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Abstract

This paper proposes the applications of soft computing to deal with the constraints in conventional modelling techniques of
the dynamic extrusion process. The proposed technique increases the efficiency in utilising the available information during
the model identification. The resultant model can be classified as a ‘grey-box model’ or has been termed as a ‘semi-physical
model’ in the context. The extrusion process contains a number of parameters that are sensitive to the operating environment.
Fuzzy rule-based system (FRBS) is introduced into the analytical model of extrusion by means of sub-models to approximate
those operational-sensitive parameters. In drawing an optimal structure for each sub-model, a hybrid algorithm of genetic
algorithm with fuzzy system (GA-fuzzy) has been implemented. The sub-models obtained show advantages such as linguistic
interpretability, simpler rule-base and less membership functions (MFs). The developed model is adaptive with its learning
ability through the steepest decent error back-propagation algorithm. This ability might help to minimise the deviation of the
model prediction when the operational-sensitive parameters adapt to the changing operating environment in the real situation.
The model is first evaluated through simulations on the consistency of model prediction with the theoretical analysis. Then,
the usefulness of adaptive sub-models during the operation is further explored in existence of prediction error.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Extrusion is a critical operation in the thermoplastic
processing industry since all commercial polymers are
compounded[1]. During the process of extrusion, the
quality of the product fluctuates within a certain range
due to the variation in the properties of materials, or
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the operating environment including the system dis-
turbances. This may introduce defects to the end prod-
uct. A number of control methodologies have been
proposed to regulate the product quality[2–5]. A sim-
ple methodology can be a single-input–single-output
(SISO) feedback control linking the output at the die to
the input parameter such as the screw speed. However,
this technique is not efficient as the product quality is
greatly affected by the flow history inside the extruder.
Further complication includes the strong interactions
between process parameters. For example, changes
in the screw speed can lead to changes not only in
the melt temperature, but in the flow rate as well.
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Consequently, a feasible control methodology shall
consider the process as a multivariable and distributed
parameter system.

The design of an appropriate controller requires a
dynamic model of the extrusion. The model identifi-
cation is restricted by the lack of access of some pro-
cess parameters. For instance, the true temperature of
the melt is expensive, if possible, to be gauged di-
rectly due to the operational constraints. In common
with many other chemical processes, the polymer pro-
cessing contains a few parameters that are improper
to be expressed in deterministic manners. These pa-
rameters are referred to as the ‘operational-sensitive
parameters’. An example could be the polymer vis-
cosity during the process. The viscosity of the melt
varies due to the inconsistency of the input material
properties.

The aforementioned modelling problems limit the
application of either empirical or analytical technique
to model the dynamic extrusion process. If the com-
bination of both modelling techniques is possible, the
flexibility will improve the utilisation of the available
information rather than having the need to conduct a
series of dedicated experiments for the model iden-
tification. It is speculated that the semi-physical or
semi-mechanistic modelling technique can be a poten-
tial solution[6]. The technique shall integrate differ-
ent sources of knowledge and technology during the
model development.

In this paper, the fuzzy rule-based system (FRBS)
is applied as the sub-models to approximate the
operational-sensitive parameters. The optimal struc-
tures of the sub-models are produced by executing
the genetic algorithm with fuzzy system (GA-fuzzy).
The sub-models thus obtained are integrated with the
analytical model, forming a semi-physical model. The
semi-physical model is adaptive to the varying oper-
ating environment through its learning ability while
preserving the natures of multivariable and distributed
parameter process. In the following sections, a brief
description of the extrusion process is given, to be fol-
lowed by soft computing applications in developing
a semi-physical model. The model evaluation is per-
formed from two bases. Firstly, the predictions on the
melt temperature and the pressure are compared to the
theoretical analysis. Then, the usefulness of adaptive
sub-models in approximating the operational-sensitive
parameters is further investigated.

Fig. 1. Single screw extruder.

Fig. 2. Melting of solid bed.

2. The process description

The schematic diagram of a single screw extruder is
illustrated inFig. 1. The extruder consists of a barrel,
which is heated by a series of wall-mounted heaters
and a rotating screw; the latter is linked to a gear sys-
tem and a motor. Polymer particles are fed in through
the hopper, by gravity, into the helical screw channel.
The screw has a varying channel depth along the axial
direction. The melt flowing through the die is formed
into an end product.Fig. 2 illustrates the content of
a typical helical cross section of the screw channel in
the compression section. It consists of a solid bed and
a melt pool. The size of the solid bed diminishes as
the solid bed travels in the axial direction along the
screw and eventually ends when it reaches the meter-
ing section. The variation of the width of the solid bed
along the screw channel in helical direction is called
the solid bed profile (SBP) while the variation of the
melt temperature along the helical screw channel is
called the melt temperature profile.

3. The development of semi-physical dynamic
extrusion model

An analytical dynamic model of the extrusion pro-
cess is available[7]. However, its application in the
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controller design is limited since it is not adaptive to
the varying operating conditions. The variation could
be due to the instability of the power supply affect-
ing the screw speed and the barrel temperature, the
changes of ambient conditions such as humidity, tem-
perature, etc. In addition, the properties of the poly-
mer to be processed may vary from batch to batch,
depending on the regrind level, drying condition, etc.
A number of process parameters are sensitive to the
variation, particularly the polymer viscosity during
the extrusion. The viscosity of melt is approximated
by means of a power law model in the analytical
model. The coefficients of the power law model are
predetermined based on the experiments conducted on
a rheometer. The application of the power law model
to describe the viscosity of melt has several short-
comings. Its validity is limited to the intermediate
shear rate range and its coefficients are not adaptive
accordingly to the variation in the operating condi-
tions. In the present study, a semi-physical model is
developed by extending the analytical model so that
the FRBS is applied as sub-models to approximate
the operational-sensitive parameters.

Fig. 3 provides an overview of development of the
semi-physical model for the extrusion process[8]. The
analytical model provides simulated data only for the
initialisations of the FRBS sub-models. The optimal
sub-models thus obtained are incorporated into the an-
alytical model forming the semi-physical model. The
model is then simulated and the predictions are com-
pared to the experimental measurements on the melt
temperature and the melt pressure. In existence of pre-
diction error, a model adaptation algorithm will com-
mence to minimise the error by tuning the parameters
of the FRBS sub-models.

Fig. 3. Overview of development of semi-physical model.

3.1. The analytical model

The semi-physical dynamic model in the case study
is an extension of the analytical model of the work
in [7]. The following assumptions are made for the
analytical model:

• States of the process dynamic can be described
by the transient responses of the solid bed profile
(SBP), represented asX(z, t) and the melt temper-
ature profile (MTP), represented asT(z, t) where
z and t are the helical down channel distance and
time instant, respectively. Dynamic condition pre-
vails only when the melting starts, i.e. in the melting
and melt conveying mechanisms;

• Local melting rate, heat transfer rate through barrel
wall, viscous dissipation rate and pressure profile
(PP) can be calculated using steady-state equations
accordingly to local instantaneous conditions.

On the basis of the above assumptions, the analyti-
cal dynamic model is formulated. Two main equations
in which the dynamic SBP governed by the differential
mass balance on the solid bed is expressed inEq. (1)
whereas the dynamic MTP governed by the differential
energy balance on the melt pool is written asEq. (2).

∂X

∂t
+ vsz

∂X

∂z
= φX1/2

ρsH
+ Avsz

H
X (1)

∂T

∂t
+ vmz

∂T

∂z
= φX1/2(Tf − T)

ρmH(W − X)
+ qtr + qvc

CmρmH(W − X)

(2)

whereX is the solid bed width andT is the melt tem-
perature;vsz andvmz are the down channel velocities
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of solid and melt, respectively;ρs and ρm are the
densities of solid and melt;A is the slope of compres-
sion section;H is the channel height;Tf is the film
temperature;φ is the melting coefficient;Cm is the
heat capacity of melt;W is the channel width;qtr is
the heat transfer rate through barrel wall andqvc is
the viscous dissipation rate.The process parameters
that are sensitive to the operating conditions areφ

andqvc. Similar concern is applied forqtr due to the
uncertainty in the heat transfer duration. These pa-
rameters have been expressed in the analytical model
as the following functions[9]:

φ = fφ(ω, Tb,G, α) (3)

qtr = fqtr (ω, Tb, X, T, α) (4)

qvc = fqvc(ω, T,X,G, α) (5)

whereω is the screw speed,Tb is the barrel tem-
perature,G is the total mass flow rate,α is a set of
parameters specifying the physical properties of poly-
mer and the geometry of the extruder including the
viscosity of meltη. The value ofη is expressed by
the power law model with reference to the local melt
temperature and a set of coefficientsθ. The equation
can be simplified as

η = fη(T, θ) (6)

where θ is the coefficient set predetermined by the
offline experiments on a rheometer.

The deterministic equations (Eqs. (3)–(6)) used in
the analytical model to approximate those varying
operational-sensitive parameters are considered inap-
propriate, since they are not adaptive when the actual
parameters are varying. The FRBS is introduced as
an alternative to describe the behaviours of those
parameters.

3.2. The FRBS sub-models identification

Eqs. (7)–(10)express the fuzzy functions of the
operational-sensitive parameters. A hybrid GA-fuzzy
algorithm is adopted to identify the optimal structures
for the FRBS sub-models. Data from the simulation of
the analytical model is used as the training data during
the identification process.

φ = ffz(ω, Tb) (7)

qtr = ffz(ω, Tb, X) (8)

qvc = ffz(ω, Tb, T,H) (9)

η = ffz(ω,X, T) (10)

whereffz is the fuzzy function.

3.2.1. The GA-fuzzy algorithm
The GA-fuzzy algorithm employed to identify the

structures of sub-models is similar to the Pittsburgh
approach[10]. In the algorithm, each chromosome
in the population represents a complete knowledge
base (KB), which consists of data base (DB) and rule
base (RB). The potential solution for a sub-model of
n input, m output andk rules is coded into a chro-
mosome with a fixed binary number ofl bits. Each
parameter of the input and the output has its own
set of membership functions (MFs). The identifica-
tion process begins with a sub-model of maximum
MFs, i.e. qi = k, i = 1, . . . , n + m. As the FRBS
sub-models are of zero-order Sugeno type with sym-
metric Gaussian MFs (two MF parameters), the total
length of a chromosome isL = l(2 × (m + n) × k).
The algorithm is programmed with a flexible coding
length to deal with the deducting number of rules and
MFs during the structure optimisation. Apart from
the chromosome representation, the genetic opera-
tors are important to enrich the possible solutions for
the optimal structure. The commonly used operators
includeselection, crossoverandmutation.

3.2.2. The optimisation process
Fig. 4 shows the flow diagram for the optimisation

of the structure of a FRBS sub-model. The structure is

Fig. 4. GA-fuzzy algorithm for optimisation of sub-model structure.



L.P. Tan et al. / Applied Soft Computing 4 (2004) 345–355 349

defined as a set of rules that constituting the sub-model
and the way of each MF of the input and output pa-
rameters associated in the rules. The initial setting de-
fines the criteria of the optimisation. For example, the
maximum number of rules desired, type of genetic op-
erators, definition of convergences, etc. It is possible
to translate the expert knowledge to the construction
of a FRBS sub-model in the initial setting.

During the data base (DB) optimisation, fitness in-
dices are assigned to all chromosomes within the pop-
ulation. The definition of the best fitness depends on
several conditions as proposed by[11]. In the present
study, the fitness index is determined by the inverse
of mean square error between the predicted and the
desired results. A few chromosomes with high fitness
are kept for the next generation and the genetic oper-
ators are applied to the current population. The opti-
misation process is repeated until the convergent cri-
terion is met. When this happens, the population with
the selected chromosomes proceeds to the knowledge
base (KB) optimisation.

The KB optimisation procedure is similar to that of
the data base (DB) optimisation except that three extra
fitness indices, namely the entropy of a FRBS (FE

I ),
the membership function (MF) similarity (FS

I ), and
the rule activation (FZ

I ), are included with assigned
weights and are evaluated in a single convergent crite-
rion. IntroducingFE

I into the criterion encourages an
adequate overlapping of MFs of the sub-models, while
FS

I andFZ
I search for similar MFs and the redundant

rules of the sub-models.
Upon convergence of the KB optimisation, only the

best chromosome is selected for the structure closure

Table 1
Settings of GA parameter and resultant FRBS sub-models structure

Properties Sub-model

φ qvc qtr η

Number of inputs 2 4 3 3
Size of population 40 60 50 50
Bit number 6 6 6 6
Crossover rate 1 1 1 1
Mutation rate 0.1 0.1 0.1 0.1
Elite chromosomes 5 5 5 5
Initial number of rules 27 36 30 30
Initial number of MFs 273 365 304 304

Final number of rules 5 3 5 2
Final number of MFs 5× 5 × 5 2 × 3 × 2 × 3 × 3 5 × 5 × 5 × 5 2 × 2 × 1 × 2

step. A new simpler structure is obtained by unifying
similar MFs and deleting the redundant rules. Then, a
new generation of the chromosomes having this new
structure is created and the entire GA-fuzzy optimisa-
tion process is then repeated. While the convergences
of DB and KB optimisations maybe decided by a pre-
defined number of generations or an error tolerance,
the optimisation of the structure of a sub-model is
deemed to have converged only if the closure step can-
not be further executed.

Table 1tabulates the settings of GA parameters for
the structure identifications and the final structures ob-
tained for the FRBS sub-models. The size of the pop-
ulation is set accordingly to the number of inputs in
each sub-model. Larger population enhances the prob-
ability of variation, which is especially important for
a lengthy chromosome. The parameters of MF are
encoded into six bits binary code, in which a range
of 64 discretised values is produced. The resolution
should be sufficient as the parameters represent only
the width and the location of the membership function
(MF) within a bounded operating range. The strategy
for applying the genetic operators istournament selec-
tion, multiple-points crossoverwith the crossover rate
of 1 andrandomised mutationwith a trigger weight
of 0.1. Elitism is applied as a special policy to each
generation. The properties of elite chromosomes are
exceptional and excluded from the treatment of the ge-
netic operators. Five chromosomes of the highest fit-
ness within the current generation are elite to the next
generation. The elitism policy might help to ensure the
fitness of chromosomes in the next generation will be
at least maintained as, if not higher than, the current
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Fig. 5. Causal relationship of MF parameters to model prediction.

generation. To an extent, if all the chromosomes of
the current generation are elite to the next generation,
the fitness of the chromosomes in the next generation
will never be improved.

It is clear that the sub-models contain fewer MFs
and rules. For instance, theqtr sub-model is initialised
with 30 fuzzy rules and 30 MFs per parameter. Af-
ter the structure optimisation, the sub-model contains
only five rules and five MFs per parameter. The advan-
tages of the simpler structure include easier model in-
terpretation, less computational demanding and higher
efficiency during the model adaptation.

3.3. The model adaptation

The sub-models with the optimised structures are
incorporated into the semi-physical model for further
adaptation. The commencement of the adaptation
process is dependent on the errors of the model
predictions when compared with the actual melt tem-
perature and the pressure. The model adaptation is
complicated since the sub-models approximate only
the operational-sensitive parameters but not directly
the melt temperature and the pressure. These approx-
imations will then be part of the semi-physical model
in generating the predicted melt temperature and
pressure as depicted inFig. 6. Therefore, the model
adaptation is executed by back-propagating the pre-
diction errors to the corresponding sub-model through
level by level. The concept of error back-propagation
from the prediction to each parameter of the MF is
depicted inFig. 5. In the forward sequence (left to
right), a small change in the MF parameter c will af-
fect the inferential membership gradew of an input.
The influence is further reflected on the approxima-
tion of the FRBS sub-modelffz, which will in turn
affect the prediction of the semi-physical model,ô. It
can be seen that the prediction error can be minimised
if the effects of change at individual level are known,
which are the gradient vectors of the causal relation-

ship. The derivative information is passed from the
output level, and going backward level by level, to the
first level as shown in the backward sequence (right
to left) of Fig. 5.

The total derivative information in the backward se-
quence can be effectively represented by a chain rule,
which is generalised asEq. (11). MF parameters are
then updated by the steepest descent algorithm. The
tuning of the MF parameters is accomplished by min-
imising the sum of squared errors between the desired,
o and predicted,̂o results as written inEq. (12).

∂J

∂c
p

qi

= ∂J

∂f
p

fz

∑ ∂f
p

fz

∂w
p

k

∂w
p

k

∂c
p

qi

(11)

J =
∑

(o − ô)2 (12)

where J and p are the square error index and the
sub-model index, respectively.

3.4. The model simulation

Fig. 6 illustrates the computation path of the
semi-physical dynamic model. The program is ini-
tially provided with the following input data:

• Geometry parameters such as channel depth;
• Material properties such as density of solid polymer;
• Settings of screw speedω(t) and barrel temperature

Tb(t) as a function of time;
• Initial profiles at timet0 for the solid bed,X(z, t0)

and the melt temperatureT(z, t0);
• Location where the melting process commences;
• Initial estimation of the output flow rate,G(t0).

The output flow rateG is initialised with the flow rate
taken from the previous steady-state condition. When
the operating condition changes with time, the pro-
gram is iterated until a new steady-state condition is
reached. The estimation on the output flow rate im-
proves during the iteration. The relationship between
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Fig. 6. Diagram of model computation.

flow rate and pressure-drop at the die$Pdie is shown
in Eq. (13).

G = Kdieρm
$Pdie

ηdie
(13)

whereKdie andρm are the die constant and the den-
sity of melt, respectively, whileηdie is the apparent
viscosity of the melt at the die.

4. The model evaluation

Evaluation of the developed model is performed by
first checking the consistency of the model prediction
with the theoretical analysis. The model is simulated
when step changes in the screw speed and the barrel
temperature are applied separately.Figs. 7 and 8show
the responses of the temperature and the pressure at
the die when the screw speed is changed. The screw
initially rotates at a speed of 60 revolutions/min (rpm)
and the extrusion process is assumed to be operating

under a steady-state condition. The dashed lines rep-
resent the steady-state responses of the process; the
dotted lines denote the responses of the system to a
positive step change from 60 to 70 rpm, whereas the
solid lines are the responses to a negative step change
from 60 to 50 rpm. InFig. 7, the model predicts a
slow temperature increment when a positive change
of screw speed is applied. The increase in the temper-
ature of melt is chiefly attributed to the heat generated
from the viscous dissipation, which increases with the
screw speed and vice versa. The viscous dissipation
occurs when the polymer melt is sheared by the rel-
ative motion of the rotating screw and the stationary
barrel.Fig. 8depicts an immediate change in the melt
pressure at the die; an overshoot is observed before
the pressure decaying to a new steady-state value.

The model is also evaluated for an ideal case of al-
tering the melt temperature at the die by manipulat-
ing the barrel temperature; assuming that step changes
in the barrel temperature can be achieved in practice.
The barrel temperature settings are indicated in the
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Fig. 7. Transient responses of melt temperature for step changes in screw speed.

Fig. 8. Transient responses of melt pressure for step changes in screw speed.

legend ofFig. 9. The model predicts an increase in the
melt temperature when the barrel temperature is set to
a higher value. The higher barrel temperature results
in more heat energy being transferred from the bar-
rel wall to melt the solid polymer. Consequently, the
melting mechanism commences earlier and the solid
is completely melted sooner than the case where lower
barrel temperature is applied. The melt temperature
shows an inverse response at the early stage when a
step change of 180–190◦C is applied to the barrel
temperature. Logically, the inverse response should
not appear when the barrel temperature is increased.
This error is mainly due to the simplifying assump-

tions of the semi-physical model. It is obvious espe-
cially when the step change of the barrel temperature is
small.

The evaluations presented earlier are with the as-
sumption that the model truly describes the behaviour
of the extrusion. The assumption might invalid as
the actual operating conditions are subjected to the
disturbances.Fig. 10 shows the results of evaluating
the effectiveness of model adaptive capability when
the properties of input material vary during the op-
eration. The evaluation is performed to an extent
that different input material is being processed. The
star–dotted points represent the published experimen-



L.P. Tan et al. / Applied Soft Computing 4 (2004) 345–355 353

Fig. 9. Transient responses of melt temperature in changing barrel temperature.

Fig. 10. Effectiveness of model adaptive capability for different processing material.

tal measurements of the melt temperatures at five
locations distributed along the barrel, when the new
material (high density polyethylene) is being pro-
cessed. The dotted line shows the initial prediction
of the semi-physical model. The prediction error is
obvious as the approximations of the sub-models are
based on the information of old material (low density
polyethylene) before the adaptation. The smooth line
shows a reasonable good prediction after the adapta-
tion. The sub-models have been tuned automatically
to approximate the operational-sensitive parameters
in the new operating environment.

The model is further evaluated when it is employed
as the predictive model in the control scheme namely
as the fuzzy supervisory indirect learning predictive
controller (FsiLPC)[12]. Fig. 11 indicates that with-
out the adaptation, both of the plant outputs at die di-
verge if the prediction error exists. When the model
adaptation commences, specifically when the approx-
imations of the sub-models have been tuned auto-
matically according to the varying operating condi-
tions, the melt temperature and the pressure are reg-
ulated within tolerances as shown inFig. 12a and b,
respectively.
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Fig. 11. Extrusion control with prediction error without model adaptation: (a) melt temperature at die and (b) melt pressure at die.

Fig. 12. Extrusion control with prediction error with model adaptation: (a) melt temperature at die and (b) melt pressure at die.

5. Conclusions

The paper highlighted some of the problems as-
sociated with the polymer extrusion modelling for
real-time control applications. A semi-physical dy-
namic model has been developed to estimate the melt
temperature and the pressure at the die. These param-
eters are regarded as the quality indicators of the ex-

trusion operation. Fuzzy rule-based sub-models were
applied as a means to capture the non-linearity char-
acteristics of the operational-sensitive parameters. The
optimal structures for the sub-models were established
by a GA-fuzzy algorithm. The gradient-based error
back-propagation algorithm was implemented only to
stimulate the parameters convergence by ‘climbing
the remaining hill’ and to equip the sub-models with
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an adaptive capability. The optimised structure with
smaller number of membership functions and rules
would help to increase the interpretability while avoid-
ing the problem of over-parameters. Besides, the speed
of simulation would also improve as the sub-models
contain fewer parameters.

The model was first evaluated in the basis of con-
sistency with the theoretical analysis. The model pre-
dictions in general adhered to the theory when step
changes in the manipulating parameters such as the
screw speed were simulated. Further evaluations were
performed to check the usefulness of sub-models adap-
tations. The results showed that the sub-models, which
represent the operational-sensitive parameters had ef-
fectively adapted to the changing environment.

Future work is planned to fully evaluate the con-
ditions for employing the semi-physical model in the
design of fuzzy supervisory indirect learning predic-
tive controller in the extrusion process. The advantage
of the methodology lies on its multivariable supervi-
sory ability; the effects on the output parameters are
considered before a control action such as altering the
screw speed is implemented. With this ability, an op-
timum control function can be ascertained.
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