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Abstract—An evolutionary approach to designing accurate
classifiers with a compact fuzzy-rule base using a scatter partition
of feature space is proposed, in which all the elements of the fuzzy
classifier design problem have been moved in parameters of a
complex optimization problem. An intelligent genetic algorithm
(IGA) is used to effectively solve the design problem of fuzzy clas-
sifiers with many tuning parameters. The merits of the proposed
method are threefold: 1) the proposed method has high search
ability to efficiently find fuzzy rule-based systems with high fitness
values, 2) obtained fuzzy rules have high interpretability, and 3)
obtained compact classifiers have high classification accuracy on
unseen test patterns. The sensitivity of control parameters of the
proposed method is empirically analyzed to show the robustness
of the IGA-based method. The performance comparison and
statistical analysis of experimental results using ten-fold cross
validation show that the IGA-based method without heuristics is
efficient in designing accurate and compact fuzzy classifiers using
11 well-known data sets with numerical attribute values.

Index Terms—Fuzzy classifier, intelligent genetic algorithm, or-
thogonal experimental design, scatter partition.

I. INTRODUCTION

DESIGNING optimal fuzzy classifiers is equivalent to
finding an optimal solution in a high-dimensional search

space where each point represents a rule set, membership func-
tions, and the behavior of the corresponding system. Genetic
algorithms (GAs) have been proven effective in searching
extremely complex spaces, and are particularly suitable for
solving multimodal optimization problems [1]. This study
investigates how to efficiently partition high-dimensional
feature space using GA to produce an accurate classifier with
a compact fuzzy-rule base. The following three fundamental
issues are simultaneously considered to efficiently achieve this
goal.
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A. Fuzzy Partition

There are three fuzzy partition approaches: grid partition, tree
partition, and scatter partition, and they are briefly described as
follows.

1) Grid partition is the most commonly used fuzzy parti-
tion approach [2]–[6]. There may be fuzzy rules in the
case of fuzzy sets on each axis of an -D feature space
using grid partition. A major advantage of grid partition is
that fuzzy rules obtained from fixed linguistic fuzzy grids
are always linguistically interpretable. Efficient high-di-
mensional GA-based fuzzy classifiers with comprehen-
sible fuzzy-rule bases using linguistic grid partitions can
be found in [3]–[6].

2) Tree partition results from a series of guillotine cuts. A
guillotine cut is made entirely across the subspace to be
partitioned, and each of the regions thus produced can
then be subjected to independent guillotine cutting. Tree
partition can significantly relieve the problem of rule ex-
plosion and accelerate classification, but its application to
high-dimensional problems faces practical problems [7].
Janikow proposed a GA-based method for optimizing the
fuzzy components of fuzzy trees, in which the optimiza-
tion is incorporated with the fuzzy tree-building routine
[8], [9].

3) Scatter partition uses multi-dimensional antecedent fuzzy
sets. From the viewpoint of classification performance,
scatter partition may be the most effective approach to
designing high-dimensional fuzzy classifiers [3]. Scatter
partition usually generates fewer fuzzy regions than the
grid and tree partitions owing to the natural clustering
property of training patterns. However, scatter partition
of high-dimensional feature spaces is difficult, and thus
some learning or automatic evolutionary procedures
become necessary [7]. The scatter partition approaches
can be further divided into three fuzzy partition methods
based on the type of fuzzy regions: hyperbox partition
[10], ellipsoid partition [11] and polyhedron partition
[12].

B. Compact Fuzzy-Rule Base

Compact fuzzy-rule base is an important objective for de-
signing efficient fuzzy classifiers. Some approaches that attempt
to achieve this objective are described below.
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1) Feature selection. Because not all features are necessary
for high-dimensional classification task, a genetic feature
selection process is used to determine a set of feature sub-
sets [6]. Thawonmas and Abe [13] proposed an irrele-
vant feature elimination algorithm based on the analysis
of class regions generated by a fuzzy classifier.

2) Rule selection. Ishibuchi et al. [3], [4] proposed a
GA-based method to minimize the number of linguistic
fuzzy rules for high-dimensional fuzzy classifiers.

3) Selecting the best one rule at a time iteratively. The best
rule on a training set and a fixed class is the one that is
consistent and affects the highest number of examples [5].

4) Partitioning of feature space. Mandal [14] proposed a par-
titioning method to decompose a feature space into over-
lapping hyperboxes, depending on the relative positions
of the pattern classes found in the training patterns.

5) Fuzzy clustering with model reduction. Roubos and
Setnes [2] proposed an approach that fuzzy clustering
is first used to obtain an initial rule-based model. Simi-
larity-based simplification and multi-objective GA-based
optimization are then used to decrease the complexity of
the model while maintaining high accuracy.

C. High Classification Accuracy

Some approaches that can improve classification accuracy are
described below.

1) Membership functions must be flexible enough to de-
velop an accurate fuzzy classifier [15]. However, flex-
ible membership functions need additional tuning param-
eters to adjust the shapes of these membership functions.
Inflexible membership function may lead to more fuzzy
rules for obtaining an accurate classifier.

2) Homaifar and McCormick [16] showed that simultaneous
design of membership functions and fuzzy rules can en-
hance the performance of fuzzy systems. However, the si-
multaneous design using GA is generally applied to fuzzy
controllers with few input variables [16], [17]. For high-
dimensional patterns, there are few evolutionary fuzzy
classifier designs using the simultaneous design of flex-
ible membership functions and fuzzy rules [18].

3) It has been confirmed that the performance of fuzzy rules
can be improved by adjusting the certainty grade of each
rule [19]. To alleviate the load of GA, an efficient heuristic
rule generation procedure for determining the consequent
class and the certainty grade of the fuzzy rule is used in
[3], [4].

According to the above-mentioned analysis, if flexible mem-
bership functions and fuzzy rules with both certainty grade and
consequent class are determined simultaneously to obtain an ac-
curate and compact fuzzy-rule base, the evolutionary design of
high-dimensional fuzzy classifiers can be regarded as an opti-
mization problem with lots of system’s tuning parameters. The
performance of GA would be greatly degraded when applied to
a large parameter optimization problem (LPOP) that is shown
by theoretical analysis in [20]. As a result, the success of the
approach to formulating the fuzzy classifier design to an LPOP

mainly relies on a powerful optimization algorithm to solve the
LPOP.

In this paper, an evolutionary approach to designing accurate
classifiers with a compact fuzzy-rule base is proposed, in which
all the elements of the fuzzy classifier design problem have been
moved in parameters of a complex optimization problem. An
intelligent genetic algorithm IGA based on orthogonal experi-
mental design (OED) [21] is used to effectively solve the design
problem of high-dimensional fuzzy classifiers with many tuning
parameters. The OED-based evolutionary algorithms can effec-
tively solve the applications of LPOP [22]–[24].

The merits of the proposed method are threefold: 1) the
proposed method has high search ability to efficiently find
fuzzy rule-based systems with high fitness values, 2) obtained
fuzzy rules have high interpretability, and 3) obtained compact
classifiers have high classification accuracy on unseen test
patterns. The sensitivity of control parameters of the proposed
method is empirically analyzed to show the robustness of
the IGA-based method. The performance comparison and
statistical analysis of experimental results using ten-fold cross
validation show that the IGA-based method without heuristics
is efficient in designing accurate and compact fuzzy classifiers
using 11 well-known data sets with numerical attribute values.

The next section introduces the proposed evolutionary fuzzy
classifier design. An efficient algorithm IGA for solving the de-
sign problem of accurate classifiers with a compact fuzzy-rule
base is described in Section III. In Section IV, the proposed
method is demonstrated on well-known classification problems.
Section V concludes the paper.

II. EVOLUTIONARY FUZZY CLASSIFIER DESIGN

The proposed evolutionary fuzzy classifier design involves:
1) designing membership functions and determining a proper
fuzzy partition approach for efficiently partitioning feature
spaces, 2) determining a fuzzy reasoning method and fuzzy
if-then rules corresponding to fuzzy regions, and 3) determining
a fitness function and a chromosome representation for using
IGA to optimize the system’s tuning parameters.

A. Membership Function and Fuzzy Partition

Flexible generic parameterized fuzzy region can be deter-
mined by flexible generic parameterized membership functions
(FGPMF’s) and a hyperbox-type fuzzy partition of feature
space. Each fuzzy region corresponds to a parameterized fuzzy
rule. The major advantage of the parameterized fuzzy region
approach is that only few overlapping fuzzy regions can cover
all training patterns with high classification accuracy. For
simplicity of explanation, each attribute value is assumed to be
a real number in the unit interval [0,1] [3]. In experiments of
our study, every attribute value is normalized into a real number
in the unit interval [0,1]. An FGPMF with a single fuzzy
set is defined as

(1)
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(a) (b) (c) (d)

Fig. 1. Examples of FGPMF. (a) a > 0 and d < 1. (b) a < 0 < b. (c) b � 0. (d) b � 0 and c � 1.

(a) (b) (c)

Fig. 2. Examples of an antecedent fuzzy setA with linguistic values (S: small, MS: medium small, M: medium, ML: medium large, L: large). (a)A represents
{MS, M, ML}. (b) A represents {MS, M, ML, L} or NOT small. (c) A represents {S, MS, M, ML, L} or ALL.

where and . The variables , , ,
and determining the shape of a trapezoidal fuzzy set are to be
optimized.

Five parameters instead of , ,
and are encoded in a chromosome for facilitating IGA. Let an
additional variable where . determines lo-
cation of the fuzzy set characterizing the occurrence of training
patterns. Variables , , , and can be derived as

(2)

Some examples of FGPMF are shown in Fig. 1. The advan-
tages of the transformation are described as follows.

1) Confining all genetic searches within feasible regions.
Notably, no inequality constraints are needed to define
the relationship among parameters like those for , ,
, and in (1). This transformation can always make the

derived values of , , , and feasible. It is well recog-
nized that confining genetic searches within feasible re-
gions is often much more reliable than penalty approaches
for handling constrained problems [25].

2) If and , the condition is viewed as a “don’t
care” condition [see Fig. 1(d)]. Since don’t care condi-
tions can be omitted, short fuzzy rules with a less number
of antecedent conditions can be obtained.

3) Reducing interaction effects between genes. The evolu-
tionary search for the optimal location of fuzzy regions
could become more efficient by evaluating indepen-
dently. One of two parametric gene pairs, ( , ) and
( , ), is used to adjust one side of a trapezoidal fuzzy
set. Two sides can be separately and independently ad-
justed. Reducing interaction effects between genes ben-
efits not only IGA but also the standard GA (see experi-
ments in Section IV-A).

Fig. 3. Fuzzy rules for an iris classification problem using 50% of patterns for
training and the remainder for testing. The recognition rates for training and test
data are both 97.33% (73/75). The antecedent part of rule R has a “don’t care”
condition for the feature x .

B. Fuzzy Rule and Fuzzy Reasoning Method

The following fuzzy if-then rules for -dimensional pattern
classification problems are used in our design of fuzzy classifier
systems

: If is and and is then Class with
,

where is a rule label, denotes a feature variable, is
an antecedent fuzzy set, denotes a consequent
class, is a number of classes, is a certainty grade of this
rule in the unit interval [0,1], and is a number of fuzzy rules
in the initial fuzzy-rule base.

To enhance interpretability of fuzzy rules, linguistic vari-
ables and fuzzy rules can be used in our classifiers. Each
variable takes values in [0,1] and has a linguistic set

for . Each linguistic
value of equally represents 1/5 of the domain [0,1]. For
example, is MS (medium small). An antecedent
fuzzy set where denotes a set of subsets of
[5]. Examples of linguistic antecedent fuzzy sets are shown
in Fig. 2. For example, in a computer simulation described in
Section IV-B, we obtained the following three rules with two
features for an iris classification problem (see Fig. 3).
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Fig. 4. Chromosome representation.

: If is ALL then Class 1 with ,
: If is NOT large and is NOT small then Class 2

with , and
: If is ALL and is NOT small then Class 3 with

.
In the training phase, all the variables and are treated

as parametric genes encoded in chromosomes and their near-op-
timal values are obtained using IGA. In the test phase, to de-
termine the class of an input pattern
based on voting by multiple fuzzy if-then rules that are compat-
ible with , the following fuzzy reasoning method is adopted.

Step 1) Calculate score for each
class as follows:

(3)

where denotes the fuzzy classifier, the scalar
value , and
represents the membership function of the an-
tecedent fuzzy set .

Step 2) Classify as the class with a maximum value of
.

C. Fitness Function and Chromosome Representation

Three objectives of designing an efficient fuzzy classifier
using IGA are as follows:

1) to maximize the number of the correctly classified
training patterns;

2) to minimize the number of fuzzy rules;
3) to minimize the number of used features.

A three-objective GA can be used to find nondominated rule
sets [3]. In this study, we combine these three objectives into a
single scalar fitness function as

(4)

where and are positive weights. The weights should be
specified based on the users’ preference. In this study, we aim to
obtain high classification accuracy. If it is in a tie situation, min-
imizing rule number is the second optimizing criterion. Simi-
larly, minimizing feature number is the last optimizing criterion.
Therefore, we use and for the desired
optimizing criteria, i.e., to maximize classification accuracy, in
a tie situation, to minimize rule number, and in a new tie situa-
tion also to minimize the used feature number.

A chromosome consists of control genes for selecting useful
features and significant fuzzy rules, and parametric genes for
encoding the membership functions and fuzzy rules. This de-
sign means that feature selection, rule selection, membership
function tuning, consequent class determination, and rule cer-
tainty grade tuning are simultaneously determined to obtain a

minimal number of fuzzy regions which can cover all training
patterns with high classification accuracy.

The control gene comprises two types of parameters. One is
parameter , , represented by one bit for elim-
inating unnecessary fuzzy rules. If , the fuzzy rule
is excluded from the rule base. Otherwise, is included. The
other is parameter , , represented by one bit for
eliminating useless features. If , the feature is excluded
from the classifier. Otherwise, is included. The parametric
genes consist of three types:

1) , , for determining the antecedent
fuzzy set for each feature variable in rule ;

2) for determining the consequent class of
rule ;

3) for determining the certainty grade of rule
;

where and . A rule base with
fuzzy rules is represented as an individual, as shown in Fig. 4.
The number of encoding parameters to be optimized is equal to

. A chromosome representation uses a
binary string for encoding control and parametric genes. There
are 8 b for encoding one of parameters and .

Since each fuzzy region defines a fuzzy rule, the setting of
number is independent of value but dependent on the
number of fuzzy regions. Generally, is set to the maximal
number of possible fuzzy regions. In this study, is set to .
The design of an efficient fuzzy classifier is formulated as an
LPOP. If the optimal or near-optimal solution to the LPOP can
be found, an efficient fuzzy classifier can be obtained.

III. SOLVING THE DESIGN PROBLEM USING IGA

The orthogonal experimental design (OED) of intelligent
crossover is described in Section III-A. Section III-B presents
the main power of IGA, i.e., the intelligent crossover. Finally,
Section III-C gives the algorithm IGA.

A. Orthogonal Experimental Design

An efficient way to study the effect of several factors simul-
taneously is to use OED with both orthogonal array (OA) and
factor analysis [21]. Many design experiments use OED for de-
termining which combinations of factor levels (or treatments)
to use for each experiment and for analyzing the experimental
results. The factors are the variables (parameters), which affect
the chosen response variable (fitness function), and a setting (or
a discriminative value) of a factor is regarded as a level of the
factor. The term “main effect” designates the effect on the re-
sponse variable that one can trace to a design parameter.

OA is a matrix of numbers arranged in rows and columns
where each row represents the levels of factors in each run and
each column represents a specific factor that can be changed
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from each experiment. The array is called orthogonal because
all columns can be evaluated independently of one another, and
the main effect of one factor does not bother the estimation of
the main effect of another factor.

Factor analysis using the OA’s tabulation of experimental re-
sults can allow the main effects to be rapidly estimated, without
the fear of distortion of results by the effects of other factors.
Factor analysis can evaluate the effects of individual factors on
the evaluation function, rank the most effective factors, and de-
termine the best level for each factor such that the evaluation is
optimized.

OED uses well-planned and controlled experiments in
which certain factors are systematically set and modified, and
then main effects of factors on the response can be observed.
Therefore, OED using OA and factor analysis is regarded as a
systematical reasoning method [21]. The merit of intelligent
crossover is that the systematic reasoning ability of OED
is incorporated to economically identify the good genes of
parents and intelligently combine these good genes to generate
offspring. The two-level OA used in the intelligent crossover
is described below.

Let there be factors with two levels for each factor. The
number of experiments is for the popular “one-factor-at-a-
time” study. Generally, levels 1 and 2 of a factor represent se-
lected genes from parents 1 and 2, respectively. To use an OA of

factors with two levels, we obtain an integer ,
build an orthogonal array with rows and
columns, use the first columns, and ignore the other
columns. For instance, Table I shows an OA . OA can re-
duce the number of experiments for factor analysis. The number
of OA experiments required to analyze a single factor is only
where . An algorithm of constructing OA’s can
be found in [26].

After proper tabulation of experimental results, the summa-
rized data are analyzed using factor analysis to determine the
relative effects of levels of various factors. Let denote a fitness
value to be maximized for experiment , where .
Define the main effect of factor with level as where

and , 2

(5)

where if the level of factor of experiment is ;
otherwise, . If , the level 1 of factor makes a
better contribution to the fitness function than level 2 of factor

does. Otherwise, level 2 is better. The most effective factor
has the largest main effect difference .

Note that the main effect holds only when no interaction
exists or when it is weak, and that makes the experiment
meaningful. In order to achieve an effective design, experi-
ments should be prepared so as to reduce interaction effects. In
addition, to accurately estimate the main effect, all candidate
solutions corresponding to the conducted combinations need
to be feasible for constrained problems if possible. The aim of
the encoding scheme of FGPMF using parameters instead of
variables , , and is to simultaneously maintain feasibility
of chromosomes and reduce interaction effects.

TABLE I
ORTHOGONAL ARRAY L (2 )

B. Intelligent Crossover

Each parameter is encoded in a chromosome using binary
codes. Like traditional GA’s, two parents and produce
two children and in one crossover operation. If specific
control parameters or in two parent chromosomes are all
equal to zero, the corresponding governed parameters are not
necessary to participate the crossover operation. The parame-
ters having identical values in two parents do not participate the
crossover operation such that the chromosomes can be tempo-
rally shorten possibly resulting in using a small OA table. Let
the number of all participated parameters be randomly divided
into segments where each segment is treated as a factor. The
following steps describe how to use OED to achieve intelligent
crossover.

Step 1) Use the first columns of OA where
.

Step 2) Let levels 1 and 2 of factor represent the th pa-
rameter of a chromosome coming from parents
and , respectively.

Step 3) Evaluate the fitness values for experiment where
. The value is the fitness value of .

Step 4) Compute the main effect where
and , 2.

Step 5) Determine the better one of two levels of each factor.
Select level 1 for the th factor if . Other-
wise, select level 2.

Step 6) The chromosome of is formed using the com-
bination of the better genes from the derived corre-
sponding parents.

Step 7) The chromosome of is formed similarly as ,
except that the factor with the smallest main effect
difference adopts the other level.

Step 8) The best two individuals among , , , ,
and combinations of OA are used as the final
children and for elitist strategy.

One intelligent crossover operation takes fitness eval-
uations, where , to explore the search space of

combinations. Generally, is a potentially good approxi-
mation to the best one of combinations. The larger the value
of , the more efficient it is the intelligent crossover if there
exists no or weak interaction effect among gene segments. Con-
sidering the interaction effect, the smaller the value of , the
more accurate it is the estimated main effects of gene segments.
Considering the tradeoff, an efficient criterion is to minimize the
interaction effects while maximizing the value of .
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TABLE II
DATA SETS WITH NUMERICAL ATTRIBUTE VALUES. N IS THE NUMBER OF ENCODING PARAMETERS IN THE CHROMOSOMES OF IGA

For practical use, the proper value of depends on the
number of encoding parameters and their interaction effects.
Generally, there are two approaches to specifying the value of

. One is to adaptively change the value of during the evo-
lution process [22]–[24]. To achieve an efficient coarse-to-fine
search, is gradually increased when the evolution proceeds
[24]. The other is to use a constant value of according to
domain knowledge and simulation results.

C. Intelligent Genetic Algorithm IGA

IGA of the proposed method is given as follows:

Step 1) Initiation: Randomly generate an initial population
with individuals.

Step 2) Evaluation: Evaluate fitness values of all individuals.
Step 3) Selection: Use the simple ranking selection that re-

places the worst individuals with the best
individuals to form a new population,

where is a selection probability. Let be the
best individual in the population.

Step 4) Crossover: Randomly select individuals
including , where is a crossover probability.
Perform intelligent crossover operations for all se-
lected pairs of parents.

Step 5) Mutation: Apply a conventional bit-inverse mutation
operator to the population using a mutation proba-
bility . To prevent the best fitness value from de-
teriorating, mutation is not applied to the best indi-
vidual.

Step 6) Termination test: If a prespecified termination con-
dition is satisfied, stop the algorithm. Otherwise, go
to Step 2.

IV. PERFORMANCE EVALUATION

The 11 well-known data sets with numerical attribute values,
as shown in Table II, are used to demonstrate the superiority of
the proposed method. All the data sets are available from [27].
The set of test classification problems is composed of problems
with various dimensions from 3 to 60 and various degrees of
overlapping that the general test accuracy ranges from 50% to
100%. All the feature values are normalized to real numbers in
the unit interval [0,1].

A standard GA (SGA) with elitist strategy derived by MIT
GALib [28] is used to demonstrate high search ability of IGA.
The C4.5 release 8 algorithm [29] is compared with to demon-
strate high test classification accuracy and compactness of the
IGA fuzzy classifiers. Both IGA and SGA are implemented
using C++ on a PC with Pentium III/1 GHz processor. The pa-
rameters of the IGA-based method are as follows unless oth-
erwise specified: , , ,

, and . For handling classification prob-
lems with various dimensions, the stopping criterion of IGA is
to use for all problems. The genetic parameters
of SGA are the same as those of IGA. The default parameter
settings of C4.5 are used.

In Section IV-A, the sensitivity of control parameters of the
proposed method is empirically analyzed to show the robust-
ness of the IGA-based method. In Section IV-B, some experi-
ments are used to demonstrate high performance of the proposed
method.

A. Sensitivity Analysis

The performance of classifiers using an evolutionary design
should not be influenced too much by the control parameters of
GA. In order to show the robustness of the proposed method,
we analyze the performance of IGA using various parameter
combinations with 30 independent runs each and determine a
set of parameter values in default of domain knowledge. Each
data set is randomly divided into two disjoint sets of equal size.
One set is used for training and the other for testing.

1) Sensitivity of Genetic Parameters and : Generally,
crossover probability and mutation probability are the
major factors influencing the performance of GA. Usually, the
value of is greater than 0.5 and takes values in [0.005,
0.05] [30]. Conventionally, . We analyze the per-
formance of the proposed method with various combinations of

and , where takes values in {0.6,0.7,0.8,0.9} and
takes values in {0.005,0.01,0.05}.

The statistical results of IGA based on fitness values for three
data sets (iris, wine, and heart-c) are shown in Table III. The
results show that the variance of fitness values for all combina-
tions is relatively small and there is no combination of and

which is the best one in all the three classification problems.
It reveals that and are not sensitive to the performance of
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TABLE III
STATISTICAL RESULTS OF IGA BASED ON FITNESS VALUES FOR THREE DATA SETS USING 12 COMBINATIONS OF P AND P .

THE VALUES OF P ARE 0.6, 0.7, 0.8, AND 0.9. THE VALUES OF P ARE 0.005, 0.01, AND 0.05

TABLE IV
PERFORMANCE OF CLASSIFIERS USING VARIOUS COMBINATIONS OF W AND W . THE VALUES OF W ARE 0.1, 0.3, AND 0.5.

THE VALUES OF W ARE 0.001, 0.005, AND 0.01. TrCR IS THE TRAINING CLASSIFICATION RATE

IGA. Due to the number of encoding parameters in a chromo-
some is large where , the variance of heart-c can be
further decreased using a large value of .

2) Sensitivity of Weights and : Since the preferred
order of objectives is as follows: 1) classification accuracy, 2)
rule number, and 3) feature number, the relationship of weights
is specified as . To show that the weights and

in the fitness function are not sensitive to the obtained clas-
sifiers, nine combinations of and are conducted, where

takes values in {0.001, 0.005, 0.01} and takes values in
{0.1,0.3,0.5}. The experimental results are shown in Table IV.
There is no combination of and which is the best one
in all the three classification problems. The small variances of
training classification rate , rule numbers , and fea-
ture numbers of obtained classifiers reveal that IGA is ef-
ficient for finding good solutions and the weights and
are not sensitive.

3) Sensitivity of Factor Number : To understand how does
affect the performance of IGA, various fixed values of are

conducted. To make use of all columns of OA, is usually set
to where is an integer. Let be the number of
parameters participated in the intelligent crossover operation.

means that one parameter is treated as a factor.
The cut points are randomly specified. Considering two
high-dimensional data sets, typical results of convergence for
various values of are shown in Fig. 5.

From the simulation results, some observations are given as
follows.

i) The performance of is relatively inefficient
in a limited amount of computation time. One reason is
that the interaction effect between factors is relatively
large. The other is that one generation takes many fitness
evaluations.

ii) The performance of is better in the early evolution
but worse in the later evolution because the effect of OED
in the intelligent crossover is weak.

iii) The performance of is generally the best for all
experiments in this study, including the results of Fig. 5.

iv) Compared with IGA, it is difficult for SGA with one-cut-
point crossover to effectively improve the fitness value

(a)

(b)

Fig. 5. Convergences of various values of the factor number � (alpha). Each
mark on the curve denotes as the result of one generation: (a) wdbc data set and
(b) sonar data set.
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in the later evolution, especially for the case with lots of
encoding parameters.

If the computation time can be properly increased, the final
fitness values of IGA with various values of are almost similar
according to computer simulation.

4) Sensitivity of FGPMF Parameters: The degree of
freedom of a trapezoid fuzzy set is 4. In order to facilitate
IGA, the proposed encoding method for FGPMF uses five
encoding parameters without constraints. The variables , , ,
and to be optimized can also be derived using four encoding
parameters without constraints: , , ,
and .

Both encoding methods are used to encode fuzzy sets. The
typical performance for IGA and SGA using the sonar data set
is shown in Fig. 6. From the experimental results, it can be found
that:

i) the five-parameter encoding method performs better
than the four-parameter one for both IGA and SGA.
Although the number of encoding parameters is larger,
the experimental results reveal that reducing interaction
effects between genes is important and the proposed
encoding method is effective;

ii) IGA performs better than SGA for both four- and five-
parameter encoding methods. The fitness value of IGA
with the four-parameter method is slightly better than
that of SGA with five-parameter method. Generally, for
a small parameter optimization problem, the contribution
of reducing interaction effects to evolution performance
is larger than using IGA instead of SGA. For a very large
parameter optimization problem, IGA plays an important
role in solving the investigated design problem.

B. Performance Comparisons

The proposed method using a scatter partition tries to maxi-
mize classification accuracy and minimize the numbers of used
features and fuzzy rules. Due to different aims and merits of
both grid partition and tree partition approaches described in
Section I, the performance of the proposed approach cannot be
directly compared with those of nonscatter partition approaches
in justice. However, some performance comparisons with the
fuzzy grid partition approach [3], [4], the tree partition method
C4.5 [29], and the fuzzy scatter partition methods [10]–[12] are
given to demonstrate the following three merits of the proposed
method: 1) the proposed method has high search ability to effi-
ciently find fuzzy rule-based systems with high fitness values, 2)
obtained fuzzy rules have high interpretability, and 3) obtained
compact classifiers have high test classification accuracy.

A ten-fold cross validation method (10-CV) [31] is adopted
to compare the test performance of C4.5 with that of the pro-
posed method. The performance is based on multiple indepen-
dently formed training and test sets. For 10-CV, each data set is
randomly divided into 10 disjoint sets of equal size. Each set in
turn is used for testing and the remainder for training. The clas-
sifier is trained 10 times, each time with a different set held out
as a test set. The estimated performance is the mean of these 10
results.

Fig. 6. Performances of IGA and SGA with encoding methods of four
parameters (4P) and five parameters (5P) using the sonar data set. Final fitness
values: IGA� 5P = 102:591, IGA� 4P = 98:595, SGA� 5P = 97:485,
and SGA � 4P = 91:792.

1) Search Ability of IGA: The average performances of the
IGA classifiers using 10-CV from 30 independent runs per clas-
sifier are shown in Table V. Since fitness value is the only guide
for GAs in the evolution, the search abilities of GAs can be com-
pared by the fitness value using the same value of . The av-
erage performance of SGA using from 30 runs
is shown in Table VI. A paired t-test with 29 degrees of freedom
on the fitness value is also given to show that the search ability
of IGA is statistically significantly better than that of SGA. In
the paired t-test the null hypothesis is that the average of the dif-
ferences between the paired observations in two samples is zero.
If the calculated -value is less than the conventional 0.05, the
conclusion is that the mean difference between the paired obser-
vations is statistically significantly different from zero. Table VI
reveals that the fitness performance of IGA is indeed statisti-
cally significantly better than that of SGA for all classification
problems where the probabilities ( -values) are less than 0.005.
As a result, the training classification rates of IGA are
better than those of SGA. It is worthwhile to mention that the
computation time of IGA is much smaller than that of SGA for
all problems (65.8% on an average). The reason is that one in-
telligent crossover of IGA uses 17 ( and ) fitness
evaluations and thus IGA takes a smaller number of generations
than SGA. In other words, the intelligent crossover can make
GAs more efficient in both fitness performance and convergence
speed for large parameter optimization problems in spite of the
multiple fitness evaluations per recombination [32].

To further show that the IGA-based method has high search
ability for designing fuzzy classifiers, computation experiments
using all patterns in each one of two well-known data sets iris
and wine as training data will be examined. Figs. 7 and 8 show
the encouraging results, i.e., a 100% training classification rate
with three rules for three-class problems. It is well known that
there are three patterns in the iris data set that is difficult to be
accurately classified using the fuzzy grid-partition method with
a small number of fuzzy rules [3]. Furthermore, for the wine data
set, the least number of fuzzy rules with 100% classification rate
is 6 and the maximal classification rate of the classifier with



HO et al.: DESIGN OF ACCURATE CLASSIFIERS 1039

TABLE V
AVERAGE PERFORMANCES OF THE IGA CLASSIFIERS USING 10-CV FROM 30 INDEPENDENT RUNS PER CLASSIFIER

TABLE VI
SEARCH ABILITY COMPARISON OF IGA AND SGA USING STATISTICAL ANALYSIS, A PAIRED T-TEST WITH 29 DEGREES OF FREEDOM ON FITNESS VALUES

Fig. 7. Rule base for the iris classifier with a 100% training classification rate
using all patterns as training data.

three rules is 97.2% [3]. Moreover, a 100% classification rate
was obtained by three fuzzy rules in [4]. The excellent perfor-
mance arises from both the proposed FGPMF with its encoding
method and the high search ability of IGA for solving the large
parameter optimization problem.

2) Interpretability of Fuzzy Rules: Table V shows that the
average number of fuzzy rules per class is smaller than 2 for each
IGA classifier that on an average. Generally, the
scatter partition method cannot compete with the conventional
fixed linguistic grid partition method in the interpretability of
fuzzy rules. However, the number of fuzzy rules obtained by

Fig. 8. Rule base for the wine classifier with a 100% training classification
rate using all patterns as training data.

the proposed method is much smaller than those of the grid-
partition-based method [3], [4]. One of the advantages of the
proposed method is that only few overlapping fuzzy regions can
cover all training patterns with high classification accuracy.

To further realize the performance of the proposed method
in the aspects of rule number and test classification rate, we
compare the IGA classifier with the existing scatter partition
methods: a) fuzzy classifier with hyperbox regions (Hyperbox)
[10], b) fuzzy classifier with ellipsoidal regions (Ellipsoidal)
[11], and c) neural network classifier with polyhedron regions
(Polyhedron) [12]. The test performances of various iris



1040 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 2, APRIL 2004

TABLE VII
TEST PERFORMANCES OF VARIOUS IRIS CLASSIFIERS

classifiers using 50% of patterns for training and the remainder
for testing are shown in Table VII. The classification result
of the IGA classifier with and three rules is

(one misclassification). Table VII shows
that the IGA classifier using a hyperbox type fuzzy partition
is superior to the Hyperbox and Polyhedron methods, and
performs as well as the Ellipsoidal method. Few results of
high-dimensional fuzzy classifiers with ellipsoidal regions re-
ported for fair comparisons with the proposed method. Notably,
design of high-dimensional fuzzy classifiers with hyperbox
fuzzy regions needs fewer tuning parameters than that of the
classifiers with ellipsoidal fuzzy regions.

In the proposed method, “don’t care” condition and genetic
feature selection can be used to shorten the length of fuzzy rules
that can make the rule base more compact. It is well recognized
that a compact rule base is more easily interpretable than a com-
plex one. Fig. 3 is a typical example of a fuzzy-rule base for
the iris classifier and its interpretable fuzzy rules can be found
in Section II-B. Considering the scatter-partition-based fuzzy
classifiers, the proposed IGA-based method can obtain compact
fuzzy rule-based systems with high interpretability.

Considering the fitness function in (4) where and
, the preferred order of objectives is as follows: 1)

classification accuracy, 2) rule number, and 3) feature number. It
means that the training classification rate must be max-
imized first and then the compactness of the fuzzy system can
be minimized. Generally, maximizing may involve the
risk of overtraining resulting in high generalization errors for
conventional classifier designs. Due to 1) the nature clustering
property of patterns, 2) the flexible generic parameterized fuzzy
region, and 3) the strong search ability of IGA, the proposed
method using (the maximal number of fuzzy rules per
class is three) can maximize and further minimize
and without fear of overtraining.

In the following performance comparison with C4.5, we will
show that the IGA classifiers are compact and accurate for un-
seen test patterns. Therefore, the proposed method using IGA
with control genes can be widely used for feature selection [22]
and knowledge acquisition because its advantages: 1) no addi-
tional domain knowledge is required, 2) default parameter set-
tings are efficient enough, 3) no additional problem-dependent
parameters are needed, and 4) the global feature selection con-
sidering interaction and system performance can be simultane-
ously optimized.

3) Classification Accuracy and Compactness: Since there
are few results of high-dimensional fuzzy classifiers with scatter
partitions reported for fair comparisons, we compare the IGA
classifier with C4.5 using the significance analysis on 10-CV

TABLE VIII
PERFORMANCE OF C4.5 WITH UNPRUNED TREES

Fig. 9. For 10-CV, the data set is randomly split into two parts. The training
set (90% of patterns) is used to set free parameters in the classifier model; the
validation set (10%) is used to estimate the generalization rate of a classifier.
The C4.5 classifiers are obtained by tuning the parameter CF to maximize test
classification rate (CR).

to demonstrate that the proposed method can obtain compact
and accurate fuzzy classifiers on unseen test patterns. Table VIII
shows the performance of C4.5 with unpruned trees. For the av-
erage case of 11 classification problems, the training classifi-
cation rate is as high as 90.81%. The high classifica-
tion accuracy of the C4.5 classifiers for training data doesn’t
mean it has high accuracy on unseen test patterns. The test clas-
sification rate and the number of rules per
class . Note that the IGA classifiers have av-
erage performance , , and

.
Typically, tree pruning can make the C4.5 classifiers more

compact while maintaining high test classification rates. There-
fore, we fairly compare the IGA classifiers with the best pruned
classifiers of C4.5 having high test classification rate and com-
pactness. We adjust the certainty factor parameter, , (de-
fault value in the tool) of C4.5 to prune the deci-
sion trees for obtaining high-performance classifiers with low
generalization errors. Typically, the classification rate on
the training set increases monotonically while the value of
increases, resulting in an increasing number of rules used, as
sketched in Fig. 9. For most problems, the accuracy on the vali-
dation set increases, but then decreases. An indication is that the
classifier may overfit the training data. Therefore, in validation,
the parameter adjustment is stopped at the maximum of the test
classification rate.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (‘k)

Fig. 10. Classification rates of the IGA and C4.5 classifiers. Horizontal and vertical axes are certainty factor (CF ) and classification rate (CR, percentage),
respectively: (a) iris, (b) wine, (c) wdbc, (d) heart-c, (e) pima-diabetes, (f) living-disorder, (g) new-thyroid, (h) haberman, (i) glass, (j) cmc, and (k) sonar.

Five values of , 1, 2.5, 5, 10, and 25, are adopted to sketch
the cross validation performance of C4.5 with pruned trees. The
classification rates and rule numbers of the C4.5 classifiers with
various values of are shown in Figs. 10 and 11. The number
of rules of the C4.5 classifier is calculated by looking at the
number of leaves in the tree. For clear comparisons by visual-
ization, the average values of , , and of the IGA
classifiers are also shown in Figs. 10 and 11. From the average
test classification rates of 11 classification problems,
can obtain the highest test performance , as
shown in Table IX. Table IX reveals that C4.5 with can
obtain more accurate and compact classifiers (
on an average). The results of a paired t-test with 29 degrees
of freedom on , , and for comparisons of IGA and
C4.5 with are shown in Table X. The statistical anal-
ysis of Table X is discussed below.

Considering the performance on for 11 classifiers,
IGA has eight wins over C4.5 and three losses (glass, cmc, and
sonar). When carefully check the classifier living-disorder with
an associate value of , and

and 67.21% for IGA and C4.5, respectively, the two classifiers
are statistically significantly equivalent to each other. However,
IGA uses 3.61 rules, 4.39 features and C4.5 uses 13.0 rules, 5.0
features for living-disorder. Considering the three lost classifiers
(glass, cmc, sonar) for which accuracy is lower, the values of

are (62.19%, 54.28%, 71.54%) and (63.98%, 54.65%,
75.02%) for IGA and the C4.5 classifiers, respectively. How-
ever, the IGA classifiers use much smaller numbers of rules
(7.15, 5.15, 3.51) than C4.5 (18.6, 22.0, 13.0).

Considering the performance on , IGA has 10 wins over
C4.5 and only one loss that all -values are less than 0.001. The
only lower accuracy classifier was from the low-dimensional
haberman data set which has dimension and .
The result comes from that IGA aims to obtain compact and ac-
curate classifiers and the obtained classifier is indeed compact
( and ) and accurate
The for the C4.5 classifier. Considering the
average case, and 4.14 for IGA and C4.5, respec-
tively. The and values of reveal that the IGA classifier is
accurate and has a significantly small number of fuzzy rules.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Fig. 11. Rule numbers of the IGA and C4.5 classifiers. Horizontal and vertical axes are certainty factor (CF ) and number of rules (N ), respectively: (a) iris,
(b) wine, (c) wdbc, (d) heart-c, (e) pima-diabetes, (f) living-disorder, (g) new-thyroid, (h) haberman, (i) glass, (j) cmc, and (k) sonar.

TABLE IX
PERFORMANCE OF C4.5 WITH THE PRUNED TREES OF CF = 5 USING 10-CV

Considering the performance on , IGA has six wins over
C4.5 and five losses that all values are smaller than 0.001.
From the average performance of 11 classification problems that
IGA has and C4.5 has , it can be recog-
nized that the used feature numbers of two methods are nearly

the same. It is worthwhile to mention that minimization of the
used feature number is the last objective of the IGA classifier.
For feature selection, the proposed method performs as well as
C4.5 with the best value of does.

Generally speaking, the optimal design of fuzzy classifiers is
a three-objective optimization problem in essence [3]. Unlike
the single-objective optimization, multi-objective optimization
problems cannot satisfactorily be characterized by a single per-
formance measure, but often can be characterized by distinct
measures of multiple incommensurable and competing objec-
tives. Due to the nature of tradeoffs involved, the optimal design
of fuzzy classifiers seldom has a unique solution [33]. Consid-
ering the performances of the classifier on the three objectives

, , and simultaneously, the classifier A is said to
dominate the classifier B if there exists at least one objective
performance of A is statistically significantly better than that
of B and the remainder (if any) are statistically significantly
equivalent to that of B. Table X reveals that the IGA classi-
fier dominates the C4.5 classifier in the four data sets heart-c,
pima-diabetes, living-disorder, and new-thyroid. On the other
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TABLE X
RESULTS OF A PAIRED T-TEST WITH 29 DEGREES OF FREEDOM FOR IGA AND C4.5 WITH THE PRUNED TREES OF CF = 5

hand, the C4.5 classifier does not dominate the IGA classifier
in any data set. The performance comparisons show that the
IGA-based method can generate accurate and compact fuzzy
classifiers with rules of high interpretability.

V. CONCLUSION

This paper proposes an automated method for designing
accurate classifiers with a compact fuzzy-rule base using
an evolutionary scatter partition of feature space. A novel
flexible generic parameterized membership function associated
with an efficient encoding method is proposed to achieve an
efficient evolutionary scatter partition. The proposed method
includes almost all aspects related to the design of compact
fuzzy rule-based classification systems: feature selection, rule
selection, membership function tuning, consequent class deter-
mination, and certainty grade tuning. Thus, the efficient fuzzy
classifier system design is formulated as a large parameter
optimization problem (LPOP).

To solve the LPOP, an efficient optimization algorithm IGA is
used. The superiority of the proposed method has been demon-
strated by computer simulation on 11 well-known classification
problems in the following three aspects: 1) the proposed method
has high search ability to efficiently find fuzzy rule-based sys-
tems with high fitness values, 2) obtained fuzzy rules have high
interpretability, and 3) obtained compact classifiers have high
classification accuracy on unseen test patterns. The performance
comparison and statistical analysis of experimental results using
ten-fold cross validation have shown that the IGA-based method
without heuristics is efficient in designing accurate and compact
fuzzy classifiers with rules of high interpretability.
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