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Abstract

In this paper, a fuzzy modeling method using genetic algorithms (GAs) with a
conciseness measure is presented. This paper introduces De Luca and Termini’s fuzzy
entropy to evaluate the shape of a membership function, and proposes another measure
to evaluate the deviation of a membership function from symmetry. A combined
measure is then derived from these two measures, and a new conciseness measure is
defined for evaluation of the shape and allocation of the membership functions of a
fuzzy model. Numerical results show that the new conciseness measure is effective for
fuzzy modeling formulated as a multi-objective optimization problem. © 2001 Pub-
lished by Elsevier Science Inc.
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1. Introduction

Fuzzy models [1] have been constructed by knowledge acquisition from
experts, but the knowledge acquisition through interviews has often been
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difficult because they seldom have explicit knowledge that can be represented
with fuzzy if-then type rules.

Many methods, that automatically derive if-then type fuzzy rules from
numerical data, have been proposed to overcome the problem of knowledge
acquisition. Since tuning of both the antecedent and consequent part of fuzzy
rules can be formulated as an optimization problem, evolutionary algorithms
have been applied to solve this problem. However, automatically derived fuzzy
models are not often linguistically interpretable, as recognized in the literature
[2-4].

In this paper, fuzzy modeling using genetic algorithms (GAs) using a new
conciseness measure is presented. Conciseness is a criterion that repre-
sents the linguistic interpretability of fuzzy models, and it is defined by
referring to the shape and allocation of the membership functions of a fuzzy
model.

The conciseness of fuzzy models has been evaluated by the number of fuzzy
rules, the number of membership functions [5], or the degree of freedom term
of Akaike’s information criterion (AIC) [6,7]. However, fuzzy models that have
the same number of membership functions cannot be distinguished with these
measures.

This paper introduces De Luca and Termini’s fuzzy entropy [8] for evalu-
ation of the shape of a membership function. De Luca and Termini proposed
fuzzy entropy as a measure of fuzziness. They used Shannon’s function, and
defined a measure that became largest at the grade of membership of 0.5.
Several authors have attempted to quantify fuzziness and proposed fuzzy en-
tropy [9,10]. This measure has been applicable to various industrial applica-
tions, e.g., image processing [11], fuzzy clustering [12], etc.

De Luca and Termini’s fuzzy entropy, however, cannot evaluate the devi-
ation of a membership function. This paper proposes a new measure for the
deviation of a membership function from symmetry, and derives a combined
measure of their fuzzy entropy and this proposed measure. Then a new con-
ciseness measure is defined for evaluating the shape and allocation of the
membership functions of a fuzzy model.

Since the new conciseness measure is in conflict with the accuracy of fuzzy
models, fuzzy modeling using GAs with these two criteria is formulated as a
multi-objective optimization problem [13-16].

The rest of this paper is organized as follows. Section 2 describes fuzzy
modeling using GAs with the new conciseness measure. Next, the conciseness
of fuzzy models are discussed in Section 3 in an illustrative way, followed by
Section 4 that defines a new conciseness measure. And in Section 5, numerical
results show that the conciseness measure is in conflict with the accuracy of
fuzzy models, and then is applied to fuzzy modeling using GAs. Finally,
concluding remarks are given in Section 6.
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2. Fuzzy modeling using GAs with conciseness measure

This section describes the details of fuzzy modeling using GAs with a new
conciseness measure. This measure is defined in Section 4 that follows the
discussion of the conciseness of fuzzy models in Section 3. In this paper, a very
simple procedure of fuzzy modeling using GAs is described to clarify the
feasibility of the new conciseness measure. The goal of the fuzzy modeling is to
obtain fuzzy models which are concise enough for human beings, not to
mention that they should have accurate model output, thus the fuzzy modeling
is considered as a multi-objective optimization problem.

2.1. Fuzzy model

A single-input single-output fuzzy model with simplified fuzzy inference
[17] is used in this paper. The output y of a fuzzy model with the input x is
given by

Nm
y=> w)-c, (1)
i=1
where p,(x) and ¢; (i=1,...,Ny) are grades of membership in the antecedent

parts and singletons in the consequent parts, respectively. Ny, is the number of
membership functions.

Fuzzy models are identified from a set of data D and the singleton in the
consequent part of a rule is given by

Na
= - ), (2)
=1
where Ny is the number of input—output pairs (xx, ) (k=1,...,Ny).

2.2. Membership functions

The following conditions for allocating membership functions are used to
limit the search space of fuzzy modeling:
(a) For all x € X, membership functions y;(x) (i =1,...,Ny,) satisfy

Nin

Zﬂi(x) =L (3)

i=1

(b) For all x that are not crest points, i.e. x s.t. u,(x) = 1, there are exactly
two fuzzy sets for which g;(x) > 0 and for all the others y;(x) = 0.
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Fig. 1. Example allocation of membership functions that satisfies the conditions.

(c) Each membership function is similar with respect to the crest point x = a,
in the sense that g, (x) = . (1 —=4x), where p, (x) = {1;(x) |x <a, u;(x) >
0, i, (¥) = () |a <. w(x) > 0.
(d) All the membership functions are convex.
An example allocation of membership functions that satisfies these conditions
is shown in Fig. 1. These conditions allow a fuzzy model to be determined with
the positions of the crest points and the shape of membership functions.

2.3. Rank-based evaluation

A rank-based evaluation is used for finding Pareto-optimal solutions with
the two criteria: conciseness and accuracy. Conciseness is measured by the
conciseness measure defined in Eq. (13), and accuracy is measured by mean
squared error given by

1 &

~N\2
— _ 7 4
N, 20 =50 )

where N, is the number of the test data, y is the output of the modeling target,
and y is the model output.
The rank of each chromosome i in the population R; is given by

Ri =1 + qi, (5)

where chromosome i is inferior to ¢; chromosomes.

2.4. Chromosome encoding

Since simplified fuzzy inference is employed and the allocation of mem-
bership functions is restricted with conditions (a)—(d) in Section 2.2, the pa-
rameters of a fuzzy model are the following two parameters: the positions of
the crest points of the membership functions and the shape of the membership
functions.

The positions of the crest points and the shape of the membership functions
of a fuzzy model are encoded into a chromosome. The length of all the
chromosomes in the population is fixed, and each chromosome has N, + 1
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Fig. 2. Example of a chromosome: (a) chromosome; (b) allocation of membership functions rep-
resented by the above chromosome.
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Fig. 3. Shapes of membership functions.

genes: Ny, for storing the positions of the crest points and one for the shape. An
example is shown in Fig. 2, where N, = 6. Figs. 2(a) and (b) show a chro-
mosome and the allocation of membership functions represented by the
chromosome, respectively.

The positions of the crest points of the membership functions at both of the
ends are always x = 0 and 1, respectively. Only the positions of the interme-
diate crest points appear in a chromosome. The shape parameter is either
“trimf™, “sigmf1”” or “‘sigmf2”, and the shapes of them are shown in Fig. 3.

The number of the chromosomes in the population was fixed at N,.

2.5. Genetic operators

Genetic operators are applied in the usual order: selection, crossover and
mutation. The selection operation is based on rank which is assigned using the
conciseness measure and the accuracy. The roulette wheel selection method is
used to select NV, chromosomes. The probability for the roulette wheel selection
is given by
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P
SR “

where P, = 1/R;. For the crossover operation, the chromosomes are selected in
pairs, and for each pair the two chromosomes are crossed over at a random
position. Some chromosomes among the lowest ranked chromosomes are
randomly selected and mutated.

3. Conciseness of fuzzy models

One of the most important features of a fuzzy model is its consistent rep-
resentation of pattern knowledge and symbolic knowledge. In this paper, a
pattern means a feature vector extracted from raw data, and a symbol means a
label assigned to a pattern set which has a fuzzy border. And a fuzzy pattern set
is defined by a membership function, which is effective for agreement between
information contained in a continuous space and symbolic knowledge in a
discrete space. Fuzzy inference, that uses min-max—center of gravity or
product-sum—center of gravity for treating pattern—symbol pairs, is a good
tool for interface between pattern processing in a continuous space and sym-
bolic processing in a discrete space. Humans are clearly conscious of symbolic
processing, and a fuzzy model using pattern—symbol pairs to describe its
processing is comprehensible to humans.

The question here is about the quantitative measure of comprehensibility of
fuzzy models. How comprehensible is a model with fuzzy membership func-
tions more than that with crisp membership functions? How about the case
with neural networks?

This paper studies the conciseness of fuzzy models. A concise fuzzy model is
comprehensible. Let us try to grasp the input—output relationships from fuzzy
if-then type rules. The following three fuzzy rules are assumed to be given:

If x is SMALL, then y is 1.0.
If x is MEDIUM, then y is 0.4.
If x is BIG, then y is 0.2.

The membership functions, SMALL, MEDIUM and BIG, in Fig. 4 are also
assumed to be given.

The membership functions in Fig. 4(a) are crisp and equidistantly allocated
on the universe of discourse. Those in Figs. 4(b) and (c) are triangular ones.
While the membership functions in (b) are evenly allocated on the universe of
discourse, those in (c) are unevenly allocated. The membership functions in
Fig. 4(d) have parts with gentle slope where grades of membership are nearly
equal to 0.5, and are not equidistantly allocated. The solid lines in Fig. 5 show
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Fig. 4. Examples of membership functions: (a) crisp, equidistant allocation; (b) triangular, equi-
distant allocation; (c) triangular, not-equidistant allocation; (d) grade nearly equal to 0.5, not-
equidistant allocation.
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Fig. 5. Input-output relationships: (a) crisp, equidistant allocation; (b) triangular, equidistant al-
location; (c) triangular, not-equidistant allocation; (d) grade nearly equal to 0.5, not-equidistant
allocation.

the input-output relationships obtained from the membership functions in
Fig. 4.

The question that arises here is which relationships are easier for us to image
only from the above three fuzzy if-then type rules. From the three discrete
rules, we can image the step-wise input—output relationships of model (a) most
easily. It becomes more difficult with model (b) and more with model (c). The
relationships of model (d) are the most difficult for us to image.
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From the above observation, the conciseness of fuzzy models is defined in
this paper as follows.

Definition 1 (Conciseness of fuzzy model). A fuzzy model is said to be more
concise if the membership functions are more equidistantly allocated on the
universe of discourse, and the shapes of membership functions are less fuzzy.

Definition 1 defines the conciseness of fuzzy models as the easiness for
grasping the correspondence between the discrete fuzzy rules and the contin-
uous values.

4. Fuzzy entropy

A quantitative measure of the conciseness of fuzzy models is examined in the
following two subsections.

4.1. De Luca and Termini’s fuzzy entropy

De Luca and Termini [8] defined fuzzy entropy of fuzzy set A as
d(4) = / = () I (x) = (1= g, () In(1 = o, (x)) } b, (7)
X

where p,(x) is the membership function of fuzzy set A. If u,(x) = 0.5 for all
x on the support of A, then the fuzzy entropy of fuzzy set 4 is the maxi-
mum.

This fuzzy entropy can distinguish the shapes of membership functions, i.e.,
triangular shape, sigmoidal shape, etc., and coincides with the definition of the
conciseness. Thus this entropy can be a candidate for a quantitative measure of
the conciseness of fuzzy models.

In the case where conditions (a) and (b) in Section 2.2 are given, De Luca
and Termini’s entropy can be simplified. Assuming that two membership
functions p,(x) and pg(x) are overlapping and for all x € [x;,x)] wu,(x) +
ug(x) =1, then

d(4) +d(B) = 2 / L) 10 1, (5) + 12 6) I () . (8)

Under conditions (a) and (b) in Section 2.2, we can use the following measure
for evaluation of the shape of membership functions instead of Eq. (7):

at) == [ 0 () . )
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4.2. Measure for deviation of membership function

This paper defines a quantitative measure of the deviation of a membership
function from symmetry. The membership function is assumed to satisfy
conditions (a)-(d) in Section 2.2. This measure is defined by considering

Eq. (9).

Definition 2 (Measure for deviation of membership function). The measure for
the deviation of fuzzy set 4 from symmetry is given by

[ . He(x)
)= | et mhea (10)

where x; and x, are the left and right terminal points of the support of fuzzy set
A, respectively; w,(x) is the membership function of fuzzy set A4; u-(x) is a
symmetrical membership function with respect to the vertical line through the
crest, which has the same support as that of fuzzy set A4.

Fig. 6 illustrates an example of fuzzy sets 4 and C.
In the case where the shape of the membership functions in Fig. 6 is tri-
angular, the measure r;(4) is expressed as

d| 1 1 |d| 1 1

. — - — 1 < ——<d< -

Fui(4) S{s 2ln 2 2+s 0<a<l, 2\d\2 ,
(11)

where s is the width of support, and d is the deviation of the crest point of fuzzy
set A from that of the isosceles triangular fuzzy set C. The value of this measure
r4i(4) is monotonically increasing with the absolute value of d. Numerical
calculation gives that r(4) is also monotonically increasing with the absolute
value of d with any shapes of membership functions that satisfy conditions (a)—
(d) in Section 2.2. This measure, which evaluates the deviation of a membership

Grade

Fig. 6. Membership function 4 and symmetrical membership function C.
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function, is another good candidate for the conciseness measure of fuzzy
models. A combination of De Luca and Termini’s fuzzy entropy in Eq. (9) and
the deviation measure in Eq. (10) can evaluate the conciseness defined in
Section 3.

4.3. Combined measure

One way of combining the two measures is summation. By summing the
fuzzy entropy d(A4) in Eq. (9) and the measure for deviation of a membership
function r(4) in Eq. (10), a new measure dr(4) is obtained

X2

dr(4) = d(4) +r(4) = — /: f(¥) In gy (x) + A He(x) 1“25_8 dx

X2

—— [ et ) . (12)
X

The fuzzy entropy d(A4) can evaluate the shape of a membership function. And

if the shape is fixed, the measure (4) can evaluate the deviation of a mem-

bership function.

4.4. Conciseness measure

A new conciseness measure dr,,, is introduced to evaluate the shapes and
allocations of N, fuzzy sets 4; (i = 1,..., Ny,) on the universe of discourse X on
x-axis. The new conciseness measure dr,,, is defined as

dr avr —

Z dr(4,), (13)

where dr(4) is the combined measure in Eq. (12), which evaluates the shape
and deviation of a membership function, N, is the number of fuzzy sets
A4; (i=1,...,Ny) on the universe of discourse X on x-axis.

5. Numerical results

This section describes numerical results to show usefulness of the concise-
ness measure for fuzzy modeling. The following single-input/single-output
function is used as a modeling target throughout this section:

1 —2x 0<x<0.5),

f(x):{4x2+8x3 (0.5 <x<1). (14)
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Fig. 7. Modeling target for numerical experiments (f(x) in Eq. (14)).

Fig. 7 depicts this function. Conditions (a)—(d) in Section 2.2 was imposed and
two membership functions were set to overlap everywhere.

5.1. Conciseness measure vs. accuracy of fuzzy models

To examine the relationships between the conciseness measure (dr,,;) and
the accuracy, 1000 fuzzy models were randomly generated and their concise-
ness measure and accuracy were calculated. Among them, the fuzzy models
near the Pareto front are shown in Fig. 8 with their conciseness measure and
accuracy. In this case, the shape of membership functions was fixed to trian-
gular and the number of membership functions of a fuzzy model was set at 6.
Each dot in the figure corresponds to a fuzzy model that has a unique com-
bination of the crest points of membership functions. From Fig. 8, it is ob-
served that the conciseness measure and the accuracy are in conflict as
indicated with the broken line.
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Number of membership functions: Nm =6

Fig. 8. New conciseness measure vs. accuracy of fuzzy models with triangular membership func-
tions.
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(1) Accuracy: 0.0103
New conciseness measure: 0.107

> X
0 1
(2) Accuracy: 0.0111
New conciseness measure: 0.102
3
L Y, A A W Ey
> X

(3) Accuracy: 0.0144
New conciseness measure: 0.101

Fig. 9. Allocation of the membership functions of the fuzzy models (1), (2) and (3) in Fig. 8.

Figs. 9(1), (2) and (3) show the allocations of the membership functions of
the fuzzy models (1), (2) and (3), which were on the Pareto front in Fig. §,
respectively. The less the conciseness measure was, the more equidistant the
allocation of membership functions was.

The conciseness measure was also examined with fuzzy models that have
various shapes of membership functions. 10 fuzzy models were taken from the
Pareto front in Fig 8, and for each fuzzy model, the conciseness measure dr,,,
and the accuracy were calculated by varying the shapes of membership func-
tions. It was observed that the conciseness measure and the accuracy were in
conflict when the shapes of membership functions were near triangular.

5.2. Fuzzy modeling using GAs with conciseness measure

Fuzzy modeling using GAs with the conciseness measure was done. The
parameters for the numerical experiments were the following: the number of
chromosomes N, was set at 50; the shape parameter in a chromosome was
either “trimf™, “sigmf1” or “sigmf2” in Fig 3; the crossover rate and mutation
rate were set at 0.5 and 0.05, respectively.
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Fig. 10. Fuzzy models acquired after 10 generations of genetic operations.

(1) Accuracy: 0.0136
New conciseness measure: 0.101

(2) Accuracy: 0.0170
New conciseness measure: 0.0645

Fig. 11. Allocation of membership functions of acquired fuzzy models.

Figs. 10 and 11 show the results. The dots labeled “trimf”, “sigmfl” and
“sigmf2”” are the initial chromosomes, which were randomly generated, and the
dots labeled ““trimf_g” and “sigmfl_g” are the chromosomes after 10 gener-
ations of genetic operations.

From Fig. 10, it is observed that the fuzzy models are distributed on the
Pareto front at the 10th generation as indicated with the broken line. Figs.
11(1) and (2) show the allocations of the membership functions of the fuzzy
models (1) and (2), which were on the Pareto front in Fig. 10, respectively. A
trade-off between the conciseness measure and the accuracy enabled the suc-
cessful search for variety of concise fuzzy models with good accuracy.
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6. Conclusions

This paper presented a fuzzy modeling method using the new measure for
the conciseness of fuzzy models. This paper defined the conciseness of fuzzy
models, and quantified the conciseness by introducing fuzzy entropy. De Luca
and Termini’s fuzzy entropy could evaluate the shapes of membership func-
tions, but their entropy could not distinguish similar shaped membership
functions. This paper defined a measure for deviation of a membership func-
tion from symmetry. This is another measure for the conciseness of fuzzy
models. With De Luca and Termini’s measure and the measure for deviation, a
combined measure was derived. Based on the combined measure, a conciseness
measure was defined to evaluate the shape and allocation of membership
functions of a fuzzy model. This new conciseness measure was in conflict with
the accuracy of fuzzy models in the case where the membership functions were
near triangular. Numerical results showed that the new conciseness measure
was effective for fuzzy modeling formulated as a multi-objective optimization
problem.
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