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Abstract

Neuro-fuzzy networks have been successfully applied to extract knowledge from data in the form of fuzzy rules. However,
one drawback with the neuro-fuzzy approach is that the fuzzy rules induced by the learning process are not necessarily
understandable. The lack of readability is essentially due to the high dimensionality of the parameter space that leads to
excessive flexibility in the modification of parameters during learning. In this paper, to obtain readable knowledge from data,
we propose a new neuro-fuzzy model and its learning algorithm that works in a parameter space with reduced
dimensionality. The dimensionality of the new parameter space is necessary and sufficient to generate human-understandable
fuzzy rules, in the sense formally defined by a set of properties. The learning procedure is based on a gradient descent
technique and the proposed model is general enough to be applied to other neuro-fuzzy architectures. Simulation studies on a
benchmark and a real-life problem are carried out to embody the idea of the paper.
   2002 Elsevier Science B.V. All rights reserved.
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1 . Introduction 1996). However, the interpretability of fuzzy knowl-
edge acquired by a neuro-fuzzy system may be

Neuro-Fuzzy models have been developed with heavily compromised by the learning phase of the
the aim of integrating the learning capability of network, if no special attention is paid during data-
neural networks with the representational power of based rule generation and adaptation.
fuzzy inference systems, thus producing learning The requirement of interpretability is particularly
machines capable of acquiring knowledge from data felt when neuro-fuzzy systems are applied to real-
and representing it in form of fuzzy rules (Jang & world problems (Nauck, 1995; Halgamuge &
Sun, 1995; Jang, 1993; Nauck, Klawonn & Kruse, Glesner, 1994) such as decision support in medicine,
1997; Brown & Harris, 1994; Zurada & Lozowski, finance, commerce and other applications. In such

application areas the knowledge about the behavior
of the decision system should be transparent and*Corresponding author. Tel.:139-080-544-3285; fax:139-
physically sound so as to meet the cognitive capacity080-544-3196.

E-mail address: fanelli@di.uniba.it(A.M. Fanelli). of human beings and to mimic the way they perform
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high-decision processes. As a consequence, the lack to generate an interpretable fuzzy rule base. The rule
of interpretability often makes neuro-fuzzy models base is converted into a RBF network and refined
less useful than classical fuzzy inference systems through a regularization algorithm called Adaptive
(Pedrycz & Gomide, 1998; Cios, Pedrycz & Swiniar- Weight Sharing that guarantees interpretability and
ski, 1998; Ross, 1997), where the knowledge base is compactness of the final rules. On the overall, this
manually built and learning techniques are not approach turns out to be flexible and gives promising
adopted. results in handling high-dimensional problems. How-

Since interpretability itself is a fuzzy and subjec- ever, the approaches based on regularization have the
tive concept, it is hard to find an explicit and drawback of introducing more hyper-parameters –
exhaustive list of properties that, when violated, the regularizing parameters – for which no efficient
make the fuzzy rule base to loose its readability. method exists to determine the optimal values,
Some important aspects pertaining the interpretabili- except by trial-and-error. Some mathematical tech-
ty of fuzzy rules have been discussed in (Lofti, niques have been proposed, as in (Bengio, 2000;
Handerson & Toi, 1996; Jin,Von Seelen & Sendhoff, Craven & Wabba, 1979), but they are computational-
1998; Jin, Von Seelen & Sendhoff, 2000), while a ly intensive.
comprehensive set of properties that fuzzy sets In (Chow et al., 1999a,b), the authors propose a
should verify to preserve interpretability is postulated set of transformations to project the parameter space
in (Pedrycz & Gomide, 1998; de Oliveira, 1999). of a neuro-fuzzy network into a subspace where a
However, to date, there is no well-established defini- number of properties (more stringent than those
tion for interpretability of a fuzzy rule base. Further- adopted in (de Oliveira, 1999)) are satisfied. This
more, even with a clear definition of readability, the projection is applied at each iteration of the learning
preservation of readability during rule extraction and algorithm, resulting in a high computational cost.
adaptation requires either reducing the degrees of In other works, interpretability of fuzzy systems
freedom of the neuro-fuzzy model or using a con- from the view point of membership functions is
strained learning method which penalizes all solu- discussed. In (Setnes et al., 1998a; Setnes, Babuska,
tions which are not readable (Bersini & Bontempi, Kaymak & van Nauta Lemke, 1998b), similar fuzzy
1997). Hence, the development of learning methods membership functions are merged so that the re-
to induce understandable fuzzy rules from data is an sulting fuzzy partitions are interpretable, while in
important research issue. (Lofti et al., 1996) a constraint is imposed to the

Several approaches have been proposed to obtain location of membership functions during learning. In
interpretable knowledge by neuro-fuzzy learning (Jin (Nauck, Nauck & Kruse, 1996; Nauck and Kruse,
et al., 1998; Nauck, Nauck & Kruse, 1996; Nauck & 1997), the authors propose NEFCLASS, an approach
Kruse, 1997; Lozowski & Zurada, 2000; Marin- that creates fuzzy systems from data by applying an
Blazquez, Shen & Gomez-Skarmeta, 2000; Setnes, heuristic data-driven learning algorithm that con-
Babuska & Verbuggen, 1998a; Chow, Altug & straints the modifications of fuzzy set parameters to
Trussell, 1999a; Chow, Altug & Trussell, 1999b). take the semantical properties of the underlying

In (de Oliveira, 1999), the learning process is fuzzy system into account. However, a good inter-
constrained to respect some properties that make pretation of the learning result cannot always be
fuzzy rules human-understandable. Such constraint is guaranteed, especially for high-dimensional prob-
realized by means of regularization theory: the cost lems. Hence, in (Nauck and Kruse, 1999) the
function to be minimized during training is com- NEFCLASS algorithm is added with interactive
posed of the Mean Squared Error (MSE), as usual, in strategies for pruning rules and variables so as to
addition to a penalty function, which is the mathe- improve readability. This approach provides good
matical counterpart of the properties that fuzzy rules results, but it results in a long interactive process that
have to satisfy. In (Jin et al., 1998; Jin,Von Seelen & cannot extract automatically rules from data but
Sendhoff, 1999) the authors proposed completeness requires the ability of the user to supervise and
and consistency indices for a fuzzy rule base that are interpret the learning procedure in all its stages.
treated as a means of regularization by incorporating This paper proposes an approach to extract auto-
them into the cost function of an evolution algorithm matically fuzzy rules by learning from data, with the
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main objective to obtain human-readable fuzzy 2 . Interpretable fuzzy knowledge base
knowledge base. A new neuro-fuzzy model and its
learning algorithm is developed that works in a In this section, we first describe the Fuzzy Knowl-
parameter space with reduced dimensionality with edge Base (FKB) and the input space fuzzy partition
respect to the space of all the free parameters of the adopted. Then, we formalize the properties that must
model. The dimensionality of the new parameter be satisfied in order to assure interpretability.
space is necessary and sufficient to generate human-
understandable fuzzy rules, in the sense formally

2 .1. Fuzzy knowledge basedefined by a set of properties. Once the new parame-
ter space is defined, the learning algorithm performs

The rule base schema adopted in this paper is thesimple gradient descent with no additional constraint
following:in the parameter modifications. The proposed model

is general enough to implement different types of
1 2 nRULE r: IF x IS A AND x IS A AND ? ? ?AND x IS A ,1 g(r,1) 2 g(r,2) n g(r,n)fuzzy rules, since its structure depends only on the

form of the rule antecedents and does not depend onr5 1, . . . ,R,
the form of the rule consequents. In this work, the

THEN [CONSEQUENCE] (1)proposed model has been defined to implement a
zero-order Takagi–Sugeno (TS) fuzzy model

where n is the number of inputs andR is the total(Sugeno & Kang, 1988; Takagi & Sugeno, 1985).
inumber of rules. The symbolsA denote inputHowever, our model can be easily adapted to em- g(r,i )

fuzzy sets with membership functionm . Theibody other neuro-fuzzy architectures, such as ANFIS A g(r,i )

(Jang, 1993), Lin and Lee network (Lin & Lee, function g:h1, 2, . . . ,Rj3 h1, 2, . . . ,nj→N is used
1991), Neuro-Fuzzy Classifiers (Castellano & Fanel- to share the same fuzzy sets in different rules. For a
li, 2000a; Castellano, Fanelli & Mencar, 2000), and given rule r and an inputi, the indexg(r, i) repre-
Multistage Fuzzy Neural Networks (Chung & Duan, sents the fuzzy set of thei-th input variable used in
2000; Wang, 1999). the r-th rule. It is not necessary to give an analytical

The paper is organized as follows. Section 2 gives definition of the functiong, since it can be easily
a set of formal properties of a Fuzzy Knowledge implemented by aR-by-n matrix, automatically
Base (FKB) that must be satisfied to ensure generated by a combinatorial algorithm. Fig. 1
readability. Section 3 focuses on the dimensionality illustrates a simple example of such function.
of the parameter space of a readable FKB. Section 4 In (1) the form of the rule consequence is left
describes the proposed neuro-fuzzy architecture andundefined to include all the varieties of fuzzy rules
its learning algorithm for the extraction of a FKB. having the antecedents in the form described in (1).
Section 5 reports some experimental results, which Here, we consider a zero-order Takagi–Sugeno
support the theoretical framework, and Section 6 fuzzy model, which has the following rule base
ends the paper with some conclusive remarks. schema:

Fig. 1. An example of functiong.
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1 nRULE r: IF x IS A AND ? ? ?AND x IS A Unfortunately, these two properties are satisfied by1 g(r,1) n g(r,n)

only few techniques that perform a fuzzy partition of
THEN y 5 k , y 5 k , . . . ,y 5 k (2)1 r1 2 r2 m rm the input space. The simplest technique that produces

a fuzzy partition of the input space considered as awherek are fuzzy singleton defined on them outputrj
FOC is the so-calledgrid partition. With this meth-variablesy . Using singleton fuzzification, the prod-j
od, the domains of the input variables are partitioneduct operator ast-norm for rule inference and center
into a specified number of fuzzy sets. The rule baseaverage defuzzification, the inferredj-th crisp output
is then established to cover the input space by usingvalue for any input vectorx is calculated as
all possible combinations of input fuzzy sets as

R multivariate fuzzy sets describing the rule antece-O m (x)kr rj dents. This formulation of multivariate fuzzy sets
r51
]]]]y :5 (3) results in a lattice partition of the input space, withj R

the advantage that very interpretable fuzzy sets canO m (x)r
r51 be generated. A clear drawback of this approach is

that the number of rules grows exponentially withwherex:5(x , x , . . . , x ) and1 2 n the number of inputs. Conversely, other techniques,
n such as fuzzy clustering-based methods (Bezdek,

m (x):5P m (x ) (4)ir A ig(r,i ) 1981) can produce flexible fuzzy partitioning with ai51

number of rules that grows linearly with the number
is the truth value of ther-th fuzzy rule. of inputs, but they ignore the lattice partition of the

input space, resulting in a FKB that cannot be easily
2 .2. Fuzzy partition of the input space interpreted.

In this work, we chose the grid partition technique
The partition of the input space plays a key role in since it is simple and offers the most comprehensible

the definition of a human-understandable FKB. The FOC that can be derived from an input space.
concept ofFrame Of Cognition (FOC), defined in However, other fuzzy partition methods that provide
(Pedrycz & Gomide, 1998), is useful to formalize complete coverage of the input space may be used as
the properties of a fuzzy partition of an input well (Brown & Harris, 1994; Abe & Lan, 1995). We
domain. A FOC is a family of fuzzy sets that model represent fuzzy sets by Gaussian membership func-

ia particular aspect of the world, also calledUniverse tions, i.e. each fuzzy setA is characterized by theh

Of Discourse (UOD). Such collection of fuzzy sets membership function
must respect two main properties in order to be

2(x 2v )called FOC: i hi
]]]m (x ):5 exp 2 (5)i S DA i 2h 2s hi

• Coverage: For each elementx of the UOD there
wherev ands are the center and the width of theexists at least one fuzzy setA of the FOC for hi hi

Gaussian function, respectively.which m (x).0. Usually, a more stringent con-A
To guarantee the two properties above-mentioned,dition, called,´-coverage is requested:m (x)$´,A

1 the centers and the widths of membership functions]for a fixed´, (e.g. ). This condition assures that2
must be properly determined. More formally, letXeach element of the UOD is sufficiently repre-
be the input space. We assume thatX is a n-sented.
dimensional Cartesian product amongn intervals,• Semantic soundness: The fuzzy sets defined in the
that is,FOC must be linguistically interpretable. Such

condition translates in a set of properties formally n
X:53X , X :5 [m , M ] ,R, (6)defined in the next section. According to such i i i i

i51
properties, each fuzzy set of the FOC must be

where X the ith axis of the input spaceX,normal and unimodal, all the fuzzy sets should be i

m :5 inf X andM :5 supX . For each axisX , a setsufficiently disjointed and in a number ‘psycho- i i i i i

F of K fuzzy sets is defined as follows:logically’ justified (empirically, 762). i i
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i i i
F :5 hA , A , . . . , A j (7) ;A[F'ux [X ] 9m (x)5 1.i 1 2 K i i Ai

This constraint helps to associate a linguistic label
The centersv are imposed to be equally spaced to each fuzzy set.hi

in the interval [m , M ], i.e. they are calculated as 2. Convexity: Each fuzzy set ofF must be convex,i i i

follows: that is,

;A[F;x,y,z [X : x# y# z →M 2m i ii i
]]]v :5 (h2 1) 1m ,hi iK 2 1 minhm (x), m (z)j#m (y).i A A A

h5 1, 2, . . . ,K , i5 1, 2, . . . ,n. (8) Although non-convex fuzzy sets could be inter-i

pretable (indeed convexity is not required in the
definition of FOC), convex fuzzy sets are easierIn order to guarantee the,´-coverage, for a given,
to understand.´[ (0,1), the widthss are calculated as follows:hi

3. Coverage: Any input must belong at least to one
fuzzy set, with a membership value not smallerM 2mi i

]]]]]]s :5 , than a prefixed threshold valué : '´[]]]hi Œ2(K 2 1) 2 2 ln ´i (0,1);i;x [X 'A[F ] 9m (x)$´. This con-i i A

h5 1, 2, . . . ,K , i5 1, 2, . . . ,n. (9) straint guarantees that each element of the inputi

space is sufficiently represented by some fuzzy
set (i.e. by a linguistic term). The concept ofFig. 2 illustrates an example of fuzzy partition of
‘sufficiently’ depends from the application and isan axis of the input space into three fuzzy sets. Here
formalized by the threshold́ (usually fixed toa 0.33-coverage is guaranteed.
0.5).

4. Leftmost membership function: The leftmost
2 .3. Formal properties fuzzy set of F should assume its maximumi

membership value inm , that is:m (m )51. Inii A i1
In this subsection, the properties that must be this way, linguistic terms like ‘low’, ‘small’, etc.,

satisfied to make a FKB human-understandable are are easily modeled, although such constraint is
mathematically formalized. Such properties are taken not necessary in the definition of FOC.
from (Pedrycz & Gomide, 1998; de Oliveira, 1999; 5. Rightmost membership function: The rightmost
Chow et al., 1999a). fuzzy set of F should assume its maximumi

For each setF the following properties must membership value inM , that is: m (M )5 1.i ii A iKihold: With this constraint, it is easier to associate
linguistic labels like ‘high’, ‘tall’, etc., to the

1. Unimodality and normality: Every fuzzy set ofF rightmost fuzzy set.i

must have only one element with maximum 6. Disjunction: Each fuzzy set inF must be suffi-i

membership value equal to 1: ciently disjointed from the other fuzzy sets, i.e.
they should not overlap too much. In this way the
fuzzy sets are linguistically meaningful. The
disjunction property can be formalized in several
ways. In (Chow et al., 1999a), the definition of
overlap is given as the relative measure of the
support of the intersection between two fuzzy
sets. To satisfy the disjunction property, such
overlap must be limited in an interval that must
be carefully chosen. In addition, the overlap
measure cannot be directly applied to membership
functions with infinite support (such as Gaussian

Fig. 2. Example of input partition into three fuzzy sets. functions) but requires a re-definition usinga-
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cuts. In this work we use thepossibility measure, constrained, fuzzy sets that do not respect the
given in (Zadeh, 1978) and (Dubois & Prade, properties defined in Section 2.3 may be induced. In
1980), to compare fuzzy sets as defined by Fig. 3, an example of this lack of readability is
Gaussian membership functions since it quantifies graphically illustrated. The problem is that the
the extent to which two fuzzy sets overlap training process modifies parameters in the whole
(Pedrycz & Gomide, 1998). Unlike overlap mea- parameter space, while only a small subset of this
sures, the possibility measure can be applied to space corresponds to fuzzy sets that satisfy the
any type of fuzzy sets. Precisely, the possibility properties given in the previous section. Here, we
measure of a fuzzyA with respect to fuzzy setB, define a parameter space with reduced dimensionali-
defined as ty and show that such dimensionality is necessary

and sufficient to generate human-understandablePoss(A, B):5sup minhm (x), m (x)j.A B
x fuzzy sets, in the sense formally defined by the

properties given in Section 2.3.To obtain disjoint fuzzy sets, the possibility of
Let V be the parameter space of the centers andeach pair of fuzzy sets inF must be lower than ai

the widths of the fuzzy sets used in the antecedentsspecified thresholdp (usually p 50.5): 'p [
of the fuzzy rules. It is easy to observe that(0,1);i;A,B [F : Poss(A, B)#p. The use of possi-i

bility measure instead of overlap measure makes it
D1V #R ,easy to verify the disjunction property during learn-

ning since a single threshold needs to be set. (10)
where D :5 2O K .1 iIt can be easily observed that a grid partition of

i51
the input space, together with the use of Gaussian
membership functions, satisfies all the properties LetV* #V be the subspace of parameters for
above enumerated. Indeed Gaussian membership which properties 1–6 defined in Section 2.3 are
functions are unimodal, normal and convex, hence satisfied (assumingp 5´). Now we prove that the
properties and are satisfied; dimensionality ofV* is smaller thanD . To demon-1

The formulas (8) and (9) guarantee the´-coverage strate this property, we will define a parametric
– hence property 3 – for any choseń[ (0,1). hyper-surface that describesV*, and show that the
Moreover the distribution of the centers guarantees domain of such hyper-surface hasD dimension,2

the validity of properties 4 and 5; withD ,D .2 1

When using Gaussian functions, the possibility For sake of simplicity, we will consider only one
measure between two adjacent fuzzy sets is equal to axis of the input space, denoted byX . Since gridi

´. Moreover, because of the strict monotonicity (in
descending sense) of the membership value with
respect to the distance from the center of the
function, it is easy to derive that the possibility
measure between two non-adjacent fuzzy sets is
smaller than the fixed́.

3 . Parameter space of interpretable FKB

A Fuzzy Knowledge Base is characterized by
several free parameters, defining the position and the
width of each fuzzy set. The set of all possible
values that parameters can assume, calledparameter
space, is usually highly dimensional. Usually, neuro-
fuzzy approaches modify fuzzy set parameters in
order to adapt fuzzy rules to the available data by a
learning process. If the learning process is not Fig. 3. Effects of training on the fuzzy sets of the FKB.
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partition is used to build the FKB, this does not
reduce the generality of the proof, because the fuzzy
sets of each axis are independent. The following
definition is given:

V :5 h[v ,v , . . . ,v , s , s , . . . ,s ]i 1 2 K 1 2 K1 i

2Ki[R u;h:s .0 ∧ v #v j. (11)h h h11 *Fig. 4. Example of relation betweenV and T .i i

Every vector inV is directly related to a vector ofi Lemma 2. Given a vector t5 [t , t , . . . , t ] [ T ,1 2 K 21 iimembership functions with centersv and widthss , there exist a unique vectorh h

denoted by
*w5 [v , v , . . . , v , s , s , . . . , s ] [V1 2 K 1 2 K ii i

[m , m , . . . ,m ]. (12)i i iA A A1 2 Ki such that

;h [ h1, 2, . . . ,K 2 1j:m (t )5m (t )5´.i ii A h A hSuch relation is bijective, so we will use the parame- h h11

ters or membership functions interchangeably.
The proof of this lemma is outlined in Appendix*Let V be the subset ofV for which propertiesi i

B.1–6 defined in Section 2.3 hold. The following set is
Lemmas 1 and 2 imply that there exists a bijectivedefined:

*mapping betweenV and T . Such result can bei i
K 21i directly extended to the entire input spaceX, i.e.T :5 h[t , t , . . . ,t ] [R ui 1 2 K 21i there exists a bijective mappingG :T →V*, where

nm , t , t , ? ? ? , t ,M j (13)i 1 2 K i T:5 3 T . The spaceT has D dimensions,i21 i51 i 2

where
where the indexi denoting the specific input axis has n

been dropped fromt , t , . . . , t for ease of D :5O (K 21). (15)1 2 K 21i 2 i
i51notation.

*The setsV and T are related. Indeed, the As a consequence, the subspaceV* of readablei i

following statement is true: fuzzy sets hasD dimensions. From the definition of2

D , given in Eq. (10), it can be observed that1

D ,D . Summarizing, the spaceV* is a lowLemma 1. For each pair of adjacent Gaussian 2 1

dimensional hyper-surface (described by the function*membership functions associated to a vector of V ,i
G in the domainT) contained in a higher dimension-there exists a unique point, between their centers, for
al spaceV.which the membership values are equal. Formally:

;h [ h1,2,. . . ,K 2 1j'ut [X ] 9(m (t )5´ii h i A hh

4 . The neuro-fuzzy model and its learning
5m (t )) ∧ (v , t ,v ). (14)iA h h h h11h11 algorithm

The proof is outlined in Appendix A. In this section, we propose a new neuro-fuzzy
By collecting all the t in an ordered vector, a model that is able to keep valid during learning allh

unique element ofT is obtained. It should be noted the properties that formalize an ‘understandable’i

*that for a parameter vector inV , all the centers are FKB. Specifically, we develop a new neuro-fuzzyi

network architecture that is able to provide a fuzzydistinct (see proof of Lemma 1), so all thet areh

rule base composed of fuzzy sets inV*. To achievedistinct too. Fig. 4 illustrates an example of relation
* this, the proposed architecture usesT as parameterbetween a vector inV and a vector inT .i i

space of the antecedent part of the fuzzy rules (theMoreover, starting from a vector inT , it isi

* parameter space of the consequence part depends onpossible to construct a vector inV , as stated by thei

the particular FIS model, as explained in Section 1).following lemma:
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To find the optimal parameter vector inT, a learning • Rule Layer. The neurons of this layer compute the
algorithm based on the gradient-descent technique is truth value of each rule according to Eq. (4),
also defined. hence they use the transfer functions:

n

4 .1. Neuro-fuzzy architecture m (x):5P m (x ).ir A ig(r,i )i51

The proposed neuro-fuzzy network has a 5-layer The functiong is implemented by the connections
feed-forward architecture (not fully connected), with between the Membership Layer and the Rule
the following layers: Layer. Full connection between the Rule Layer

and the Membership Layer is requested when grid
• Input Layer. It simply spreads the input signals to partition of the input space is adopted. The

the Membership Layer’s neurons, jumping the neurons of this layer have no free parameters.
second layer: • Output Layer. This layer is fully connected with

• T-Layer. The nodes of such layer are grouped inn the previous Rule Layer. Such connections are
blocks, each corresponding to one input variable. weighted by the free parametersk . The output ofrj
The i-th block is made of: each neuron is determined by the functiony :j

• a fixed (non-adjustable) neuron that always
R

fires the valuem ;i O m (x)kr rj• K 21 adjustable neurons that fire the values r51i ]]]]y [ .j R[t ,t , . . . ,t ] [T ;1i 2i K 21,i ii O m (x)r• A fixed neuron tha always firesM .i r51
• Membership Layer. Each neuron of this layer is

Fig. 5 illustrates the architecture of the neuro-connected with an input neuron and a pair of
fuzzy network in the case of a three-inputs zero-consecutive neurons of the T-Layer. These neu-
order TS fuzzy model.rons compute membership values of each input to

each fuzzy set of the corresponding axis. Given
an input indexi, the transfer function of a neuron 4 .2. Learning
of such layer is calculated as follows:

The learning algorithm defined for the proposed
m (x )[iA ih neuro-fuzzy network is based the gradient descent

2 technique. Given atraining set(x 2m )i i
]]]]]exp 2 , h5 1,S D2

(1) (1) (2) (2) (P ) (P )2d(2m 2 t , t )i 1i 1i TS[hkx , d l, kx , d l, . . . ,kx , d l j
2

n m(x 2g(t , t ))i h21,i hi ,R 3R (16)]]]]]]exp 2 , 1, h,K ,S D2 i2d(t , t )h21,i hi the objective of training is to modify the free2(x 2M )i i parameters of the network in order to minimize the]]]]]]]exp 2 , h5K2 iS D2d(t , 2M 2 t ) following error function: K 21,i i K 21,ii i

P(functionsg andd are defined in (B.2) and (B.3) 1 ( p) ( p) 2]E[ O iy 2 d i (17)in Appendix B). In this way we embody the 2P p51
function G in the network architecture. It is

( p) ( p) ( p) ( p)noteworthy to observe that these neurons are wherey [[ y ,y , . . . ,y ] is the output of the1 2 m
( p) ( p)fixed, that is they do not have free parameters, neuro-fuzzy network when the inputx [[x ,1

( p) ( p) ( p) ( p) ( p)because the centers and the widths are calculatedx , . . . , x ] is applied, andd [[d , d , . . . ,2 n 1 2
( p)by functionsg and d, which are the basic com- d ] is the desired output. To minimize Eq. (17)m

ponents ofG. In this way the understandability of each free parameterz. is iteratively updated accord-
fuzzy rules is maintained. ing to the following formula:
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Fig. 5. Architecture of the proposed neuro-fuzzy network in the case of three-inputs zero-order TS fuzzy model. Gray-filled circles
correspond to non-parametric neurons, while white circles correspond to neurons with at least one free parameter.

( p) ( p) ( p)(y 2 d )m (x )≠E j j r
] ]]]]]]Dz 5 2h (18) 5 . (22)R≠z ( p)O m (x )s51 s

( p)whereh is the learning rate and E is rewritten as In order to calculate the derivatives ofE respect to
t , the following definition is given:hiP1 ( p)

2]E5 O E (19) (x2g )P p51 ]]]m(x,g, d )[exp 2 . (23)S D22d
where

With this definition, the transfer functions of the
m Membership Layer can be rewritten as1( p) ( p) 2]E [ O (e ) (20)j2 j51 m (x )5iA ih

and m(x, m , d(2m 2 t , t )), h5 1,i i 1i 1i

m(x,g(t , t ), d(t , t )), 1, h,K 2 1,( p) ( p) ( p) h21,i hi h21,i hi ie [y 2 d . (21)j j j 5m(x, M , d(t , 2M 2 t )), h5K .i K 21,i i K 21,i ii i

In our case, two types of parameters must be
(24)

adapted, that is the consequent parametersk and therj
Then, we haveparameterst of the T-Layer.hi

( p)The derivatives ofE with respect tok are ( p) m ( p) h11rj ≠m i≠e ≠y ≠m≠E ≠E Aj j r kdetermined as follows: ]] ]]] ]]]]]5O O O .
≠t ≠e ≠y ≠m ≠m ≠tihi j j r A hij51 k5h hr :g(r,i )5kj k

( p)( p) ( p) ≠e ≠y m (x )≠E ≠E j j r( p) (25)]] ]]]] ]]]]5 5 e ?j R≠k ≠e ≠y ≠k ( p)rj j j rj O m (x ) The derivation of≠m /≠t is given in Appendix C.s51 s iA hik
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4 .3. Choice of the learning rate The following property is true:

When the learning procedure is applied to train the ≠E ≠E
] ]]D (t 1 1),D (t)↔ (t(t)), (t(t)). (30)h hproposed neuro-fuzzy network, an important ques- ≠t ≠th h11

tion arises on the order of the elementst , t , . . . ,1i 2,i

t . Fixed an indexi [ h1, 2, . . . , nj, the defini- For a givenh and a training stept, the constraintK 21,ii

tion of T described in Eq. (13), imposes the (26) is respected whenD (t). 0. Suppose that afteri h

following relationship: thet-th iteration,D (t). 0. The domain constraint ish

verified for any positive learning rate whenD (t 1h
m , t , t , ? ? ? , t ,M . (26)i 1i 2i K 21,i i 1)$D (t), but if this inequality is not verified, theni h

we must consider only positive learning rates for
The respect of such constraint, which is fundamental which D (t 1 1). 0. Assume thatD (t 11),D (t).h h h

to guarantee understandability of fuzzy rules, de- Then we have
pends on the value of the learning rate. In this

D (t 1 1).0section we prove that a choice of a small learning h

rate avoids any trouble. Moreover, too large learning ≠E ≠E
] ]]↔D (t)1h(t) (t(t))2 (t(t)) .0rates could be automatically made smaller in order to S Dh ≠t ≠t#%"!%$#%"!%$ h h11

#%%%%%%"!%%%%%%$avoid a violation of the previous constraint. The .0.0
,0demonstration is given for an input indexi, but such

D (t)index is omitted to lighten the notation. h
]]]]]]]↔h(t), . (31)
≠E ≠EIn order to give an evaluation of the learning rate
]] ](t(t))2 (t(t))which guarantees the satisfaction of constraint (26), ≠t ≠th11 h

we consider the succession of instances of the free
parameterst (t), where t is the training epoch. The previous relation guarantees that, given an indexh

Suppose that initially the constraint (26) is respected, h, t (t 1 1), t (t 1 1). However, the constrainth h11
that is, defined in (26) requires also the following relation-

ships:
t(0)[[t (0), t (0), . . . ,t (0)][ T. (27)1 2 K 21i

(m , t ) ∧ (t ,M ). (32)i 1 K 21 ii

Such supposition is verified if grid partition is
applied on the input space. Consider now

In the same way we have derived the upper
h [ h1, 2, . . . ,K 22j and a training iteration stept.i bounds given in Eq. (31), it can be proved that
In the next training stept 1 1, the following state-

inequalities in Eq. (32) are satisfied when
ment is true:

D (t)0[t (t 11), t (t 1 1)] ]]]h h11 h(t),
≠E
] (t(t))≠E ≠E ≠t1] ]]5 [t (t), t (t)]2h(t) (t(t)), (t(t)) .F Gh h11 ≠t ≠th h11

and(28)

D (t)In the successive iteration, we have Ki
]]]]h(t), (33)

≠E
]]2 (t(t))≠E ≠E
≠t] ]] K 21D (t 1 1)5D (t)1h(t) (t(t))2 (t(t))S D ih h ≠t ≠th h11

(29) where

D (t)[t (t)2m and D (t)[M 2 t . (34)whereD (t)[t (t)2 t (t). 0 1 i K i K 21h h11 h i i
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From Eqs. (31) and (33), the following general ≠E
]statement is true: ;h [ h1, 2, . . . ,K 2 1j: lim 5 0.i t →t ≠th h11 h

Since the considered architecture is feed-forward,
;t $ 0: t(t)[T ⇒ t(t 11)[T↔h(t),S the derivative of the cost functionE with respect to

the free parametert can be expressed in terms ofh
D (t) D (t 1 1),D (t)h h h summation of the derivatives≠m /≠t , for some setiA k]]]]]min . (35)U k≠E ≠E h5 0,1, . . . ,K 2 1iH JD of indices k. It is therefore sufficient to prove the] ](t(t))2 (t(t))

≠t ≠th11 h following statement:

≠m iThe previous statement guarantees the existence of a A k
]];k [ h1, 2, . . . ,K 2 1j: lim 50. (38)ilearning rate for which constraint (26) is respected. t →t ≠tk k11 k

From a practical point of view, if the learning rate in
The proof of the previous statement is straight-a training step is too large and generates non-valid

forward, if Eqs. (C.1)–(C.4) in Appendix C areconfigurations of free parameters, then a new one
considered. Using Landau notation, it can be ob-can be chosen, for instance by halving the learning
served thatrate, and verifying the adequacy of the new value.

222(t 2t )In addition, an analysis of the magnitude of the k k11≠m iA O(e )k
]] ]]]]]learning rate can be performed. Firstly, from Eq. | → 0 (39)3≠t t →tO((t 2 t ) ) k k11k k k11(25) we observe that the derivatives≠E /≠t never goh

to infinity, since ≠E ≠E
]] ];h [ h1, 2, . . . ,K 2 2j: lim 2 5 0.S Di t →t ≠t ≠th h11 h11 h

lim ≠E /≠t ~ lim O ≠m /≠t 5 0ih A hikt →6` t →6`h h k The proof is straightforward.

and ≠E /≠t is continue with respect tot except inh h Corollary. The derivatives of the cost function
t . It is therefore possible to find a valueM. 0h11 respect to the free parameters t are infinitesimalhsuch that

with order greater than one, hence:

≠E ;h [ h1, 2, . . . ,K 2 2j:i];h [ h1, 2, . . . ,K 2 1j: ,M. (36)U Ui ≠th ≠E ≠E
]] ]2 | o(t 2 t ). (40)h h11≠t ≠th11 hFrom Eqs. (35) and (36) we can deduce that the

learning rate can be chosen in such a way that The corollary implies that

;´. 0'd .0] 9;t :0, t 2 t ,d →h h11 hminhD (t)uh51, 2, . . . ,K 2 1jh i
]]]]]]]]]h(n), . (37) ≠E ≠E2M

]] ]2 ,´(t 2 t )5´D . (41)U U h11 h h≠t ≠th11 h

Though the previous relation does not provide a
Therefore, fixed ań positive but arbitrarily small,precise evaluation of the learning rate, we can
there exists a positive valued such thatroughly say that when the free parameterst are wellh

distanced, like in the initial training epochs, it is not D 1h
]]]]] ]0,D ,d → . . (42)difficult to choose good values of the learning rate, h ≠E ≠E ´
]] ]2U Ufor which the convergence is not slow and the ≠t ≠th11 hdomain constraint is still guaranteed. Moreover, we

Comparing Eq. (31) with Eq. (42) we can deducecan prove that the choice of the learning rate
that, the smaller is the valueD (t) for someh, thebecomes less important when two free parameters h

higher is the upper bound for the learning rate tocome closer. The following lemmas are useful for
verify the constraint (26). In conclusion it is possiblethis purpose:
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to affirm that the choice of a ‘good’ learning rate is ANFIS code was taken from the Matlab Fuzzy
more important in the early stages of the training, in Toolbox.
order to allow a graduate learning without violating The system to be identified is a static non-linear
the domain constraint. During the training, if a non- system with two inputs and a single output. The
increasing learning rate is adopted, the possibility of input /output relation of such system is described by
violating constraint (26) becomes harder and harder.

22 21.5 2y5 11 x 1 x , 1# x , x # 5. (43)s d1 2 1 2

5 . Simulation results A three-dimensional I /O graph of this non-linear
system is depicted in Fig. 6.

To demonstrate our approach to extract human- The training set was obtained by computing the
understandable fuzzy knowledge base from data, function (43) on 50 pairs (x , x ) randomly taken in1 2

simulations on a well-known identification problem [1, 5]3 [1, 5]. Each input domain was normalized in
of a non-linear system (Narendra & Parthasarathy, the interval [21, 1] and then partitioned into 5 fuzzy
1990) and a real-world example from medicine sets using the grid partition technique. The resulting
(Wolberg & Mangasarian, 1990) have been carried membership functions, plotted in Fig. 7, provide a
out. The results are compared with other methods, FKB of 25 fuzzy rules, with all the consequent
whenever possible. values initialized to zero. This initial FKB was

embedded into the proposed neuro-fuzzy network
5 .1. A simple example and into the ANFIS network to establish the structure

and initial parameters. Then, both the networks were
The goal of this first simulation is to show how the trained for 5000 epochs, with learning rate fixed to

proposed approach can extract a fuzzy rule base from 0.01 in each epoch. The standard MSE was used as
data and how this rule base turns out to be interpret- cost function during learning.
able and accurate as well. A very simple example Fig. 8 compares the fuzzy partitions obtained after
concerning the identification of a non-linear system the learning process for the two architectures. It can
has been considered. The results were compared with be seen that the fuzzy sets generated by our approach
those obtained by an ANFIS network (Jang, 1993) are much more readable than those obtained by
implementing a zero-order TSK fuzzy model. The ANFIS. Also, as it can be seen from Fig. 9, the

Fig. 6. Output surface of the non-linear system.
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Fig. 7. Initial fuzzy partition of the two input variables.

Fig. 8. Fuzzy partition of the two input domains obtained after learning in the case of the proposed neuro-fuzzy network (a) and the ANFIS
network (b).

Fig. 9. Output surface of the FKB extracted by the proposed neuro-fuzzy network (a) and the ANFIS network (b).
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output surface provided by the FKB extracted with two classes (benign: 458 cases, or malignant: 241
the proposed approach approximates quite well the cases). Each case is represented by an ID number
desired input /output mapping, while the approxi- and nine attributes (x : clump thickness;x : uni-1 2

mation provided by the FKB generated by ANFIS formity of cell size;x : uniformity of cell shape;x :3 4

network is rather poor. Moreover, as shown in Fig. marginal adhesion;x : single epithelial cell size;x :5 6

10, the trend of the MSE in the case of our learning bare nuclei;x : bland chromatin;x : normal nucleoli;7 8

algorithm is smoother in comparison to the ANFIS x : mitoses). All attribute values are integers from9

learning algorithm, providing a final MSE of 0.0053 the domainh1, . . . , 10j. There are 16 cases with
which is lower than the final MSE (0.0301) achieved missing values. Since our model cannot yet deal with
in the ANFIS case. missing values, we used only the complete 683

Our approach overcomes also other fuzzy ap- cases: 444 in class ‘benign’ and 239 in class
proaches in terms of accuracy. For example, the ‘malignant’.
Sugeno–Yasukawa model (Sugeno & Yasukawa, To cope with the high-dimensionality of this data
1993) and the fuzzy model in (Huang & Chu, 1999) set and avoid generation of a high number of rules
provide for the same data set, an MSE of 0.079 and by grid partition, the number of input variables was
0.022, respectively. Comparison in terms of inter- reduced by applying a feature selection algorithm
pretability was not possible since no semantic issue that we have developed in (Castellano & Fanelli,
is addressed by such fuzzy modeling methods. 2000b). After the feature selection process, we find

In conclusion, through this example, we have that the most significant attributes arex (clump1

illustrated how the proposed approach is able to thickness),x (uniformity of cell shape) andx (bare3 6

extract a FKB with interpretable fuzzy sets and with nuclei), while the less significant attributes arex2

a good approximation ability. andx , both related to cell size, as also stated in5

(Duch, Adamczak & Grabczewski, 2001). Hence we
use the three selected features and define two initial5 .2. A real-word example
fuzzy sets for each variable. By this, we created a
fuzzy partition of eight rules with null consequents,To assess the effectiveness of the proposed ap-
which was used to establish the structure and initialproach, a more realistic example, with higher di-
parameters of our neuro-fuzzy network.mensionality, was considered to provide an idea of

The data set was split randomly in a training set ofthe network behavior in practice. The example is the
342 cases and a test set of 341 cases, so that each setWisconsin Breast Cancer (WBC) data set, provided
contains roughly the same number of patterns forby W.H. Wolberg from the University of Wisconsin
each class. After 100 epochs of our learning algo-Hospitals, Madison (Wolberg & Mangasarian, 1990).
rithm, we obtained very distinguishable fuzzy setsThe data set contains 699 cases belonging to one of

Fig. 10. Trend of the MSE during learning in the case of the proposed network (a) and the ANFIS network (b).
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Fig. 11. The final membership functions and their parameters.

and a FKB with a classification rate of 95.32% on of rules while completely preserving the accuracy
the training set (16 errors), 96.48% on the test set and the interpretability of fuzzy sets. After rule
(12 errors), and 95.90% (28 errors) on the whole simplification, there are only four fuzzy rules in the
dataset. For each variable, the two fuzzy sets (which rule base with unchanged fuzzy sets and accuracy
are labeled ‘small’ and ‘large’) are represented by with respect to the eight-rule base. Figs. 12 and 13
very distinct membership functions which overlap show the final four rules in a graphic and a textual
with neighbors at membership degree 0.5, and so form.
they are nicely interpretable (see Fig. 11). To evaluate the effectiveness of such results, they

Since in application areas like medicine not only were compared with those obtained by the NEF-
the accuracy but also the rule simplicity and com- CLASS neuro-fuzzy system, also applied to this
prehensibility is important, the extracted FKB was dataset in (Nauck & Kruse, 1999), under our ex-
simplified via our pruning algorithm (Castellano & perimental setting (i.e. removing 16 cases with
Fanelli, 1996) that automatically reduces the number missing values and partitioning the data set into 342

Fig. 12. The 4-rule FKB obtained by our approach for the WBC data set.
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Fig. 13. The 4-rule FKB obtained by our approach for the WBC data set.

samples for training and 341 for testing). Using 4 quency. Each part was used as test set for the FKB
rules and ‘best-per-class’ rule learning (that can be extracted from the remaining data. The estimate of
regarded as a kind of pruning strategy), NEFCLASS the classification accuracy was then computed as
achieves 8 errors on the training set (97.66% cor- average of classification errors of all 10 FKB on their
rect), 18 errors on the test set (94.72% correct) and test set. The mean error on the 10 test sets was
26 errors (96.2% correct) on the whole set. Despite 96.08% and the average number of rules was 4.2
the slightly better accuracy of NEFCLASS on the (ranging from 3 to 7 rules). A comparison with other
whole dataset, it should be noted that in our case neural, fuzzy and traditional classifiers developed for
higher accuracy on the test set (generalization abili- the same dataset is summarized in Table 1. It can be
ty) is achieved with even a very small number of seen that the estimated classification of our FKB is
input variables with respect to the 9 features used by comparable with most of the considered models.
NEFCLASS, thus resulting in a more simple and Indeed, most of the modeling methods reported in
interpretable rule base. It should be noted that our Table 1 pursue only accuracy as ultimate goal and
results comes from the application of automatic take no care about the interpretability of the knowl-
procedures, both for learning and simplification, that edge representation.
do not require human intervention unlike the NEF-
CLASS system.

In addition, to obtain a more feasible estimate of 6 . Conclusions
the classification error, we carried out a 10-fold cross
validation. The data set was randomly split into 10 Comprehensibility of knowledge extracted from
equally sized parts without changing the class fre- data is a very attractive feature for a neuro-fuzzy

Table 1
Comparing our approach for the WBC data set to some other approaches

Method Accuracy Reference

IncNet 97.1 Jankowski & Kadirkamanathan (1997)
k-NN 97.060.12 Duch, Adamczak & Grabczewski (2001)
Fisher LDA 96.8 Ster & Dobnikar (1996)
MLP1backprop 96.7 Ster & Dobnikar (1996)
LVQ 96.6 Ster & Dobnikar (1996)
Bayes (pairwise dependent) 96.6 Ster & Dobnikar (1996)

¨Naıve Bayes 96.4 Ster & Dobnikar (1996)
DB-CART 96.2 Shand & Breiman (1996)
LDA 96.0 Ster & Dobnikar (1996)
LFC, ASI, ASR dec. trees 94.4–95.6 Ster & Dobnikar (1996)
CART (dec. tree) 93.5 Shand & Breiman (1996)
Quadratic DA 34.5 Ster & Dobnikar (1996)
FSM, 12 fuzzy rules 96.5 Duch et al. (2001)
SSV, 3 crisp rules 96.360.2 Duch et al. (2001)
NEFCLASS-X, 2 fuzzy rules using 5–6 variables 95.06 Nauck & Kruse (1999)
our approach, 4 (4.2) fuzzy rules using 3 variables 96.08 Our result
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approach, since it establishes a bridge between theK 21j. The existence oft is guaranteed by thei h

so-called symbolic reasoning paradigm, that provides properties of Gaussian membership functions –
explicit knowledge representation, and the sub-sym- continuity and monotonicity with respect to the

9bolic paradigm, where systems like neural networks distance from center. We consider the valuet [h

9 9discover automatically knowledge from data. How- X ] 9(m (t )5´) ∧ (t ,v ). The existence ofii A h h h11h11

9 9ever, a fuzzy knowledge base that is precise and t is also guaranteed. Now we prove thatt 5 t .h h h

9 99 9interpretable as well can hardly be found by a Indeed, ift , t then the middle pointt [(t 1 t /h h h h h

9completely automatic learning process. Our work 2) is different from botht and t . In particular, weh h

99 9 99aims to make a step further to achieve this objective. havev , t , t , t ,v , hence (m (t ),´) ∧ih h h h h11 A hh

A new neuro-fuzzy architecture and its learning 99(m (t ),´). If this condition holds, theń-cover-iA hh11

algorithm have been proposed that is able to acquire age is not guaranteed.
knowledge from data in the form of fuzzy rules Suppose, ad absurdum, that there is a fuzzy set for
easily interpretable by humans. Interpretability of 99which the membership oft is greater or equal tó,h

fuzzy sets is preserved during learning by allowing that is: 'k [ h1, 2, . . . ,K 2 1j\hh, h11j] 9i

the free parameters to vary in a parameter subspace 99m (t )$´. Two cases must be considered. Ifk, hiA hk
containing only configurations satisfying a set of then: v #v . Because of the normality and con-k h
formal properties. tinuity of the membership functions, it follows that

A simple benchmark and a real-world example
99('z [ [v , t ] ] 9m (j )5m (j ).´)i ih h A Ah khave been considered to illustrate the key features of

the proposed model and its related learning algo- 99⇒ ('j [ [v , t ] ] 9minhm (j ), m (j )j.´).i ih h A Ah k
rithm. The given examples highlight that the pro-

i iIn this case, Poss(A , A ).´, hence the disjunctionposed approach can be an effective technique for h k

property is not respected. Similar considerations canknowledge extraction, providing fuzzy knowledge
be made for the casek. h11.bases with accuracy comparable and often signifi-

9In conclusion, we can say thatt $ t . But, ifcantly better than those of other state-of-the-art h h
i i9t . t , again Poss(A , A ).´ and so the disjunc-models. Also, simulation results confirm the essential h h h11 k

tion property is not respected. This is absurd, sincefeature of the proposed neuro-fuzzy architecture, that
the fuzzy sets considered have been generated by ais the ability to produce final rule bases that are also

*parameter vector belonging toV . Since the exist-interpretable since they contain well distinct fuzzy i

9 9ence oft and t is guaranteed, thent 5 t .sets. On the overall, the reported results indicate that h h h h

The unicity of t is established by the monotonici-our approach is a valid tool to automatically extract h

ty of Gaussian membership functions for valuesfuzzy rules from data providing a good balance
greater than the center.hbetween accuracy and readability.

Further extensions of the proposed model may
concern the use of differentt-norms in the rule

Appendix Binference mechanism and the use of different mea-
sures to evaluate the degree of overlapping between

Proof of Lemma 2. The proof of the lemma consistsfuzzy sets. Finally, since the proposed approach
in the formulation of a functional transformationfocuses only on interpretability of rule antecedents,

*G : G →V such that;t [T : G(t)[V .future work is aimed to extend the proposed architec- i i i i

The functionG is defined as follows:ture so as to deal with interpretability of consequents
too. G(t , t , t , . . . , t , t )[1 2 3 K 22 K 211 i

m ,g(t , t ),g(t , t ), . . . ,g(t , t ), M ,i 1 2 2 3 K 22 K 21 ii iF Gd(2m 2 t , t ), d(t , t ), d(t , t ), . . . ,d(t , t ), d(t , 2M 2 t )i 1 1 1 2 2 3 K 22 K 21 K 21 i K 21i i i i

(B.1)
A ppendix A

where
Proof of Lemma 1. Let t be the value ofX suchh i x1 y

]]that (m (t )5´)n(t .v ), with h [ h1, 2, . . . , g(x, y)[ , (B.2)iA h h hh 2
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It is easy to observe thatg(t , t )5m and0 1 iy2 x
]]]]d(x, y)[ . (B.3) g(t , t )5M. Hence, the inequality system (B.6)]]] K 21 Ki iŒ2 22 ln ´ can be rewritten as

It is easy to verify that ]]]Œg(t ,t )# x#g(t ,t )1d(t ,t ) 22 ln ´,h21 h h21 h h21 h
;x, y, z: g(x, y),g(y, z) (B.4) ]]]H Œg(t ,t )2d(t ,t ) 2 2 ln ´ # x,g(t ,t ).h h11 h h11 h h11

;x, y: d(x, y).0. (B.5) Expanding the definitions ofg and d, and making
some simplifications, we haveBecause of the validity of Eqs. (B.4) and (B.5), it is

i ipossible to state thatG(t)[V . Let [A , A , . . . ,i 1 2 t 1 th21 hi ]]]# x# t ,A ] be the vector of fuzzy sets induced byG(t)5 hKi 2
w5 [v ,v , . . . ,v , s , s , . . . ,s ] [V . Now1 2 K 1 2 K i t 1 ti i h h115 ]]]t # x, .we demonstrate that properties 1–5 defined in Sec- h 2
tion 2.3 are satisfied (assumingp 5´).

Since t , t , t , there is only one point ofUnimodality, normality and convexity are always h21 h h11
i iintersection betweenA and A and I , and it issatisfied because the membership functions are as- h h11 h

x5 t . Since this point belongs to thé-cuts of thesumed to be Gaussian. This property is valid in- h

two fuzzy sets, its membership value is not less thandependently on the functionG.
´. Moreover, the union of the twó-cut coincidesCoverage. The input spaceX can be partitionedi

with the entire intervalI . Hence we can state thatinto K 21 intervals, defined as hi

´-coverage is guaranteed in eachI and consequentlyh
[v ,v ), 1# h,K 21,h h11 i in X .iI [Hh [v ,v ], h5K 2 1. Leftmost and rightmost membership functions areh h11 i

guaranteed, since the center of the first fuzzy set isIt is easy to observe that such intervals yield a
imposed to bem and the center of the last fuzzy setipartition of the input space, that is,
is M .i

K 21i Disjunction. As seen in the previous point, for
ih ± k → (I > I 5Ø) ∧ X 5 < I .S Dh k i h each intervalI the ´-cuts of the fuzzy setsA andh51 h h

iA intersect only in the pointx5 t where theh11 hTherefore each input can be assigned to just one membership value is
interval, i.e. ;x [X 'h ] 9x [ I . Also, in everyi h

2t 1 tinterval I there are at least two fuzzy sets that h h21h
]]]S Dt 2hintersect. In particular, for a givenh, the fuzzy sets 2

]]]]]m (t )5m (t )5exp 2i i i iA h A h 2h h11 t 2 tA andA can be considered. Thé-cut of the two h h21h h11 1 2]]]]2S D]]]fuzzy sets are calculated as follows: Œ2 2 2 ln ´

5 exp(ln´)5´.;1# h#K 2 1:i

]]i Œ[A ] > I 5 hx [X um (x)$´j> I 5 [v ,v 1s 2 2 ln ´],ih ´ h i A h h h hh Since this is the unique intersection point, it is true
]]H i Œ[A ] > I 5 hx [X um (x)$´j> I 5 [v 2s 2 2 ln ´,v ),ih11 ´ h i A h h11 h11 h11 that;x [ I : minhm (x),m (x)j#´. Moreover, fori ih11 h A Ah h11

any otherk-th fuzzy set, we have thatThe intersection points of the two intervals are all the
points x such that t 1 th h21

]]k, h ⇒ v ,v ∧ ;x [ I : x$v 5 . t ⇒ ;x [ I : m (x),m (t )5´,i ik h h h k h A A kk k2]]] HŒ k. h1 1 ⇒ v .v ∧ ;x [ I : x, t ⇒ ;x [ I : m (x),m (t )5´.i iv # x#v 1s 22 ln ´, k h11 h k21 h A A k21k kh h h (B.6)]]]H Œv 2s 22 ln ´ # x,v .h11 h11 h11 Generalizing the property, we have;h ± k;x [ I :h

sup minhm (x),m (x)j#´. This statement can bei iFor ease of notation, we define x[I A Ah h k

easily generalized to the entire input spaceX , soit [2m 2 t , i i0 i 1 ;h ± k: Poss(A ,A )#´ and the disjunction proper-h kt [2M 2 t .K i K 21i i ty is satisfied.h
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Appendix C ≠m i≠m i AA Kk i
]] ]]5
≠t ≠thi K 21,iiIn order to calculate the derivatives≠m /≠t ,iA hik

≠d(t ,b)several cases must be considered: ≠m(x,M ,d ) K 21i i
]]] ]]]5 SCase 1:h5 k51 ≠d ≠tK 21i

≠m i ≠m(x ,m ,d ) ≠d(a,t )A 1 i i 1i ≠d(t ,b)K 21 ≠bi]] ]]]] S ]]] d5d (t ,2M 2t )5 2 K 21 i K 21i i]]]]]1≠t ≠d ≠a UD1i ≠b ≠t b52M 2tK 21 i K 21i i
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