
Subsampling Conflicts to Construct Better Fuzzy Rules

Michael R. Berthold
Tripos, Inc.

601 Gateway Blvd., Suite 720
South San Francisco, CA 94080, USA
eMail: berthold@tripos . com

Abstract

Many fuzzy rule induction algorithms have been pro-
posed during the past decade or so. Most of these algo-
rithms tend to scale badly with large dimensions of the
feature space because the underlying heuristics tend to
constrain suboptimal features. Often noisy training in-
stances also influence the size of the resulting rule set.
In this paper an algorithm is discussed that extracts a
set of so called mixed fuzzy rules. These rules can be
extracted from feature spaces with diverse types of at-
tributes and handle the corresponding different types of
constraints in parallel. The underlying heuristic mini-
mizes the loss of coverage for each rule when a conflict
occurs. We present the original algorithm, which avoids
conflicts for each pattern individually and demonstrate
how a subsampling strategy improves the resulting rule
set, both with respect to performance and interpretabil-
ity of the resulting rules.

1. Introduction

Building models from data has started to raise increas-
ing attention, especially in areas where a large amount
of data is gathered automatically and manual analysis
is not feasible anymore. Also applications where data
is recorded online without a possibility for continuous
analysis are demanding for automatic approaches. Ex-
amples include such diverse applications as the auto-
matic monitoring of patients in medicine, optimization
of industrial processes, and also the extraction of expert
knowledge from observations of their behavior. Tech-
niques from diverse disciplines have been developed or
rediscovered recently, resulting in an increasing set of
tools to automatically analyze data sets (an introduction
to the most important of these techniques can be found
in [3]). Most of these tools, however, require the user
to have detailed knowledge about the tools’ underlying
algorithms, to fully make use of their potential. In or-
der to offer the user the possibility to explore the data,
unrestricted by a specific tool’s limitations, it is neces-
sary to provide easy to use, quick ways to give the user

first insights. In addition, the extracted knowledge has
to be presented to the user in an understandable man-
ner, enabling interaction and refinement of the focus of
analysis.

Learning rules from examples is an often used approach
to achieve this goal. Most existing rule learning algo-
rithms are however limited to a uniform type of fea-
tures [7, 13, 16, 22, 11, in these cases numerical val-
ues. Other approaches can only handle a pre-defined
partitioning of the numeric features [21], or generate a
semi-global partitioning of the feature space, such as de-
cision trees [15. 121. Very often, the extracted rules also
rely on constraints on all available features [18, 19, 113,
an approach not feasible for large dimensions. This is
similar to clustering techniques which rely on a dis-
tance function defined over all dimensions to extract
a set of representative prototypes [8]. In order to be
able to interpret the results, a rule based representation
is usually preferable. More complicated structures of-
fer greater flexibility but are often computationally very
inefficient [10,2].

The approach discussed in this paper can deal with var-
ious types of features in parallel and in addition con-
strains only those features that are needed for each rule
individually. Therefore rules in different regions of the
feature space can focus on different features, effectively
letting each rule decide for itself which features to uti-
lize. In addition, the presented algorithm combines spe-
cializing and generalizing rule induction. The resulting
rules have an area of evidence as well as an area of sup-
port. This leads to a measure of confidence for the area
covered by a rule, an important property for real world
applications.

One disadvantage of this algorithm is its sequential na-
ture; for each conflict all misclassifying rules are ad-
justed. This can - especially in high dimensions - lead
to a suboptimal set of constraints. In order to avoid
this problem we propose a subsampling strategy that as-
sists in finding a better adjustment of the existing con-
straints to avoid a subset of conflicts. The resulting rules
are more general and-as we demonstrate by using the
Monk‘s data [20]-closer to the optimal representation.

Page: 1098

2. Mixed Fuzzy Rule Induction

2.1. Mixed Fuzzy Rules

Mixed fuzzy rules as used here are rules that handle dif-
ferent types of features. We restrict ourselves to the de-
scription of the algorithm with respect to continuous,
granulated, and nominal features but other types of fea-
tures can be handled similarly as well. Each mixed rule
is defined through a fuzzy region in the feature space
and a class label. (See [5] for a description of a related
algorithm in the context of function approximation us-
ing fuzzy graphs.)

The feature space D consists of n dimensions. Each
dimension Di (1 5 i 5 n) can be one of the following:

0 continuous, that is D; C R,

0 granulated, that is Di = {p j I 1 5 j 5 mi}, or

0 nominal, that is Di = {valj 1 1 5 j 5 mi},

where p, : R -b [0, 11 are the membership functions
that specify the used granulation and valj represent the
nominal values.

example 2.1 A three-dimensional feature space con-
tains a numerical feature 'temperature' in the range
[0,100], a feature 'pressure' which is divided into two
partitions (plow - pressure smaller than lopsi, ,&itch
- pressure larger than IOpsi), and one feature 'color'
which can have three values: red, green, and blue. This
would result in:

dimension n = 3,

D1 = [O, 1001

D 2 = {plow,phigh}, where plow(2) = 1 figr
z << 10, plow(x) = 0 for z >> 10, and some
transition from 0 to 1 around x = 10 (the precise
shape of these membership functions is irrelevant
for the examples), Clhigh is exactly the opposite in
this case, i. e. phigh(x) = 1 - plow(z), and

0 3 = {red, green, blue}

A mixed rule R operates on a feature space D and is de-
fined through a fuzzy set which assigns a degree of full-
fillment. In order to compute this fuzzy set efficiently,
two vectors of constraints are used. Vector ZsuPP =
(c y p p , . . . , c","PP) describes the most general constraint
(the support region), whereas Pore = (,;Ore , . , c y ")
indicates the most specific constraint (the core region)
for this particular rule. Each one-dimensional constraint
ci defines a subset of the corresponding domain Di it is
responsible for. Constraints can be true, that is they
do not constrain the corresponding domain at all.

example 2.2 A rule could be valid for temperatures be-
low 50, colors red and blue, and feature pressure has
no influence:

In addition, let us assume that the available data actu-
ally only contained examples for this rule of tempera-
tures in [20,45], pressures below lopsi. and for color
red. that is:

,core = [20,45] C cypp,
0 = {plow}, and

,core = {red} C cypp

Assuming that we already have an entire set of rules we
can now classify new patterns. For this, the two dif-
ferent constraints can be used in several ways. Obvi-
ously only the specific or more general constraints can
be used

0 optimistic classification: here the more general
support-area of the rule is used:
R (Z) = ATzl (zi E CY"")
The disadvantage is a heavy portion of overlap be-
tween support regions of rules. This leads to cases
where no final classification is possible because
rules of several different classes are activated.

e pessimistic classification: the smaller, more spe-
cific core region of the rule is used:
R(2) = (zi E c:ore)
The disadvantage here is that a large area of the
feature space is not covered and - similar to the
above case - no decision can be made.

But it is obviously much more desirable to combine the
two constraints, resulting in a degree of membership for
each rule. This solves the problem in areas of heavy
overlap or no coverage at all.

0 fuuy classification: Here we compute a degree of
match for each rule and a corresponding input pat-
tern 5. The combination of one-dimensional mem-
bership values can for example be done using as
T-norm the minimum-operator:

p(R,Z) = ~ n { p i { c ~ P P l c ~ l x i } } *=l

where the particular form of pi () depends on the
type of domain Di. For the choice of membership

0-7803-7078-3/0V$l0.00 (C)U)ol IEEE. Page: 1099

functions various alternatives exist. For the nomi-
nal features one could simply assign the maximum
degree of membership for pattems that fell inside
the core region and the minimum degree of mem-
bership to the ones that only lie in the support re-
gion. One could also use an underlying onthology
and actually compute a degree of match between
the constraint and the input vector. For the granu-
lated features pre-defined fuzzy membership func-
tions can be used which assign degrees of member-
ship to input patterns. And for the numerical do-
mains most commonly a trapezoidal membership
function is used which assigns values of 1 to pat-
terns that fall inside the core region and linearly
declines until it reaches 0 when they fall outside.of
the support region of the corresponding rule.

For the benchmark comparisons in the following sec-
tions, a winner-take-all scenario was used, that is, the
class with maximum degree of membership was as-
signed as prediction to a new pattem.

2.2. Induction of Mixed Fuzzy Rules

The extraction of mixed rules as described above from
example data is done by a sequential, constructive al-
gorithm. Each pattern is analyzed subsequentially and
rules are inserted or modified accordingly'. Several
such epochs (that is, presentations of all patterns of the
training set) are executed until the final rule set agrees
with all pattems. In normal scenarios this stable status
is reached after only few epochs, usually around five.
An advantage over many other algorithms is the clear
termination criterion as well as the possibility to prove
formally that the algorithm does indeed terminate for a
finite training set.

Let us now concentrate on the underlying behavior of
the rule induction algorithm. For internal use each rule
maintains two additional parameters:

0 a weight w which simply counts how many pat-

0 a so-called anchor x' which remembers the original

tems are explained by this particular rule, and

pattern that triggered creation of this rule.

For each pattern (5, k), where Z is the input vector and
k indicates the corresponding class2, three cases are dis-
tinguished:

'Later in this paper we will discuss how a subsampling procedure
can improve the performance of this pattern-by-pattern approach.

'The presented algorithm can also be used to handle different de-
grees of membership to sweral classes, for simplicity we concentrate
on mutually exclusive classes. In [SI it is shown how overlapping
classes cm be used in tbe mntect of function approximation, how-
ever.

0 covered: a rule of the correct class k exists which
covers this pattern, that is, pattem 52 lies inside
the support region specified by the vector of con-
straints (cypp, . . . , C P P) . That is, pattem P has a
degree of membership greater then 0 for this rule.
This fact will be acknowledged by increasing the
core region of the covering rule, in case it does not
already cover P which in effect increases the de-
gree of membership to l. In addition this rule's
weight w is incremented.

example 2 3 r f the rule from example 2.2 en-
counrers anorherpattem Z = (15,5, blue) (which
is obviously covered by the support region of the
rule), the core regions for x1 and 2 3 would need
to be adjusted as follows: c y = [15,45] and
c y = {red, blue}.

0 commit: If no rule of correct class k exists which
covers pattem Z, a new rule needs to be inserted
into the rule base. This rule's support region will
initially cover the entire feature space, that is,
cypp = true for all i = 1, . . . , n. The core region
will only cover 2 itself, that is, c y e = [zi, xi] for
numerical features, CY = {xi} for nominal fea-
tures, and in case of granulated features, the one
partition which covers the component best will ap-
pear in the constraint. The new rule's weight w is
set to 1 and $e anchor is set to remember the orig-
inal pattem X = P.

example2.4 The rule from the example above
encounters another pattem (5,5, green), which is
obviously not covered by the existing rule. A new
rule will therefore be created, having an uncon-
strained support region: cypp = qpp = cTpp =
true, and a specific core region which covers only
the new pattem: Gore = [5,5], Gore = {plow}.
cy" = (green}.

0 shrink: For both of the above cases, a third step is
used to ensure that no existing rule of conflicting
class 1 # k covers Z. This is done by reducing the
support regions P U P P for each rule of class 1 # k
in such a way that 3 is not covered by the modified
rule, i.e. results in a degree of membeship of 0. We
can distinguish two cases:

- 5 lies inside the support region, but outside
of the core region: Z E P P P and 5 4 Pore.
In this case we can avoid the conflict without
loosing coverage of previous pattems. We
simply reduce the support area just enough
so that Z is not covered anymore. For this, all
features for which the corresponding compo-
nent of 5 does not lie in it's core region are
considered. From those feahxes, the one is

@7803-7&78-3/0l/$10.00 (C)U)ol IEEE Page: 1100

chosen that results in a minimal loss of vol-
ume. This constraint is then modified accord-
ingly.
example2.5 Let us consider the rule iin
example 2.3. If the next pattem 2' :=
(10,20,red) is of diflerent class, this rule
needs to be refined to avoid the resulting COR-

flict. In this case it is sufficient to alter the
support region. For this we have two choices,
either cypp or cypp can be modified (cypp
is not an option since red E c y) :
c'suPP - SUPP

c'suPP = csuPP

choice between these two alternatives is
made based on the respective loss in volume.

- 2 lies inside the support region and inside of
the core region: d E P P P and d E Pore.
In this case it is not possible to avoid the
conflict without loosing coverage of previoiis
patterns3. Similar to the above solution, one
feature is chosen that results in a minimal loss
of volume and both, the support and the core
region are modified accordingly.
example 2.6 Let us again consider the rule
in example 2.3. If the next patrem 2' =
(25,5,red) is of different class, this rule
needs to be reflned to avoid the resulting con-
flict. In this case it is not suficient to alter the
support region since 5 lies imide the core re-
gion as well. Now we have three choices. Fiw
feature 1 two choices exist, the support region
can be constrained either on the lefi or right
side: c:supp = C ~ ~ ~ \ [O , 251 = (25, SO), or
cI)supp = cs,Upp\[25,50) = [0,25). Fea-
ture 2 does nor allow us to avoid the conflict
since we would create an empty constraint,
thus rendering this rule useless. Feature 3
can be used since still two nominal values
are contained in the core region: c~supp =
cyPP\{red} = {blue}. The choice between
these three alternatives is again made based
on the respective loss in volume.

In both cases the loss in volume needs to be com-
puted. Since we are dealing with disjunctive con-
straints, the resulting computation is straight for-
ward. The volume of a rule R is specified by the
volumes of the core and support regions:

- c1 \[O, 101 = (10,50), or
2 2 \{Phigh) = {Plow}. The

vol(R) = (vol(zsupp), vol(c'core))

where the volume of a constraint can be computed
as follows:

n

with

Obviously other choices are possible as well. Us-
ing a volume based heuristic ensures that the re-
sulting rules cover as much as possible of the fea-
ture space. But one could, for example, also in-
clude a weighting scheme that prefers constraints
on certain features or use a built-in preference for
certain types of constraints. Note that in the case
described above, the algorithm is based on a greedy
strategy. What results in a minimal loss of volume
for one conflicting pattem at a time might not be a
good solution for the overall set of conflicts. Fur-
ther below we will discuss how a subsampling of
conflicts can address this issue.

After presentation of all patterns for one epoch, all
rules need to be reset. This done by reseting the core-
region of each rule to it's anchor (similar to the original
commit-step), but maintaining it's support region and
by reseting it's weight to 0. This is necessary to ensure
that pattems that are not covered by a rule anymore (due
to subsequent shrinks) only model pattems in their core
and weight that they cover with their modified support
region. This also solves problems with cores that are
bigger than their corresponding support. After the final
epoch this effect is impossible.

After presentation of all pattems for a (usually small)
number of epochs, the rule set will stop to change and
training can be terminated. It is actually possible to
prove that the algorithm will terminate guaranteed, for
a finite set of training examples. A worst-case analysis
finds that the maximum number of epochs is equiva-
lent to the number of training examples, but in practice
less than 10 epochs are almost always sufficient to reach
equilibrium of the rule set.

2.3. Experimental Results

The evaluation of the proposed methodology was
conducted using eight data sets from the StatLog
project [14] and the results are reported in [4]. As
usual, the new method does not outperform existing al-
gorithms on every data set. Depending on the nature of
the problem, the mixed rule induction method performs
better, comparable, and sometimes also worse than ex-
isting methods.

vol(4 = JJ VOl(Ci) ' b o data sets are worth taking a closer look at, how-
ever. For the Shuttle data set (9 features, 7 classes,
43,500 training instances, 14,500 test cases) the pro-
posed methodology achieves results that are substan-

i=l

3 ~ ~ ~ e p a m s will result in creation of a new d e during subse-
quent epochs.

0-7803-7078-3/0v$10.00 (C)U)ol IEEE. Page: 1101

tially better than any of the other algorithms, in fact, the
new algorithm has a better generalization performance
than all techniques evaluated in the S t a h g project.
This is due to the axes parallel nature of the generated
rules. The Shuttle data set has one class boundary where
patterns of two different class lie arbitrarily close to an
axes parallel border. Such a scenario is modeled well
by the underlying rules. However, for the DNA data set
(180 features, 3 classes, 2,000 training instances, 1,186
test cases) the proposed algorithm generates a rule set
which performs substantially worse than all other meth-
ods. This is an effect due to the used heuristic to avoid
conflicts. In case of the DNA data set almost 60% of
all features are useless, and. even worse, exhibit ran-
dom noise. This leads the conflict avoidance heuristic
to choose features to constrain almost randomly. The
resulting rule set consists of almost 1.500 rules, a clear
indication that no generalization took place. For such a
scenario the underlying heuristic would obviously need
to be adjusted.

In the context of rule extraction, pure numerical perfor-
mance is, however, very often not the only concem. In
the following we will demonstrate how the use of gran-
ulated features can result in rule sets that enable the user
to understand the structure of the extracted model.

Using the well known Iris data set [9] we can nicely
demonstrate how feature granulation will in fact guide
the rule extraction process. If all four feature are gran-
ulated into three equidistant linguistic values “low”,
“medium”. and “high”, the proposed algorithm finds
seven rules. In the following we list the three rules with
the highest weight, all together covering over 90% of all
example patterns4:

R l (2 5) : i f pe ta l - l ength i s low

R2 (24) : i f pe ta l - l ength i s medium
then c l a s s i r i s - s e t o s a

and peta l -width i s (low or medium)
then c l a s s i r i s - v i r g i n i c a

R3(21) : i f pe ta l - l ength is (medium o r high)
and peta l -width i s high
then c l a s s i r i s - v e r s i c o l o r

The other four rules describe the remaining five pattems
by using the other two features sepal-length and -
width. From the UCI repository [6] it is known that
the features regarding the petal size carry most of the
class-discriminative information, which is nicely com-
plemented by the above result and can also be seen
when analyzing the underlying model itself 1171.

3. Subsampling Conflicts

As was shown in [4], some data sets result in very large
rule sets or relatively low generalization performance.
This is obviously due to the inductive bias of the pro-
posed algorithm but also partly due to the used heuris-
tic which avoids conflicts based purely on one single,
conflicting example pattern. In subsequent experiments,
subsampling of conflicts was explored. For this, each
rule maintains a small list of individual conflicts and
tries to solve as many of them as possible when a certain
threshold is reached. Our experiments showed good re-
sults even for rather small thresholds (sampling 5 - 10
conflicts often seems enough to achieve considerably
better performance for smaller rule sets). For illustra-
tion, we discuss experiments on the Monks data [ZO].
The task here is to extract rules from data which was
generated according to predefined rules. The data sets
are based on six nominal attributes with values 1,2 ,3 ,4
(not all attributes use all four nominal values). The first
monk’s problem is defined by the underlying concept:
MONK-1: (a t t r l = a t t r 2) o r (a t t r 5 = 1)

and the third5 monk’s problem is based on the concept‘?
MONK-3: (a t t r 5 = 3 and a t t r 4 = 1) ox

(a t t r 5 != 4 and a t t r 2 != 3)

It is interesting to see what rule sets are generated by the
initial algorithm which avoids individual conflicts. For
the first monk’s problem 7 rules are generated describ-
ing the underlying concept. The first two rules look as
follows:

R1: i f a t t r l is (1 or 3) and a t t r 2 i s 1
and a t t r 4 is (1 or 3)
and a t t r 5 i s (1 or 3 or 4)

then c l a s s 1
R2: i f a t t r 5 is 1 then c l a s s 1

so, even though R2 nicely describes the second part of
the condition (attr5=l), R1 only describes a special
case of the first part. This is due to the sequential nature
of the algorithm, which in this particular case chose to
avoid a conflict by restricting at t r 4 instead of at t r 1
or att r2. If onechanges the conflict-avoidance heuris-
tic to subsample twenty conflicts before a decision is
being made, the following four rules are extracted

R1: i f a t t r l i s 1 and a t t r 2 is 1 then c l a s s 1
R2: i f a t t r l i s 3 and a t t r 2 is 3 then c l a s s 1
R3: i f a t t r l i s 2 and a t t r 2 i s 2 then c l a s s 1
R 4 : i f a t t r 5 i s 1 then c l a s s 1

which is indeed the optimal representation of the under-
lying concept.

4The number in brackets following the rule symbol denotes the
number of patterns covered by this rule. In case of the used Iris data
set, each class consists of 25 patterns.

%e second monk‘s problem is not discussed here, since it’s un-
derlying concept is harder to represent using only disjunctive rules.
The results for that problem are similar, however.

6For illustrative purposes we ignore the 5% additional noise in the
training set that are usually used for this problem. In [4] we discussed
haw an approach to tolerate outliers can address noisy data.

0-7803-7078-3/0lf$l0.00 (C)zoOl EEE. Page: 1102

The same applies to the third monk’s problem. With-
out conflict subsampling 7 rules are generated. When
conflicts are avoided based on a subsampling of 20 con-
flicts, this reduces to the following two rules, which
again are optimal:
R1: if a t t r l is 1 and a t t r 5 is 3 t h e n class 1
R2: if a t t r 2 is (1 or 2)

and a t t r 5 is (1 o r 2 or 3)
then class 1

A subsampling of conflicts obviously leads to a reduc-
tion of the rule set. In the two cases shown above, thie
modified algorithm in fact retrieves the true underlying
concepts.

4. Conclusions

We have extended a recently presented method for rule
induction. The generated rules handle different types
of attributes and through their individual assignment of
constraints it is possible to extract these rules also from
high-dimensional data sets - the resulting rule will
only use a small individual subset of features whic:h
were considered important in the particular part of the
feature space. A method to improve the underlying
online heuristic was presented that operates by subsam-
pling conflicts in order to make better decisions about
local feature importance. We demonstrated how the
interpretability of the extracted rules improves using
the iris and monks data.

Acknowledgments
This research was carried out while the author was with
the Berkeley Initiative in Soft Computing (BISC) at
UC Berkeley and was supported by stipend Be1740/7-1
of the “Deutsche Forschungsgemeinschaft” (DFG). The
author thanks Prof. Lotfi A. Zadeh and his group for his
support and the opportunity for many stimulating dis-
cussions.

References

[l] S . Abe and M.-S. Lan. A method for fuzzy rules extrac-
tion directly from numerical data and its application to
pattem classifiction. IEEE Transactions on Fuzzy Sys-
tem, 3(1):18-28, 1995.

[2] S . Abe and R. Thawonmas. A fuzzy classifier with cl-
lipsoidal regions. IEEE Transactions on Fuzzy Systenu,
5(3):35&368, 1997.

[3] M. Berthold and D. J. Hand, editors. Intelligent Duta
Analysis: An Introahction. Springer Verlag, 1999.

[4] M. R. Berthold. Leaming fuzzy models and potential
outliers. In Computational Intelligence in Data Mining,
pages 111-126. Springer-Verlag, 2000.

[5] M. R. Berthold and R-P. Huber. Constructing fuzzy
graphs from examples. Intelligent Data Analysis,
3(1):37-54, 1999. (http://www.elsevier.nVlocate/ida).

[6] C. L. Blake and C. J. Men. UCI repository of ma-
chine leaming databases. at ics.uci.edu in pub/machine-
leaming-databases, 1998.

[7] P. Clark and T. Niblett. The CN2 induction algorithm.
In Machine Learning, 3, pages 261-283, 1989.

[SI R. Dave and R. Krishnapuram. Robust clustering meth-
ods: A unified view. IEEE Transactions on Fuuy Sys-
tems. 5(2):270-293, May 1997.

[9] R. A. Fisher. The use of multiple measurements in tax*
nomic problems. In Annual Eugenics, 11.7, pages 179-
188. John Wiley, NY, 1950.

[lo] A. B. Geva. Hierarchical unsupervised fuzzy cluster-
ing. IEEE Tmnsactions on Fuuy Systems, 7(6):723-
733, Dec. 1999.

[l l] C. M. Higgins and R. M. Goodman. Leaming fuzzy
rule-based neural networks for control. In Advances in
Neural Information Processing Systems, 5 , pages 350-
357, California, 1993. Morgan Kaufmann.

[121 C. Janikow. Fuzzy decision trees: Issues and methods.
IEEE Tmnsactions on Systems, Man, and Cybernetics -
Part B: Cybernetics, 28(1): 1-14, 1998.

[I31 R. S . Michalski, I. &tic, J. Hong, and N. Lavrac. The
multipurpose incremental leaming system AQ15. In
Proceedings of the National Conference on AI, AAAI,
5, pages 1041-1045.1986.

141 D. Michie. D. J. Spiegelhalter, and C. C. Taylor, edi-
tors. Machine Learning, Neural and Statistical ClossQ-
cation. Ellis Horwood Limited, 1994.

151 J. R. Quinlan. C4.5: P r o g m for Machine Learning.
Morgan Kaufmann Publishers, 1993.

161 S . Salzberg. A nearest hyperrectangle learning method.
In Machine Learning, 6, pages 251-276, 1991.

[17] R. Silipo and M. R. Berthold. Input features impact on
fuzzy decision processes. IEEE Transcation on Systems,
Man, and Cybernetics. Part B: Cybernetics. 30(6):821-
834,2000.

[181 P. K. Simpson. Fuzzy min-max neural networks -part 1 :
Classification. IEEE Transacfiom on Neural Networks,
3(5):776-786, Sept. 1992.

[19] P. K. Simpson. Fuzzy min-max neural networks - part
2: Clustering. IEEE Transactions on Fuuy Systems,
1(1):3245, Jan. 1993.

[20] S. B. Thrun. The MONK’S problems - a performance
comparison of different leaming algorithms. Technical
report, Camegie Mellon University, Pittsburgh. PA, De-
cember 1991.

[21] L.-X. Wang and J. M. Mendel. Generating fuzzy rules
by learning from examples. IEEE Transactions on Sys-
tem, Man, and cybernetics, 22(6):1313-1427, 1992.

A hybrid nearest-neighbour and
nearest-hypemtangle leaming algorithm. In Proceed-
ings of the European Conference on Machine Learning,
pages 323-335,1994.

[22] D. Wettschereck.

0-7803-7078-3/0V$l0.00 (C)UH)l IEEE. Page: 1103

http://www.elsevier.nVlocate/ida
http://ics.uci.edu

