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Abstract 

Many fuzzy rule induction algorithms have been pro- 
posed during the past decade or so. Most of these algo- 
rithms tend to scale badly with large dimensions of the 
feature space because the underlying heuristics tend to 
constrain suboptimal features. Often noisy training in- 
stances also influence the size of the resulting rule set. 
In this paper an algorithm is discussed that extracts a 
set of so called mixed fuzzy rules. These rules can be 
extracted from feature spaces with diverse types of at- 
tributes and handle the corresponding different types of 
constraints in parallel. The underlying heuristic mini- 
mizes the loss of coverage for each rule when a conflict 
occurs. We present the original algorithm, which avoids 
conflicts for each pattern individually and demonstrate 
how a subsampling strategy improves the resulting rule 
set, both with respect to performance and interpretabil- 
ity of the resulting rules. 

1. Introduction 

Building models from data has started to raise increas- 
ing attention, especially in areas where a large amount 
of data is gathered automatically and manual analysis 
is not feasible anymore. Also applications where data 
is recorded online without a possibility for continuous 
analysis are demanding for automatic approaches. Ex- 
amples include such diverse applications as the auto- 
matic monitoring of patients in medicine, optimization 
of industrial processes, and also the extraction of expert 
knowledge from observations of their behavior. Tech- 
niques from diverse disciplines have been developed or 
rediscovered recently, resulting in an increasing set of 
tools to automatically analyze data sets (an introduction 
to the most important of these techniques can be found 
in [3]). Most of these tools, however, require the user 
to have detailed knowledge about the tools’ underlying 
algorithms, to fully make use of their potential. In or- 
der to offer the user the possibility to explore the data, 
unrestricted by a specific tool’s limitations, it is neces- 
sary  to provide easy to use, quick ways to give the user 

first insights. In addition, the extracted knowledge has 
to be presented to the user in an understandable man- 
ner, enabling interaction and refinement of the focus of 
analysis. 

Learning rules from examples is an often used approach 
to achieve this goal. Most existing rule learning algo- 
rithms are however limited to a uniform type of fea- 
tures [7, 13, 16, 22, 11, in these cases numerical val- 
ues. Other approaches can only handle a pre-defined 
partitioning of the numeric features [21], or generate a 
semi-global partitioning of the feature space, such as de- 
cision trees [15. 121. Very often, the extracted rules also 
rely on constraints on all available features [ 18, 19, 113, 
an approach not feasible for large dimensions. This is 
similar to clustering techniques which rely on a dis- 
tance function defined over all dimensions to extract 
a set of representative prototypes [8]. In order to be 
able to interpret the results, a rule based representation 
is usually preferable. More complicated structures of- 
fer greater flexibility but are often computationally very 
inefficient [ 10,2]. 

The approach discussed in this paper can deal with var- 
ious types of features in parallel and in addition con- 
strains only those features that are needed for each rule 
individually. Therefore rules in different regions of the 
feature space can focus on different features, effectively 
letting each rule decide for itself which features to uti- 
lize. In addition, the presented algorithm combines spe- 
cializing and generalizing rule induction. The resulting 
rules have an area of evidence as well as an area of sup- 
port. This leads to a measure of confidence for the area 
covered by a rule, an important property for real world 
applications. 

One disadvantage of this algorithm is its sequential na- 
ture; for each conflict all misclassifying rules are ad- 
justed. This can - especially in high dimensions - lead 
to a suboptimal set of constraints. In order to avoid 
this problem we propose a subsampling strategy that as- 
sists in finding a better adjustment of the existing con- 
straints to avoid a subset of conflicts. The resulting rules 
are more general and-as we demonstrate by using the 
Monk‘s data [20]-closer to the optimal representation. 
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2. Mixed Fuzzy Rule Induction 

2.1. Mixed Fuzzy Rules 

Mixed fuzzy rules as used here are rules that handle dif- 
ferent types of features. We restrict ourselves to the de- 
scription of the algorithm with respect to continuous, 
granulated, and nominal features but other types of fea- 
tures can be handled similarly as well. Each mixed rule 
is defined through a fuzzy region in the feature space 
and a class label. (See [5] for a description of a related 
algorithm in the context of function approximation us- 
ing fuzzy graphs.) 

The feature space D consists of n dimensions. Each 
dimension Di ( 1  5 i 5 n) can be one of the following: 

0 continuous, that is D; C R, 

0 granulated, that is Di = {p j  I 1 5 j 5 mi}, or 

0 nominal, that is Di = {valj 1 1 5 j 5 mi}, 

where p, : R -b [0, 11 are the membership functions 
that specify the used granulation and valj represent the 
nominal values. 

example 2.1 A three-dimensional feature space con- 
tains a numerical feature 'temperature' in the range 
[0,100], a feature 'pressure' which is divided into two 
partitions (plow - pressure smaller than lopsi, ,&itch 
- pressure larger than IOpsi), and one feature 'color' 
which can have three values: red, green, and blue. This 
would result in: 

dimension n = 3, 

D1 = [O, 1001 

D 2  = {plow,phigh}, where plow(2)  = 1 figr 
z << 10, plow(x) = 0 for z >> 10, and some 
transition from 0 to 1 around x = 10 (the precise 
shape of these membership functions is irrelevant 
for the examples), Clhigh is exactly the opposite in 
this case, i. e. phigh(x) = 1 - plow(z), and 

0 3  = {red, green, blue} 

A mixed rule R operates on a feature space D and is de- 
fined through a fuzzy set which assigns a degree of full- 
fillment. In order to compute this fuzzy set efficiently, 
two vectors of constraints are used. Vector ZsuPP = 
( c y p p , .  . . , c","PP) describes the most general constraint 
(the support region), whereas Pore = (,;Ore , . , c y " )  
indicates the most specific constraint (the core region) 
for this particular rule. Each one-dimensional constraint 
ci defines a subset of the corresponding domain Di it is 
responsible for. Constraints can be true, that is they 
do not constrain the corresponding domain at all. 

example 2.2 A rule could be valid for temperatures be- 
low 50, colors red and blue, and feature pressure has 
no influence: 

In addition, let us assume that the available data actu- 
ally only contained examples for this rule of tempera- 
tures in [20,45], pressures below lopsi. and for color 
red. that is: 

,core = [20,45] C cypp, 
0 = {plow}, and 

,core = {red} C cypp 

Assuming that we already have an entire set of rules we 
can now classify new patterns. For this, the two dif- 
ferent constraints can be used in several ways. Obvi- 
ously only the specific or more general constraints can 
be used 

0 optimistic classification: here the more general 
support-area of the rule is used: 
R ( Z )  = ATzl (zi E CY"") 
The disadvantage is a heavy portion of overlap be- 
tween support regions of rules. This leads to cases 
where no final classification is possible because 
rules of several different classes are activated. 

e pessimistic classification: the smaller, more spe- 
cific core region of the rule is used: 
R(2) = (zi E c:ore) 
The disadvantage here is that a large area of the 
feature space is not covered and - similar to the 
above case - no decision can be made. 

But it is obviously much more desirable to combine the 
two constraints, resulting in a degree of membership for 
each rule. This solves the problem in areas of heavy 
overlap or no coverage at all. 

0 fuuy classification: Here we compute a degree of 
match for each rule and a corresponding input pat- 
tern 5. The combination of one-dimensional mem- 
bership values can for example be done using as 
T-norm the minimum-operator: 

p(R,Z )  = ~ n { p i { c ~ P P l c ~ l x i } }  *=l 

where the particular form of pi ( )  depends on the 
type of domain Di. For the choice of membership 
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functions various alternatives exist. For the nomi- 
nal features one could simply assign the maximum 
degree of membership for pattems that fell inside 
the core region and the minimum degree of mem- 
bership to the ones that only lie in the support re- 
gion. One could also use an underlying onthology 
and actually compute a degree of match between 
the constraint and the input vector. For the granu- 
lated features pre-defined fuzzy membership func- 
tions can be used which assign degrees of member- 
ship to input patterns. And for the numerical do- 
mains most commonly a trapezoidal membership 
function is used which assigns values of 1 to pat- 
terns that fall inside the core region and linearly 
declines until it reaches 0 when they fall outside.of 
the support region of the corresponding rule. 

For the benchmark comparisons in the following sec- 
tions, a winner-take-all scenario was used, that is, the 
class with maximum degree of membership was as- 
signed as prediction to a new pattem. 

2.2. Induction of Mixed Fuzzy Rules 

The extraction of mixed rules as described above from 
example data is done by a sequential, constructive al- 
gorithm. Each pattern is analyzed subsequentially and 
rules are inserted or modified accordingly'. Several 
such epochs (that is, presentations of all patterns of the 
training set) are executed until the final rule set agrees 
with all pattems. In normal scenarios this stable status 
is reached after only few epochs, usually around five. 
An advantage over many other algorithms is the clear 
termination criterion as well as the possibility to prove 
formally that the algorithm does indeed terminate for a 
finite training set. 

Let us now concentrate on the underlying behavior of 
the rule induction algorithm. For internal use each rule 
maintains two additional parameters: 

0 a weight w which simply counts how many pat- 

0 a so-called anchor x' which remembers the original 

tems are explained by this particular rule, and 

pattern that triggered creation of this rule. 

For each pattern (5, k), where Z is the input vector and 
k indicates the corresponding class2, three cases are dis- 
tinguished: 

'Later in this paper we will discuss how a subsampling procedure 
can improve the performance of this pattern-by-pattern approach. 

'The presented algorithm can also be used to handle different de- 
grees of membership to sweral classes, for simplicity we concentrate 
on mutually exclusive classes. In [SI it is shown how overlapping 
classes cm be used in tbe mntect of function approximation, how- 
ever. 

0 covered: a rule of the correct class k exists which 
covers this pattern, that is, pattem 52 lies inside 
the support region specified by the vector of con- 
straints (cypp, . . . , C P P ) .  That is, pattem P has a 
degree of membership greater then 0 for this rule. 
This fact will be acknowledged by increasing the 
core region of the covering rule, in case it does not 
already cover P which in effect increases the de- 
gree of membership to l. In addition this rule's 
weight w is incremented. 

example 2 3  r f  the rule from example 2.2 en- 
counrers anorherpattem Z = (15,5, blue) (which 
is obviously covered by the support region of the 
rule), the core regions for x1 and 2 3  would need 
to be adjusted as follows: c y  = [15,45] and 
c y  = {red, blue}. 

0 commit: If no rule of correct class k exists which 
covers pattem Z, a new rule needs to be inserted 
into the rule base. This rule's support region will 
initially cover the entire feature space, that is, 
cypp = true for all i = 1, . . . , n. The core region 
will only cover 2 itself, that is, c y e  = [zi, xi] for 
numerical features, CY = {xi} for nominal fea- 
tures, and in case of granulated features, the one 
partition which covers the component best will ap- 
pear in the constraint. The new rule's weight w is 
set to 1 and $e anchor is set to remember the orig- 
inal pattem X = P. 

example2.4 The rule from the example above 
encounters another pattem (5,5, green), which is 
obviously not covered by the existing rule. A new 
rule will therefore be created, having an uncon- 
strained support region: cypp = qpp = cTpp = 
true, and a specific core region which covers only 
the new pattem: Gore = [5,5], Gore = {plow}. 
cy" = (green}. 

0 shrink: For both of the above cases, a third step is 
used to ensure that no existing rule of conflicting 
class 1 # k covers Z. This is done by reducing the 
support regions P U P P  for each rule of class 1 # k 
in such a way that 3 is not covered by the modified 
rule, i.e. results in a degree of membeship of 0. We 
can distinguish two cases: 

- 5 lies inside the support region, but outside 
of the core region: Z E P P P  and 5 4 Pore. 
In this case we can avoid the conflict without 
loosing coverage of previous pattems. We 
simply reduce the support area just enough 
so that Z is not covered anymore. For this, all 
features for which the corresponding compo- 
nent of 5 does not lie in it's core region are 
considered. From those feahxes, the one is 
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chosen that results in a minimal loss of vol- 
ume. This constraint is then modified accord- 
ingly. 
example2.5 Let us consider the rule iin 
example 2.3. If the next pattem 2' := 
(10,20,red) is of diflerent class, this rule 
needs to be refined to avoid the resulting COR- 

flict. In this case it is sufficient to alter the 
support region. For this we have two choices, 
either cypp  or cypp can be modified (cypp 
is not an option since red E c y ) :  
c'suPP - SUPP 

c'suPP = csuPP 

choice between these two alternatives is 
made based on the respective loss in volume. 

- 2 lies inside the support region and inside of 
the core region: d E P P P  and d E Pore. 
In this case it is not possible to avoid the 
conflict without loosing coverage of previoiis 
patterns3. Similar to the above solution, one 
feature is chosen that results in a minimal loss 
of volume and both, the support and the core 
region are modified accordingly. 
example 2.6 Let us again consider the rule 
in example 2.3. If the next patrem 2' = 
(25,5,red) is of different class, this rule 
needs to be reflned to avoid the resulting con- 
flict. In this case it is not suficient to alter the 
support region since 5 lies imide the core re- 
gion as well. Now we have three choices. Fiw 
feature 1 two choices exist, the support region 
can be constrained either on the lefi or right 
side: c:supp = C ~ ~ ~ \ [ O ,  251 = (25, SO), or 
cI)supp = cs,Upp\[25,50) = [0,25). Fea- 
ture 2 does nor allow us to avoid the conflict 
since we would create an empty constraint, 
thus rendering this rule useless. Feature 3 
can be used since still two nominal values 
are contained in the core region: c~supp = 
cyPP\{red} = {blue}. The choice between 
these three alternatives is again made based 
on the respective loss in volume. 

In both cases the loss in volume needs to be com- 
puted. Since we are dealing with disjunctive con- 
straints, the resulting computation is straight for- 
ward. The volume of a rule R is specified by the 
volumes of the core and support regions: 

- c1 \[O, 101 = (10,50), or 
2 2 \{Phigh) = {Plow}. The 

vol(R) = (vol(zsupp), vol(c'core)) 

where the volume of a constraint can be computed 
as follows: 

n 

with 

Obviously other choices are possible as well. Us- 
ing a volume based heuristic ensures that the re- 
sulting rules cover as much as possible of the fea- 
ture space. But one could, for example, also in- 
clude a weighting scheme that prefers constraints 
on certain features or use a built-in preference for 
certain types of constraints. Note that in the case 
described above, the algorithm is based on a greedy 
strategy. What results in a minimal loss of volume 
for one conflicting pattem at a time might not be a 
good solution for the overall set of conflicts. Fur- 
ther below we will discuss how a subsampling of 
conflicts can address this issue. 

After presentation of all patterns for one epoch, all 
rules need to be reset. This done by reseting the core- 
region of each rule to it's anchor (similar to the original 
commit-step), but maintaining it's support region and 
by reseting it's weight to 0. This is necessary to ensure 
that pattems that are not covered by a rule anymore (due 
to subsequent shrinks) only model pattems in their core 
and weight that they cover with their modified support 
region. This also solves problems with cores that are 
bigger than their corresponding support. After the final 
epoch this effect is impossible. 

After presentation of all pattems for a (usually small) 
number of epochs, the rule set will stop to change and 
training can be terminated. It is actually possible to 
prove that the algorithm will terminate guaranteed, for 
a finite set of training examples. A worst-case analysis 
finds that the maximum number of epochs is equiva- 
lent to the number of training examples, but in practice 
less than 10 epochs are almost always sufficient to reach 
equilibrium of the rule set. 

2.3. Experimental Results 

The evaluation of the proposed methodology was 
conducted using eight data sets from the StatLog 
project [14] and the results are reported in [4]. As 
usual, the new method does not outperform existing al- 
gorithms on every data set. Depending on the nature of 
the problem, the mixed rule induction method performs 
better, comparable, and sometimes also worse than ex- 
isting methods. 

vol(4 = JJ VOl(Ci) ' b o  data sets are worth taking a closer look at, how- 
ever. For the Shuttle data set (9 features, 7 classes, 
43,500 training instances, 14,500 test cases) the pro- 
posed methodology achieves results that are substan- 

i=l 

3 ~ ~ ~ e  p a m s  will result in creation of a new d e  during subse- 
quent epochs. 
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tially better than any of the other algorithms, in fact, the 
new algorithm has a better generalization performance 
than all techniques evaluated in the S t a h g  project. 
This is due to the axes parallel nature of the generated 
rules. The Shuttle data set has one class boundary where 
patterns of two different class lie arbitrarily close to an 
axes parallel border. Such a scenario is modeled well 
by the underlying rules. However, for the DNA data set 
(180 features, 3 classes, 2,000 training instances, 1,186 
test cases) the proposed algorithm generates a rule set 
which performs substantially worse than all other meth- 
ods. This is an effect due to the used heuristic to avoid 
conflicts. In case of the DNA data set almost 60% of 
all features are useless, and. even worse, exhibit ran- 
dom noise. This leads the conflict avoidance heuristic 
to choose features to constrain almost randomly. The 
resulting rule set consists of almost 1.500 rules, a clear 
indication that no generalization took place. For such a 
scenario the underlying heuristic would obviously need 
to be adjusted. 

In the context of rule extraction, pure numerical perfor- 
mance is, however, very often not the only concem. In 
the following we will demonstrate how the use of gran- 
ulated features can result in rule sets that enable the user 
to understand the structure of the extracted model. 

Using the well known Iris data set [9] we can nicely 
demonstrate how feature granulation will in fact guide 
the rule extraction process. If all four feature are gran- 
ulated into three equidistant linguistic values “low”, 
“medium”. and “high”, the proposed algorithm finds 
seven rules. In the following we list the three rules with 
the highest weight, all together covering over 90% of all 
example patterns4: 

R l ( 2 5 ) :  i f  pe ta l - l ength  i s  low 

R2 (24 )  : i f  pe ta l - l ength  i s  medium 
then c l a s s  i r i s - s e t o s a  

and peta l -width  i s  (low or  medium) 
then c l a s s  i r i s - v i r g i n i c a  

R3(21) : i f  pe ta l - l ength  is  (medium o r  high) 
and peta l -width  i s  high 
then c l a s s  i r i s - v e r s i c o l o r  

The other four rules describe the remaining five pattems 
by using the other two features sepal-length and - 
width. From the UCI repository [6] it is known that 
the features regarding the petal size carry most of the 
class-discriminative information, which is nicely com- 
plemented by the above result and can also be seen 
when analyzing the underlying model itself 1171. 

3. Subsampling Conflicts 

As was shown in [4], some data sets result in very large 
rule sets or relatively low generalization performance. 
This is obviously due to the inductive bias of the pro- 
posed algorithm but also partly due to the used heuris- 
tic which avoids conflicts based purely on one single, 
conflicting example pattern. In subsequent experiments, 
subsampling of conflicts was explored. For this, each 
rule maintains a small list of individual conflicts and 
tries to solve as many of them as possible when a certain 
threshold is reached. Our experiments showed good re- 
sults even for rather small thresholds (sampling 5 - 10 
conflicts often seems enough to achieve considerably 
better performance for smaller rule sets). For illustra- 
tion, we discuss experiments on the Monks data [ZO]. 
The task here is to extract rules from data which was 
generated according to predefined rules. The data sets 
are based on six nominal attributes with values 1,2 ,3 ,4  
(not all attributes use all four nominal values). The first 
monk’s problem is defined by the underlying concept: 
MONK-1: ( a t t r l  = a t t r 2 )  o r  ( a t t r 5  = 1 )  

and the third5 monk’s problem is based on the concept‘? 
MONK-3: ( a t t r 5  = 3 and a t t r 4  = 1 )  ox 

( a t t r 5  != 4 and a t t r 2  != 3) 

It is interesting to see what rule sets are generated by the 
initial algorithm which avoids individual conflicts. For 
the first monk’s problem 7 rules are generated describ- 
ing the underlying concept. The first two rules look as 
follows: 

R1: i f  a t t r l  is  (1  or 3) and a t t r 2  i s  1 
and a t t r 4  is  (1  or 3) 
and a t t r 5  i s  ( 1  or  3 or 4 )  

then c l a s s  1 
R2: i f  a t t r 5  is 1 then c l a s s  1 

so, even though R2 nicely describes the second part of 
the condition (attr5=l), R1 only describes a special 
case of the first part. This is due to the sequential nature 
of the algorithm, which in this particular case chose to 
avoid a conflict by restricting at t r 4 instead of at t r 1 
or att r2. If onechanges the conflict-avoidance heuris- 
tic to subsample twenty conflicts before a decision is 
being made, the following four rules are extracted 

R1: i f  a t t r l  i s  1 and a t t r 2  is  1 then c l a s s  1 
R2: i f  a t t r l  i s  3 and a t t r 2  is  3 then c l a s s  1 
R3: i f  a t t r l  i s  2 and a t t r 2  i s  2 then c l a s s  1 
R 4 :  i f  a t t r 5  i s  1 then c l a s s  1 

which is indeed the optimal representation of the under- 
lying concept. 

4The number in brackets following the rule symbol denotes the 
number of patterns covered by this rule. In case of the used Iris data 
set, each class consists of 25 patterns. 

%e second monk‘s problem is not discussed here, since it’s un- 
derlying concept is harder to represent using only disjunctive rules. 
The results for that problem are similar, however. 

6For illustrative purposes we ignore the 5% additional noise in the 
training set that are usually used for this problem. In [4] we discussed 
haw an approach to tolerate outliers can address noisy data. 
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The same applies to the third monk’s problem. With- 
out conflict subsampling 7 rules are generated. When 
conflicts are avoided based on a subsampling of 20 con- 
flicts, this reduces to the following two rules, which 
again are optimal: 
R1: if a t t r l  is 1 and a t t r 5  is 3 t h e n  class 1 
R2: if a t t r 2  is (1 or 2 )  

and a t t r 5  is (1 o r  2 or 3 )  
then  class 1 

A subsampling of conflicts obviously leads to a reduc- 
tion of the rule set. In the two cases shown above, thie 
modified algorithm in fact retrieves the true underlying 
concepts. 

4. Conclusions 

We have extended a recently presented method for rule 
induction. The generated rules handle different types 
of attributes and through their individual assignment of 
constraints it is possible to extract these rules also from 
high-dimensional data sets - the resulting rule will 
only use a small individual subset of features whic:h 
were considered important in the particular part of the 
feature space. A method to improve the underlying 
online heuristic was presented that operates by subsam- 
pling conflicts in order to make better decisions about 
local feature importance. We demonstrated how the 
interpretability of the extracted rules improves using 
the iris and monks data. 
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