a) (x − a)n + 1

(n + 1)! f
(n+1) (c) (x − a)n+1 , (13)

where the last term refers to the error term in whichc is a point betweenx anda.
Taylor series expansion opens a door for the approximation of any function through polynomials, that

is just like to say through the addition of a number of simple functions. It is therefore a fundamental key
in the field of Function Approximation Theory and Mathematical Analysis. Taylor series expansion will
also provide us a way to bring interpretation to the TSK fuzzy systems by taking a certain type of rule
antecedents that has a number of interesting properties.
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In then-dimensional case, Taylor series expansion is adapted in the following form:

f (�x)= f (�a) + (�x − �a)T
[

�f

��xi (�a)
]
i=1...n

+ 1

2
(�x − �a)T W (�x − �a)

+ 1

3!
〈
W3 · (�x − �a ⊗ �x − �a ⊗ �x − �a)

〉
+ · · · , (14)

whereW is a triangular matrix of dimensionsn × n having the values[
�f

��xi��xj

(�a)
]
i=1...n; j=i...n

andW3 is a 3-D matrix having the corresponding multi-partial derivatives for�x = �a.
It would be a considerable powerful achievement if we could interpret the consequents of the rules as

the (truncated) Taylor series expansion for the approximated function in the centres of each rule. Before
going further, let us study what requirements our MFs must accomplish in order to be able to give this
interpretation to the output of the system.

3.2. MFs to preserve the interpretability of high-order fuzzy rules

In order to be able to interpret the output of a rule as the truncated Taylor series expansion around at
certain point, a couple of properties are desired. First, the overlapping degree of all MFs should vanish to
zero at every rule centre, in order the output of the system at each rule centre to be influenced exclusively by
its corresponding rule. And second, the type of MFs must allow the output of the system to be continuous
andn times differentiable wheren indicates the order of the consequent polynomial of the fuzzy rule,
in order to be able to identify the rule consequent coefficients as the partial derivatives of ordern of the
function output at the centres.

Orderly local membership function (OLMF) Bases of orderp over am-dimensional grid G have a
number of interesting properties as noted by Marwan Bikdash[4]. The requirements that a set of MFs in
a grid must fulfil to form a OLMF basis are basically

• all MFs are local (i.e., non-negative and vanishing with the distance), defined in a delimited domain
and of the same type

• every MF extreme point must coincide with the centre of the adjacent MF (they form a partition, thus
avoiding uncontrolled overlapping of the MFs[27,33])

• all MFs arep times differentiable and thepth derivative of the MF is continuous in all its domain
• thepth derivative of the MF vanishes at its centre and at its boundaries
• the basis must accomplish theaddition-to-unityproperty[32].

Notice that for the most common types of MFs, these requirements are not fulfilled. For example
for triangular partition, the MFs are not derivable in the centres of the rules (neither it happens in the
trapezoidal partition); for the Gaussian MF partition, although its gradient vanishes at the centres and the
MFs isp times differentiable, the MFs are not local. OLMF bases assure that the output of the system
will be continuous andp-times derivable, and that the composing MFs are local.

In order to construct a local MF that is consistent with all these requirements, let us consider a spline
MF defined by the following three parameters [a, b, c] where,a andc are the boundaries of the local MF
andb is the centre of the MF.
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Fig. 2. Two examples of the membership degree for the explained type of TaSe MF.

In the special case in whichp = 2, i.e., bases of order two, the above requirements amounts to the
following conditions on the MF

MF (a) = 0, MF (b) = 1;
MF ′ (a) = 0, MF ′ (b) = 0;
MF ′′ (a) = 0; MF ′′ (b) = 0. (15)

Using Hermite Interpolation, theMF(x, [a, b, c]) for x in [a, b], i.e., the left-hand side of the
MF, gives

MFi (x, [a, b, c]) = 1

(b − a)3
(x − a)3

[
1 − 3(x − b)

(b − a)
+ 6(x − b)2

(b − a)2

]
for x ∈ [a, b] . (16)

Due to theaddition-to-unityproperty requirement, the right-hand side of the MF will be

MFi (x, [a, b, c]) = 1 − MFi+1 (x, [b, c, d]) for x ∈ [b, c] . (17)

Fig. 2 shows a graphical example of this kind of MFs. It can be noted apart from the continuity and
derivability of the function, that the gradient of the MF vanishes in the centre and in the boundaries of
the interval where it is defined.

Now, given any input point, the final formula for the output of the system is simplified to

F(�x) =
K∑

k=1

�k (�x) Yk (�x) , (18)
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where the denominator of (5) becomes 1 due to the addition-to-unity property and where it
must be recalled that the rules have the form (3) and that the output of each rule is a polynomial in the
form (14).

3.3. Interpretability of the fuzzy rules

Marwan Bikdash demonstrated in [4] that given a complete TSK rule-based fuzzy system, where

1. the input MFs form a OLMF basis of orderp for every input dimension and
2. the consequent-side of each rule is written in the rule-centred form shown in (3) and (14), beingYk (�x)

polynomials of degreen,

then forn ⇐ p, everyYk (�x) can be interpreted as a truncated Taylor series expansion of ordern of the
output of the fuzzy systemF (�x) about the pointx = a, the centre of thekth rule.

Considering therefore that we have a method to obtain the optimal high-order TSK rule consequent
coefficients (14) for function approximation given a training set of I/O data points, and a MF distribution
that form a set of OLMF basis, then we can interpret the consequents of the rulesYk (�x) as the truncated
Taylor Series expansion around the centres of the rules of the output of the system; and, moreover,
of the underlying modelled function given by the I/O training data points. In the limit case where the
function is perfectly approximated by our system, the rule consequents will coincide with the Taylor
Series expansions of that function about the centre of each rule, having reached total interpretability and
total approximation for the function to be approximated. Our TaSe Fuzzy System comprising the type
of rule antecedents explained in Section 3.2 and the type of rule consequents explained in Section 3.1,
provides a general fully interpretable model, and as we will see in the next sections, a general accurate
model for function approximation from a set of I/O data points.

In [4], Bikdash used directly the (available) Taylor series expansion of the function around the rule
centres to approximate the function with the TSK fuzzy system. Notice that these rule consequents
though having strong interpretability, are not the optimal consequents in the least-squares sense; note
that the Taylor series expansion is an approximation for a function in the vicinity of the reference point.
Therefore even using a high number of MFs, the error obtained by the method in [4] is seldom small
enough (compared to a system with similar complexity with consequents optimised by LSE) and hence,
the system output barely represents a good approximation of the data we are modelling.

Consider also that for function approximation we usually have the only information of the I/O training
data set. No additional information about the function to be approximated is given, neither the derivatives
of the function w.r.t. any point. Also no accurate enough method exists to obtain the derivatives from the
training points to perform the approximation as the author did.

Finally, the method we are presenting in this paper will also deal with finding the optimal points to set
the rule centres to obtain both interpretability and pseudo-optimal function approximation as we will see
in next section.

4. Parameter adjustment

Several authors have dealt with the problem of parameter adjustment for function approximation
using GBFSs [19,25,29,36,39]. Some of them have centred their research in the use of genetic
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algorithms due to the high exploring capability associated with them. Nevertheless, the computational
and time cost that this type of approaches has, sometimes is too expensive. In our case, as
mentioned above in Section 2, the rule consequent coefficients can be optimally obtained using least
squares and SVD to solve the resulting linear equation system. As to the MF centres, the Levenberg–
Marquardt optimisation procedure[23] has been employed, starting from a previously selected initial con-
figuration, to reach a pseudo-optimal configuration of the centres of the MFs for all the
variables.

That initial configuration of the centres of the MFs for the Levenberg–Marquardt algorithm is calculated
using the approach presented by Pomares et al. [29] and which will be explained below. The use of this
method, called the ‘error equidistribution method’, was successfully tested in [28,29] for a triangular
partition configuration and constant consequent rules. As we will see in the simulations section, this
approach also works properly for our Tase fuzzy system with OLMF bases and Taylor series-based
TSK rules.

4.1. Searching the starting point: the error equidistribution method

The objective of this approach is to look for that configuration which homogeneously distributes the
error throughout all regions defined by the MF-grid. This idea can be mathematically translated into
having at each side of every MF centre the same amount of error, according to the error function given in
(9) and the training data setD. That is

∑
m∈D

xmn ∈
[
c
in−1
n ,c

in
n

]
e2(�xm) ≈

∑
m∈D

xmn ∈
[
c
in
n ,c

in+1
n

]
e2(�xm) (19)

for theinth centre defined in the input variablexn c
in
n .

The method consists in an iterative process with two phases: one for calculating a slope parameter for
each centre, and a second one for centres moving according to these slope values.

In the first phase, centrecinn is associated with a slope valuepin
n

pin
n = 1

�2
y




∑
m∈D

xmn ∈
[
c
in−1
n ,c

in
n

]
(
ym − F

(�xm
))2 −

∑
m∈D

xmn ∈
[
c
in
n ,c

in+1
n

]
(
ym − F

(�xm
))2

 (20)

being�2
y the standard deviation of the output data, here used as a normalisation constant. A positive value

of the parameterpin
n means that the contribution of the left-hand side of the MF to the error is higher than

the right-hand side one; therefore we would have to move the centre of the MF to the left to counteract
this effect, and vice versa.
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Once the slope parameter has been calculated for all MF centres of the system, in phase two of the
process, we perform the following movement of the centres:

�cinn =




c
in−1
n − c

in
n

b

p
in
n

p
in
n + 1

T
in
n

if p
in
n �0

c
in+1
n − c

in
n

b

∣∣∣pin
n

∣∣∣∣∣∣pin
n

∣∣∣+ 1

T
in
n

if p
in
n < 0.

(21)

Hereb is the active radius, which is the maximum variation distance and is used to guarantee that the
order of the MF location remains unchanged;T

in
n is the temperature which will control how far the centre

will be moved in each iteration and which will be decreased as the algorithm finds its equilibrium. The
approach described will work iteratively moving the centres until the error on each side of the MF centres
keeps balanced. In this work we will useb = 2 andT in

n = 100.

4.2. Reaching the solution: the Levenberg–Marquardt algorithm

In the previous step, we have reached a configuration assumed to be near a good (pseudo-optimum)
solution, the last step is to find the exact local minimum that we are looking for. To accomplish this
task, numerous methods are available in the bibliography (steepest descent, conjugate gradient, Newton–
Ramphson method, Levenberg–Marquardt method, etc.) In this paper, we use the Levenberg–Marquardt
algorithm since its characteristics of robustness and efficiency make it especially suitable for this kind of
optimisation problems. The explicit expressions for the partial derivatives with respect to every parameter
involved in the fuzzy system can be found in appendix.

5. Structure identification of the TaSe fuzzy system

Little work has been done for structure identification in GBFSs. Genetic algorithms have been also the
main focus of research for this problem. Few automatic algorithms have been proposed[25,28,34].

Suppose that we have a training data set and a validation data set for the structure identification algo-
rithm. The starting point for our structure identification approach will be the simplest case of configuration,
having one MF per input variable. A single rule in the form (3) is therefore given with its consequent
in the form (14). As stated before, using least squares and linear regression methods, we can obtain the
optimal coefficients for the consequent part of that single rule to best approximate the training data set.

Now from this simple configuration, new MFs will be added to the system while the validation error
does not increase. That is, we will iteratively add one MF in the input variable where the error decreases
more, until a final configuration where the lowest validation error has been reached. From this approach
now comes the question of how we will identify the variable in which the error will decrease more, and
in which the MF should be added. First, notice that adding one MF on any input variablej in our TaSe
fuzzy system means
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• Increasing considerably the approximative power of the system since this implies the addition of∏n
i=1, i �=j mfi rules.

• Due to this expressive power and the need to avoid redundancy, parameter adjustment must be taken
into account in order to make a correct decision. If we do not carefully adjust the centres of the MFs
when deciding about taking or not a certain system configuration, unneeded MFs and rules might be
unnecessary added, thus considerably increasing the complexity of the system as noted in Eqs. (2)
and (10).

• Besides, adding one single second-order rule to the system implies the addition of(
n2 + n

)
/2 + n + 1 (22)

coefficients in the consequent part of the rule, wheren is the number of input variables.

Notice also that due to the high expressive power of each one of the Taylor series-based fuzzy rules,
only few MFs will typically be needed per input variable.

Now, having exposed these reasons, we should be very careful with the selection of an algorithm for
structure identification. Genetic algorithms, for example, become unfeasible due to its low efficiency when
dealing with this type of problems. A greedy approach is provided now that assures to find a minimal
pseudo-optimal configuration in an automatic way. We will simply test every possible new configuration,
adding one MF on each input variable, and we will retain that configuration where the validation error
is lower. This approach is possible thanks to the fact that we have provided an efficient and automatic
parameter adjustment algorithm with optimal rule consequent coefficients selection and pseudo-optimal
MF centre adjustment. The final algorithm stays as follows:

While validation error decreases(or minimum validation error limit not reached)
For I = 1.. number of input variables

Consider adding 1 MF to variable I
Optimise centres and consequents(Sections2 and4)
Get the error

End
Add1MF to the variable where adding1MF resulted in a lower validation error.

End.

This simple approach will assure to find a pseudo-optimal configuration with the lowest error, given the
training and the validation data sets, using the training set for optimal consequent coefficients calculation
and MF centres adjustment and the validation set for structure identification.

6. Simulations

This section provides three examples commonly used in the literature to clarify the main characteristics
of the proposed method. As it is usual in papers concerning the problem of function approximation,
examples of analytical functions are used, as these enable the estimated function to be compared with
the original one, for any desired point. In all cases, the algorithm starts by assigning one MF per input
variable, and thus there is an initial fuzzy system with just one rule independent of the inputs.
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Fig. 3. Original noiseless function to be approximated.

The error measure used in the two first examples is the normalised root-mean square error (NRMSE)
that is defined as

NRMSE=
√√√√ e2

�2
y

, (23)

where�2
y is the variance of the output data, ande2 is the mean-square error between the system output and

the I/O data set output. In this way, theNRMSEindex describes the performance of the approximation,
making it independent of scale factors or number of data. For the third example (the Mackey–Glass time

series) the root-mean square error (RMSE) (
√
e2) has been used since it’s the measure mostly used in the

literature for this specific benchmark.

6.1. Detailed application of the algorithm to a 1-D function

To demonstrate the proposed methodology, we will consider a representative example for the problem
of function approximation and for the problem of the curse of interpretability. A number of well-known
example functions can be found in the literature for both issues. The whole algorithm will be applied to
a 1-D function, presented in[24] and also studied in [29] and for which we will apply our model, which,
apart from providing excellent results for function approximation, will bring interpretability to the model,
thanks to the Taylor series-based fuzzy rules.

The function presented by J.H. Nie (see Fig. 3) can be expressed as

y (x) = 3e−x2
sin(�x) + � wherex ∈ [−3,3] and� noise. (24)
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Since it is a 1-D function, our algorithm works trivially, starting from one MF in the single input
variable, and then adding new MFs until the validation error stops decreasing. In every stage of the
algorithm, the centres are calculated using the procedures presented in Section 4. Least squares will work
in every iteration for the calculation of the optimal rule consequent coefficients for the given MF centres
distribution.

To demonstrate the execution of the algorithm, we will take an execution example that has 100 randomly
distributed training points with Gaussian noise 0.1, and 100 validation points of the same characteristics.
We will now see in detail how the algorithm evolves. First, taking only one MF, the single resultant rule
centred inx = 0 is

IF x IS 0 THENy = −0.0 (x − 0)2 + 0.037(x − 0) + 0.11 (25)

with a validationNRMSE= 0.998.
Adding one more MF to the system, results in a system with the following two rules, centred at the

definition interval boundaries

IF x IS − 3 THEN y = 4.77(x + 3)2 + 0.63(x + 3) − 0.51,

IF x IS 3 THENy = −4.78(x − 3)2 + 0.59(x − 3) + 0.47 (26)

with NRMSE= 0.846.
Once a third MF is added, the parameter adjustment algorithm explained in Section 4 will be executed

to optimise the position of the middle MF. Since the boundaries of each MF coincides with the centres of
its adjacent MFs in every input variable (see Section 3.2), only the centres of the MFs must be optimised,
discarding those two centred at the domain[−3,3] boundaries. The initial value of the mobile MF centre
will be 0, since the MFs are initially equally distributed in the interval[−3,3]. After the execution of the
error equidistribution method, the value for the variable centre is 1.029; and with this new initial centre
configuration, the Levenberg–Marquardt Algorithm reaches the pseudo-optimal value for the variable
centre equal to 1.066, and the rules are finally expressed as

IF x IS − 3 THEN y = −18.7(x + 3)2 + 0.81(x + 3) + 0.35,

IF x IS 1.07 THENy = 16.1(x − 1.07)2 − 3.41(x − 1.07) − 0.08,

IF x IS 3 THENy = −8.41(x − 3)2 + 4.09(x − 3) + 0.50. (27)

Resulting in a model with validation NRMSE= 0.434.
Adding one more MF implies the optimisation of two MF centres. Both begin with equidistributed

values in the interval[−3,3], thus−1 and +1. The error equidistribution method finds the new initial
configuration of MF centres−0.8 and 0.59. The Levenberg–Marquardt algorithm, using this new initial
configuration, finds the sub-optimal values−0.71 and 0.71. The error obtained with this configuration is
NRMSE= 0.096

IF x IS − 3 THEN y = −7.60(x + 3)2 + 0.93(x + 3) − 0.04,

IF x IS − 0.71 THENy = 2.62(x + 0.71)2 − 6.03(x + 0.71) − 1.37,
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Fig. 4. (a) Training set with 100 data points for the functiony(x) with additive Gaussian noiseN (0,0.1). (b) Validation set
with 100 data points for the functiony(x) with additive Gaussian noiseN (0,0.1). (c) Function approximation using two rules
(dashed line). The consequent polynomials of the two rules are also shown (dash-dotted lines). (d) Function approximation
with four rules. See how only with four rules the objective function has been approximated (dashed line). See also how the
form of consequent polynomials is similar to the output function in the points near to the MF centres= {−3,−0.71,0.71,3}
(dash-dotted lines).

IF x IS 0.71 THENy = −2.24(x − 0.71)2 − 5.96(x − 0.71) + 1.30,

IF x IS 3 THENy = 7.22(x − 3)2 + 0.91(x − 3) + 0.01. (28)

Fig. 4 shows the training (a) and validation (b) data sets used for the presented example. It is also
shown in (c) a snapshot state of the algorithm after the two rules structure has been analysed by the
algorithm. It contains the original data set, the output obtained with these two rules and how both rule
consequent polynomials resemble the output of the system at the vicinity of the rule centres. In (d) the final
TaSe model output is represented with the original data set. The final model keeps the noise completely
filtered. Note also for the four rules centred in{−3,−0.71,0.71,3}, how the representation of the rule
consequent polynomial is practically identical to the model output at the very vicinity of the rule centres.
The automatic algorithm presented in this paper achieves a model that has accuracy in the approximation,
and that is fully interpretable thanks to the Taylor series concept.
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Fig. 5. (a) Functionf1 with 1000 equidistributed data points and (b) functionf1 with Gaussian noiseN (0,0.05) and 400
randomly distributed data points.

Adding one more MF leaded to an increase in the validation error, therefore the optimal model obtained
is the previous one with 4 rules. The average error obtained from 10 different executions equals to 0.105,
with standard deviation 0.012. Notice also the remarkable low number of rules needed (see Section 2) to
approximate the function, defined by the training and validation data sets. Making a short comparison,
the number of rules needed to approximate this function using constant coefficients for example is much
higher as noted in[29].

6.2. Application to a 2-D function

Now consider the 2-D functionf1 taken from [7]. The whole algorithm will be now executed, including
the structure identification sub-algorithm. This functionf1 (see Fig. 5) can be expressed as

f1 (x1, x2) = sin(x1 · x2) + � wherex1, x2 uniform in [−2,2] ; � noise. (29)

As noted in the previous example, the algorithm begins with a very simple configuration (1 MF per
input variable= 1 single rule) and works considering more complex configurations, while obtaining the
optimal parameters for each one of them. The decision as to which variable should contain a new MF
was discussed in Section 5. The example considered now is an intuitive example of how such a decision
is reached. It is apparent from Eq. (29) that both input variables influence the final value of the function
equally. Therefore the algorithm presented must take this into account and endow each input variable
with a similar number of MFs, thus improving the degree of approximation while maintaining the lowest
possible level of system complexity.

From this function we will extract 400 training data points and 400 validation data points, both randomly
distributed and which will be corrupted withN (0,0.05) additive Gaussian noise. As we said before, the
initial system configuration is 1 MF per input variable resulting in 1 single rule. Least squares provides
the rule consequent coefficients, thus the rule centred in{x1 = 0, x2 = 0} can be expressed as

IF x1 IS 0 AND x2 IS 0 THEN

y = −0.0(x1 − 0)2 + 0.27(x1 − 0)(x2 − 0) − 0.0(x2 − 0)2

+ 0.54(x1 − 0) + 0.54(x2 − 0) + 1.09 (30)
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Table 1
Trace of the structure identification algorithm for the examplef1

#MFs NRMSE Adding 1 MF Adding 1 MF
(5% noise) in variableX1 in variableX2

X1 X2 Training Validation

1 1 0.776 0.772 0.562 0.563
2 1 0.560 0.562 0.561 0.113
2 2 0.108 0.113 0.0954 0.0975
2 3 0.0933 0.0954 0.0844 0.0820
3 3 0.0731 0.0820 0.0830 0.0844
3 4 Error increases adding 1 MF in any variable

with errorNRMSE= 0.774. Now a decision should be made as to in which variable should we add one
more MF so that the error is lower. As explained in Section 5, the two alternatives will be tested, i.e., adding
one MF in the first variable and adding one MF in the second one. The alternative that provides lower error
will be chosen, so that the MF is permanently added to the system configuration for further iterations of
the structure identification algorithm. The MF configuration 2× 1 gives an errorNRMSE= 0.562, and
the configuration 1×2 provides an errorNRMSE= 0.563. Notice the similarity in performance provided
by both structures. As mentioned above, the functionf1 we are considering is symmetric, therefore this
situation is expectable. According to the errors obtained by both structures tested, one MF will be added
permanently in the first variable. The two rules, centred in{x1 = −2, x2 = 0}, and{x1 = 2, x2 = 0} of
the new eventual system are

IF x1 IS − 2 AND x2 IS 0 THEN

y = 0.05(x1 + 2)2 − 0.97(x1 + 2)(x2 − 0) − 0.0(x2 − 0)2

− 1.93(x1 + 2) − 0.07(x2 − 0) − 0.14

IF x1 IS + 2 AND x2 IS 0 THEN

y = −0.04(x1 − 2)2 − 0.95(x1 − 2)(x2 − 0) + 0.0(x2 − 0)2

− 1.94(x1 − 2) + 0.05(x2 − 0) + 0.11. (31)

In the next step, the structure identification sub-algorithm will check the performance of the two
possible alternatives, i.e., MF structure 3× 1 and MF structure 2× 2. The first alternative gives an error
NRMSE= 0.561, and the second one gives an errorNRMSE= 0.113. See here the great difference
between adding one MF in one or another input variable. This is caused again by the symmetry of the
functionf1 considered, that will lead to an equal distribution of the MFs among the input variables until
the validation error stops decreasing. The complete execution of the structure identification algorithm
can be inspected in Table 1. It also shows for each algorithm stage, the error provided by the chosen
configuration, as well as the validation errors obtained by the two possible alternatives that can take place
in each step, so that the reader can easily check the correctness of the decisions made by the algorithm.
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The optimal structure found for our model has 3 MFs per input variable. TheNRMSEobtained is
0.0820, and the 9 rules obtained by the whole algorithm execution are

IF x1 IS − 2 AND x2 IS − 2 THEN

y = −0.24(x1 + 2)2 − 0.34(x1 + 2)(x2 + 2) − 1.08(x2 + 2)2

+ 2.12(x1 + 2) + 1.81(x2 + 2) − 0.83

IF x1 IS − 2 AND x2 IS − 0.06 THEN

y = −0.24(x1 + 2)2 + 1.12(x1 + 2)(x2 + 0.06)
− 0.05(x2 + 0.06)2 + 0.05(x1 + 2) − 1.97(x2 + 0.06) − 0.10

IF x1 IS − 2 AND x2 IS 2 THEN

y = 0.74(x1 + 2)2 − 0.23(x1 + 2)(x2 − 2)
+ 1.05(x2 − 2)2 − 1.98(x1 + 2) + 1.77(x2 − 2) + 0.82

IF x1 IS + 0.13 AND x2 IS − 2 THEN

∗y = −1.05(x1 − 0.13)2 + 0.92(x1 − 0.13)(x2 + 2)
+ 0.14(x2 + 2)2 − 2.05(x1 − 0.13) − 0.03(x2 + 2) − 0.22

IF x1 IS + 0.13 AND x2 IS − 0.06 THEN

y = 0.10(x1 − 0.13)2 + 1.10(x1 − 0.13)(x2 + 0.06)
+ 0.11(x2 + 0.06)2 − 0.12(x1 − 0.13) + 0.18(x2 + 0.06) − 0.01

IF x1 IS + 0.13 AND x2 IS + 2 THEN

y = 0.46(x1 − 0.13)2 + 1.01(x1 − 0.13)(x2 − 2)
− 0.29(x2 − 2)2 + 2.10(x1 − 0.13) + 0.02(x2 − 2) + 0.26

IF x1 IS + 2 AND x2 IS − 2 THEN

y = 2.64(x1 − 2)2 − 0.03(x1 − 2)(x2 + 2)
+ 1.94(x2 + 2)2 + 1.88(x1 − 2) − 1.82(x2 + 2) + 0.79

IF x1 IS + 2 AND x2 IS − 0.06 THEN

y = 0.19(x1 − 2)2 + 0.99(x1 − 2)(x2 + 0.06)
− 0.63(x2 + 0.06)2 + 0.15(x1 − 2) + 2.04(x2 + 0.06) − 0.09
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IF x1 IS + 2 AND x2 IS + 2 THEN

y = −2.22(x1 − 2)2 − 0.08(x1 − 2)(x2 − 2) − 0.49(x2 − 2)2

− 1.90(x1 − 2) − 1.81(x2 − 2) − 0.78. (32)

See also in Table 1 how adding one more MF to any input variable leads to an increase in the validation
error, thus forcing the algorithm to stop and returning the MF configuration 3× 3 with rule centres
shown in Eq. (32). The average error obtained from 10 different executions equals to 0.085, with standard
deviation 0.005.

Fig. 6 shows the output obtained by our model as well as the rule consequent polynomial representations
for the rules of the intermediate MF configurations 2× 2 and 3× 3. See how the output of the model
resembles, already with the 2× 2 configuration, the originalf1 function. The final configuration 3× 3
provides a noiseless output very similar to the originalf1 function (NRMSE= 0.0820). See also in (b)
and (e), the outputs provided by each rule polynomial for both configurations 2× 2 and 3× 3. Note
the high similarity in gradient between the polynomials output (b) and (e), and the model output at the
vicinity of the rule centres. A more accurate comparison can be checked in (d) and (f). Thus we have
obtained an accurate and fully interpretable model for the approximation of the functionf1, provided we
are given the training and validation data sets.

From this example it must be also noticed the remarkable low number of interpretable rules needed
to accurately approximate the objective functionf1. See that only with 9 TaSe rules, the error obtained
for the noisy example isNRMSE= 0.0820. Similar approaches with constant or linear rule consequents
need a much higher number of rules to obtain similar results [29].

6.3. Application to the Mackey–Glass time series

The Mackey–Glass chaotic time series [21] is a very well-known benchmark for system modelling,
that has been widely used in the literature. This time series is described by the following delay differential
equation

dx (t)

dt
= ax (t − �)

1 + x10 (t − �)
− bx (t) . (33)

One thousand data points were generated with an initial conditionx (0) = 1.2 and� = 17 using the
fourth-order Runge–Kutta method[15]. To make the comparisons with earlier works fair, we chose the
parameters so that the training vectors for the model have the following format:

[x (t − 18) , x (t − 12) , x (t − 6) , x (t) ; x (t + 6)] . (34)

In Fig. 7 we show the section of 1000 data points used in this study, selecting the first 500 for the
training and validation data sets (randomly choosing 400 and 100, respectively, of the 500), and the final
400 for test.

Table 2 shows the evolution of the structure identification algorithm, that starts with an initial MF
configuration of 1 MF per variable and iterates adding 1 MF to the selected variable according to the
algorithm presented in Section 5.
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Fig. 6. (a) Output of the model with 2MFs per variable, i.e., with 4 rules. (b) Rule consequent polynomials of the 4 rules in the
model with 2× 2 MF distribution. (c) Combined representation. (d) Output of the model with 3MFs per variable, i.e., with 9
rules. (e) Rule consequent polynomials of the 9 rules in the model with 3× 3 MF distribution and (f) Combined representation.

Finally, Table 3 compares the prediction accuracy of different computational paradigms presented in the
bibliography for this benchmark problem. In order to perform an equal comparison (also in complexity),
we show our test error for three MF configurations: 3× 2 × 1 × 1 with 91 (15× 6 + 1 mobile centre)
parameters and 3× 2 × 1 × 2 with 181 (15× 12 + 1 mobile centre) parameters and 3× 3 × 1 × 3
with 408 (15× 27 + 3 mobile centres) (see Eq. (10)). The results drawn from this example show the
convenience of the TaSe model, not only due to its interpretability and transparency properties and the
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Fig. 7. Mackey–Glass chaotic time series with� = 17.

Table 2
Trace of the structure identification algorithm for the Mackey–Glass time-series problem

#MFs RMSE(for predictingx(t + 6)) Adding Adding Adding Adding

1 MF 1 MF 1 MF 1 MF
in variable in variable in variable in variable

x(t − 18) x(t − 12) x(t − 6) x(t) Training Validation Test x(t − 18) x(t − 12) x(t − 6) x(t)

1 1 1 1 0.032 0.029 0.034 0.013 0.0080 0.016 0.021
1 2 1 1 0.0084 0.008 0.0098 0.0037 0.0069 0.0056 0.0046
2 2 1 1 0.0032 0.0037 0.0035 0.0027 0.0031 0.0034 0.0033
3 2 1 1 0.0024 0.0027 0.0028 0.0025 0.0025 0.0027 0.0024
3 2 1 2 0.0020 0.0024 0.0024 0.0022 0.0020 0.0025 0.0021
3 3 1 2 0.0014 0.0020 0.0017 0.0019 0.0021 0.0022 0.0018
3 3 1 3 0.0011 0.0018 0.0013 Error increases adding 1 MF to any variable

interaction between the local and global models, but also due to its high degree of accuracy for function
approximation and time series prediction problems. Note that with only 6 rules, the TaSe model is able
to identify the non-linear behaviour of the Mackey–Glass time series better than many other time series
prediction methods proposed in the literature (with a similar model complexity), being the consequents of
these rules the Taylor series expansion of the output of the model centred in their respective rule centres.

7. Conclusions

In order to avoid the lack of interpretability in Takagi–Sugeno–Kang (TSK) fuzzy rules, in this paper
we have presented a powerful tool for function approximation problems using a novel fuzzy system
with a specific type of rule antecedents and Taylor Series based rule consequents (TaSe Fuzzy systems).



424 L.J. Herrera et al. / Fuzzy Sets and Systems 153 (2005) 403–427

Table 3
Comparison results of the prediction error of different methods for prediction step equal to 6 (500 training data)

Method TestRMSE

Auto regressive model 0.19
Cascade correlation NN 0.06
Back-prop. NN 0.02
Sixth-order polynomial 0.04
Linear predictive method 0.55

Kim and Kim (genetic algorithm and 5 MFs 0.0492
fuzzy system)[20] 7 MFs 0.0422

9 MFs 0.037

ANFIS and fuzzy system (16 rules)[17] 0.007
Classical RBF (with 23 Neurons)[8] 0.0114
PG-RBF[30] 0.0030
TaSe fuzzy system with 6 rules 0.0028
TaSe fuzzy system with 12 rules 0.0024
Optimal TaSe fuzzy system with 27 rules 0.0013

This system is thus endowed with both the approximating capabilities of TSK fuzzy rules, and the
interpretability advantages of traditional fuzzy systems, since every rule consequent can be regarded as
the Taylor series expansion at rule centres. We have also provided a complete and automatic methodology
for both parameter estimation and structure identification of the TaSe FS. Finally the goodness and
the suitability of the algorithm have been tested in detail through two complete examples for function
approximation and the well-known benchmark Mackey–Glass time series.
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Appendix

Now, we present the partial derivatives of the error function given in (9) with respect to each rule
consequent coefficient. Using the expressions for all the rule coefficients, we will obtain a set of linear
equation system that will provide the optimal rule consequents given the specific set of data pointsD,
as explained in Section 2. The generic expression for any zero-order (w0), first-order (wv1, . . . , wv1) or
second order coefficient (wv11, . . . , wvnn) is

�J

�wj
s

= 2
∑
m∈D


ym −

∑K
k=1 �k (�xm)

(
wk

0 + �wk
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w
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k=1 �k (�xm)
,

s = {0, v1, . . . , vn, v11, . . . , vnn} , k = 1 . . . K. (35)
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Beingf
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j
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(�xm) equal to 1 fors = 0,xm
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for s = vlh. Now the partial derivatives

lead to the following three types of equations:

for s = 0,
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For the optimisation of the position of the MF centres, gradient descent-based methods can be applied
in order to find a local optimal position given a starting MF centres configuration. Then it is necessary
to calculate the variation of the functionJ, as given in Eq. (9), with respect to the position of each MF
centre. For this purpose we must find
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From (18) we have
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Now the partial derivative for each rule firing strength function, since only the MFs of variablep can

depend on centrec
ip
p , stays as
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p

=
��p

k

(
xm
p

)
�c

ip
p

n∏
j=1
j �=p

�j
k

(
xm
j

)
. (41)
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Finally, from (16) and (17), after some algebra it may be seen that

��p
k

(
xm
p

)
�c

ip
p

=




30 · (x − a)2 · (x − b)3

(b − a)6
if xm

p ∈ [a, b] andc
ip
p = a in MF

ip+1
p (x, [a, b, c]) ,

−30 · (x − a)3 · (x − b)2

(b − a)6
if xm

p ∈ [a, b] andc
ip
p = b in MF

ip
p (x, [a, b, c]) ,

30 · (x − b)3 · (x − c)2

(c − b)6
if xm

p ∈ [b, c] andc
ip
p = b in MF

ip
p (x, [a, b, c]) ,

−30 · (x − b)2 · (x − b)3

(c − b)6
if xm

p ∈ [b, c] andc
ip
p = c in MF

ip−1
p (x, [a, b, c]) .

(42)

It must be finally noted that the centres found at the extremes of each variable are considered to be fixed as
their positions depend exclusively on the minimum and maximum values of the range of each variable.
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