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Improving the Interpretability of TSK Fuzzy Models
by Combining Global Learning and Local Learning

John Yen,Senior Member, IEEELiang Wang,Member, IEEE and Charles Wayne Gillespie

Abstract—The fuzzy inference system proposed by Takagi, Typically, a TSK model consists of IF-THEN rules that
Sugeno, and Kang, known as the TSK model in fuzzy system have the form
literature, provides a powerful tool for modeling complex nonlin-
ear systems. Unlike conventional modeling where a single model R; if z1is A;; and --- andz, is A;, theny;
is used to describe the global behavior of a system, TSK modeling _ L
is essentially amultimodel approach in which simple submodels =bjo +buri+ -+ byx, fori=1,2---.L (1)
(typically linear models) are combined to describe the global \yhere [, is the number of rulesy; are input variablesy; are

behavior of the system. Most existing learning algorithms for . N .
identifying the TSK model are based on minimizing the square local output variablesd,; are fuzzy sets that are characterized

of the residual between the overall outputs of the real system PY membership functionsi;;(x;), and b;; are real-valued
and the identified model. Although these algorithms can generate parameters. The overall output of the model is computed by
a TSK model with good global performance (i.e., the model

L L
is capable of approximating the given system with arbitrary _ 2 im1 Tili _ >iz1 Tilbio + binzy + -+ bipay) )
accuracy, provided that sufficient rules are used and sufficient Z‘L—1 T Z‘L—1 T

training data are available), they cannot guarantee the resulting
model to have a good local performance. Often, the submodels Wherer; is thefiring strengthof rule R;, which is defined as
in the TSK model may exhibit an erratic local behavior, which

is difficult to interpret. Since one of the important motivations of i = Ap(z) X Aip(x2) X -+ x A (7). 3

using the TSK model (also other fuzzy models) is to gain insights i .
into the model, it is important to investigate the interpretability The great advantage of the TSK model is its representative

issue of the TSK model. In this paper, we propose a new learning POWe; it is capable of describing a highly nonlinear system
algorithm that integrates global learning and local learning in  using a small number of rules. Moreover, since the output of
a single algorithmic framework. This algorithm uses the idea of the model has an explicit functional expression form (2), it
local weighed regression and local approximation in nonpara- s conventional to identify its parameters using some learning

metric statistics, but remains the component of global fitting in .
the existing learning algorithms. The algorithm is capable of ad- algorithms. Several commonly used fuzzy neuro systems such

justing its parameters based on the user’s preference, generating & a_daptive heuro-fuzzy ir_lference system (ANFIS) [10] and
models with good tradeoff in terms of global fitting and local that in Takagi and Hayashi [20] have been constructed on the

interpretation. We illustrate the performance of the proposed basis of the TSK model.

algorithm using a motorcycle crash modeling example. One major concern in building a TSK model is how well the
Index Terms—Fuzzy modeling, fuzzy systems, learning algo- model can approximate a real system. Most existing learning
rithms, TSK model. algorithms [1], [10], [21], [23] choose the parameters of the

model to minimize the objective functiof;

N
. INTRODUCTION Jag = _ld(k) — y(k)]? (4)

HE method of fuzzy inference proposed by Takagi, b=t
T Sugeno and Kang [19], [21], which is known as thavhered(k) is the output of the real system(k) is the output
Takagi-Sugeno—Kang (TSK) model in fuzzy systems liter&f the identified model, andV is the number of training data.
ture, has been one of the major topics in theoretical studiEgese algorithms arglobal algorithms in the sense that the
and practical applications of fuzzy modeling and control. THArameters of the model are identified using the whole training
basic idea of this method is to decompose the input space if@fa set in a single algorithmic operation. If sufficient rules
fuzzy regions and to approximate the system in every regigﬁd training data are used, the resulting model from these
by a simple model. The overall fuzzy model is thus considerédgorithms is guaranteed to converge to the real system.

as a combination of interconnected subsystems with simplerVhile these global learning algorithms can lead to a TSK
models. model with arbitrary approximation accuracy, they cannot

always guarantee the model to be locally well behaved. To
illustrate this, we use a three-rule TSK model to fit the target
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LWR is a smoothet Its purpose is to find therend
embedded in the input—output observations rather than seek
1 the precise fit between the model and observations. Thus, the

global behavior of the model is not its concern. Nevertheless,
since LWR typically uses as many polynomial functions as
data points, the resulting model usually has a good global
> behavior. Locally fitting a number of simple models to achieve
0 10 20 a good global fitting is also the principle underlying the
Fig. 1. Antecedent membership functions. local model networkproposed in Murray—Smith and Johansen
[15].
120 : . , LWR requires a weight function and a specification of
neighborhood size. The weight function in the original LWR
— is thetricube function: w(z) = (1 —23) for 0 < z < 1 and0
local submodel 37 otherwise, but other form of weight functions such as Gaussian
function can also be used [17]. The size of neighborhood (i.e.,
the number of data points in the neighborhood) should be
not less than the degrekof the polynomial function for the
weighted least-squares problem to have a unique solution. As
the size of neighborhood increases, the estimate of regression
surface becomes smoother.

The modeling philosophy of the LWR is quite similar to

that of the TSK in the sense that both methods use the
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201 1 combinations of simple polynomial functions to construct a
\ complex function. The main differences between the two
o0 . £ 1 20 methods lie in the determination of the parameters of poly-

nomial functions and in the computation of the outputs of the
Fig. 2. TSK model with inappropriate local models. model. In LWR, the parameters of each polynomial function
are estimated using the data points in its neighborhood, and

space is partitioned into three fuzzy regions with membersHipe output of the model at any poist, is the output of a
functions shown in Fig. 1. In Fig. 2, we present a globall§ingle polynomial function; in TSK, the parameters of each
optimal TSK model. The local linear submodels in the mod@olynomial function are estimated using the data points in the
are indicated by the straight lines, with the centers of thhole input space and the output of the model at any point
triangular membership functions depicted by the small staf is the weighted average of the outputs of all polynomial
This model fits the target function precisely, but the behaviofénctions.
of the local submodels two and three are difficult to interpret. Another approach that is similar to the LWR is proposed in
In general, a large number of TSK fuzzy models with identiciiarmer and Sidorowich [3] for predicting chaotic time series.
global behaviors can exist, because shifting the hyperplangys approach is calledocal approximation(LA) because
associated with adjacent fuzzy partitions in a complementdfyuses only nearby observations to make predictions. To be
manner to compensate for each other results in equivalSRECific, letx(¢) andx(¢ +7") denote the current observation
fuzzy models [25]. Since one of the important motivations ¢ind future observation, respectively. To predidt + 1),
using fuzzy models is to gain insights into the local behavidA first finds the & nearest neighbors ok(¢), i.e., thek
of the models, it is important to address the interpretabiligbservationsc(t') with ¢ < ¢ that minimize||z(¢) — =(¢')],
issue of the TSK model. where|| -|| denotes an Euclidean norm. A polynomial function
Before presenting our results, it is helpful to discuss sevefl degreed is then fitted through thé nearest neighbors, by
existing methods that are relevant to this papeocally ordinary least-squares algorithm. The only difference between
Weighted regressio(LWR) isa way of Constructing regressionLA and LWR is that LA uses an ordinary Ieast-squares method
surface through a multivariate smoothing procedure [2]. k@ estimate the parameters of polynomial functions and no
such a scheme, the estimate of the regression surface at Waight function is needed; LWR uses a weighted least-squares
value x, of the input variables is obtained by local fittingand, thus, requires a weight function. Several other methods
of a polynomial function of degre€ (d small) of the input that follow the same spirit of LA includ¢hreshold models
variables. That is, LWR defines a neighborhood in the spaceldf], codebook predictiorf18], and competitive local linear
the input variables. Each point in the neighborhood is weight&iPdels[16].
according to its distance fromy; points close tox, have 1A heri It ing th dof
large weight, and points far from, have small weight. The 4 2 function of one or more input messLiementsva. -4, It produces.
p entses, 0 by p
polynomial function of the input variables is fitted to the outputn estimate of the trend that is less variable thdtself; hence, the name of

variable using weighted least squares with these weights; other. An important property of a smoother isritparametricnature:
es not assume a rigid form for the dependence oh x1, 22, -+, x;.

. . . it
esym_ate of the_ regression surface is taken to be the ValueFQtPthis reason, a smoother is often referred to as a toohdmparametric
this fitted function atxy. regression[7].
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In this paper, we develop a new learning algorithm tthe parameters in the antecedent membership functions (or
identify the TSK model. This algorithm is eombinedalgo- equivalently the parameters in;) at the very beginning
rithm in the sense that it integrates global learning and locafl model construction so that the only free parameters are
learning in a single algorithmic framework. It uses the idea dfiose in the linear regression equations, then (6) is linear in
local weighting and local approximating in LWR and LA, buthe parameters. This is the case in the present paper where
remains the component of global fitting in the existing fuzzwe predetermine the parameters of antecedent membership
model identification algorithms. The combination is done bfgnction using some heuristic technigi@he advantage of
weighting a global objective function and local objectivesuch a treatment is that the parameter identification problem
function. This allows a user to adjust the algorithm based dmreduced to a simple linear optimization problem and, thus,
his own preference, generalizing models with good tradeafén be solved using efficient linear learning algorithms [1],
between global fitting and local interpretation. The detail 23], [24].
the combined algorithm is introduced in Section Il

Since the combined learning algorithm needs to constrygt Glopal Learning
linear regression models in different neighborhoods (fuzzy
partitions), it is important to know the number and the position
of these neighborhoods in the input space. In LWR and LA, t
number of neighborhoods is typically taken as the number i
data points and their position is the same as the position where
the data points appear. In TSK, however, the neighborhoods
are no longer directly relevant to the data points; as a res
the determination of the number and the position of the
neighborhoods is not a trivial exercise. In Section Ill, we d=[d1) d2) --- dV)Tery (9)
provide an orthogonal transformation based procedure to solve
the problem. In Section IV, we apply the proposed combingdee (10) and (11) at the bottom of the page.)
learning algorithm to a simulated motor-cycle crash data setgecause the parameters of antecedent membership functions
and compare its performance to the global learning algorithife predetermined, the only unknown componenfdnis the
and the local learning algorithm. Some concluding remarkgrameter vectob whose elements are the parameters in the

Global learning determines the parameters of the model
rough minimizing the objective functiofl; defined in (4),
ich can be rearranged into a simple matrix form

Jo =(d— Xb)T(d — Xb) (8)

ere

are made in Section V. linear regression equations of the TSK model. The mostly
commonly used method for computiny is the recursive
[I. LEARNING ALGORITHMS least-square¢RLS) algorithm (see, e.g., [21]). The advantage

The task of learning algorithms is to estimate the paramet&sRLS IS its on-line learning ability, but it requires a large
of the model, which include the parameters in the anteced&ymber of iterations. In this paper, we use a computationally
membership functions and the parameters in the linear regréficient, noniterative method to compute The heart of the
sion equations. In order to lay down a foundation for th@ethod is thesingular value decompositiofSVD) [3]. In
following derivation of learning algorithms, we rewrite (2)Particular, applying SVD taX yields

in a slightly different form X =yunv?T (12)
L NxN
whereU = [ug,ug,---,uy] € R andV = [vy,va, -,
vy= Z wi(bio + by + - - + biry) (6) Virinyxr] € RICTDXLIX+DXL] gre orthogonal matrices
=t ¥ = diag(o1, 02, 0pqnyxr) € RYXIFTU*L s a diago-
where nal matrix withoy > o3 > --- > 0,41)x 1, > 0. The diagonal
T elements ok are called theingular valuef X. Substituting
sEon (12) into (8) and after simple algebraic manipulations, we can
is the normalizedfiring strength for rulei. 2|n this paper, we adopt Gaussian functions to express the antecedent

Equation (6) is nonlinear in the parameters and has f§mbership functions in the TSK model. The centers of Gaussian functions

b ved . i timizati | ith e assumed to be uniformly distributed in the input space; the widths of
€ Solved using some noniinear optimization algoritnm SU@}ssian functions are determined using a nearest neighbors heuristic, as

as the gradient descent algorithm [10]. However, if we fixuggested in Moody and Darken [13].

w1(1)  wi(D)a(1) wy (1)z,-(1) wr(1l)  wr(1)x(1) wr, (. (1)
Y- w1(2)  wi(2)x1(2) w1 (2)x,.(2) wr(2)  wip(l)z1(2) wr(2)z,.(2)
wi(N) wi(N)z1(N) - wi(N)z,.(N) wr(N) wp(Daz(N) - wp(N)z,.(N)

€ RV X[(r+1)xL] (20)

b=[bg by -~ by -+ bro bpy -+ bp ]t e RUTDXE (11)
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obtain the smallest Euclidean norm solutiontofs [5] Applying SVD to Wil/QXi, we have
~u/d wilx, =UsvE, i=1,2,---,L 19
b: K i 13 7 T rHr Yy t= 1,4, 9 ( )
; P (13)

Then the smallest Euclidean norm solutionbgfis computed
wheres is the number of nonzero singular valuessit? as

8i T1i71/2
o u;, W, '°d L
B. Local Learning b; = ; th i=1,2,---,L (20)
Local learning computes the parameters of the model . _
through minimizing the objective functiof;, defined by [25] Wheres; is the number of nonzero singular values3ip, w,

andv; are thelth column ofU; andV;, respectively.

L XN ) Notice that the parameters of each fuzzy rule have been
Ir = Z Zwi(k)[d(k) —ui(F)I. (14) computed independently using a subset of training data. Thus,
=1 k=1 the resulting model has a clear local implication. Also, the

In this objective function each fuzzy rule is encouraged fgPmputation can be implemented in parallel and the compu-
produce the whole of the output rather than a COmponeﬁyg_tlonal load is essentially unaffected by the assumed number
Moreover, notice thats;, the normalized firing strength of f fuzzy rules.

the ith rule as defined in (7), has nonzero values only in a

small region of the input space. As a result, each fuzzy rulz Combined Learning

acts like an independent model that is only related to a subsefgmpined learning aims at striking a good tradeoff between

of training data. This is exactly the objective function formne global approximation and the local interpretation of a
used in LWR except the tricube function (rather thay) i TgK model; it chooses the parameters of the model through

used 'Fheré. _ _ “minimizing a combined objective functiof-
Similar to (8),.J;, can be rearranged into a simple matrix
form Jo=alJg+ /3JL (21)
Jy = i(d — X, b)Y Wi(d — Xib;) where« and /3 are two positive constants satisfying
. a+pB=1 (22)
- 1/2 1/2 1. N\T 1/2 1/2 v 1.
- Z (Wi d-W; xlbz) (Wi d-W; lel) Notice that the local objective function defined in (15) can be
=t (15) written in a more compact form; that is
where Jp=(d - Xb)I'w(d — X'b) (23)
rw;(1) where
: 2 - - 7 u
W; = iz € VXD d=[d d - df erR™ (24)
. X
I w; (V) e
i=1,2,---,L (16) X' = N e RIVXN)X[(r+1)x L] (25)
rw; (1) wi(Dz(1) -+ wy(Dz.(1) ' X,
w; (2 wi(2)x1(2 e wi(2)ze(2 -
¥ — (2) (2)21(2) _ (2)z(2) W
: W (NXN)X(NXN)
Lwi(N)  wi( Nz (N) - wi( Nz, (N) W= . eER (26)
e §RN><(T+1)’ i=1,2,---,L a7 I W,
bi=1lbio bn - bp]" €RT i=1,2--- L. (18) b=[by by - by]T e ROTUXE, 27)

Substituting (23) and (8) into (21) we get
3In practice, the minimum Euclidean norm solution is usually approximated

by substitutings with r in (13), wherer < s is the number of “large” —afld — X7 (d - Xb 3(d’ — X'b)T d —X'b
singular values int. The reason is that the presence of computer roundc‘)]fp a( ) ( ) - /( ) W( )
errors and data uncertainties often make the matrihave “tiny” singular (28)
values. Setting these “tiny” singular values to zeros can effectively eliminate

the effects of roundoff errors and uncertainties, and thus generates numericall ’ ’ :
reliable minimum Euclidean norm solution. Becaused’ andd as well asX and X’ have different

P - ) : dimensions, we cannot directly apply the SVD (as before) to
A similar objective function has also been suggested in [9] under the . | . btain th .. Euclid uti f
framework of modular networks. For an interesting comparison betweéh SINgle matrix to obtain the minimum Euclidean solution o

modular networks and TSK models, we refer the reader to [12]. b. Instead, we differentiatd with respect tob and equate
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the result to zero, which vyields value® Thus, we may detect the number of redundant or less
important fuzzy partitions by examining the singular values
of the matrix 7. In order to identify the position of those

redundant or less important fuzzy partitions or, equivalently,
pick out the columns that are linear dependent or full of zeros,
we apply a numerically reliable orthogonal transformation

(aXTX + BXTWX'T)b = (aXTd + pXTWd'). (29)

Let X = aXTX + BXTWX'T, andd = oX7d + X7
Wd'. Then (29) becomes

Xb =d. (30) method, known as SVD-QR with column pivoting algorithm to
_ . I, This algorithm was originally proposed in Golebal. [4]
Applying SVD to X yields to solve the subset selection problem in regression analysis and

syt 31 used by Kanjilal and Banerjee [11] to select hidden nodes in a
o (31) feedforward neural network, and by Mouzouris and Mendel
whereU, V, and3 e RIC+DXLIX[(r+1)x L], [14] to extract important fuzzy basis functions in a fuzzy

The minimum Euclidean norm solution &f is then com- Model. A comparison of this algorithm with other orthogonal
transformation based methods is given in Yen and Wang [26].

puted as ! . ) ;
, This algorithm is summarized as follows.
> ﬁ;r”d . SVD-QR with column pivoting algorithm for selecting fuzzy
b= 2475, Vi (32) " partitions
= 1) Compute the SVD of: I' = UXV7T and savet andV.
where s is the number of nonzero singular values3in ;, 2) Check the singular values B = diag(oy,09,---,0r),
and#; are theith column of7 and V, respectively. and determine the number of fuzzy partitions that are
to be used to partition the input space aswhere
[ll. PARTITION OF THE INPUT SPACE r< _r_ank(F)- L
PartitionV asV = [/2* Y22] whereVy; € ®7*", and

Var_ Voo
Vor € R=m) form VT = [V VoL
4) Apply QR with column pivoting algorithm[5] to
V and get thepermutation matrixIl € RL*E .
QYIVA VAL = [Ryy Ryio] where@ € R is
orthogonal andR;; € R"*" is upper triangular. The
position of the entries one’s in the firstcolumns of
II indicates the position of the most important fuzzy
partitions in the input space.

Since the combined learning algorithm needs to cons’[ruct3
linear regression models in different fuzzy partitions, it is im-
portant to know the number and the position of these partitions
in the input space. Usually, the number of fuzzy partitions
also determines the number of fuzzy rules comprising the
underlying model.

There are two approaches that can be used to form an
appropriate fuzzy partition. The first approach starts with a
small number of fuzzy partitions (typically one partition), and
then adds more partitions based on some measure criterion
[21]. The second approach goes to another direction; it begins IV. RESULTS
with an oversized number of fuzzy partitions and then removes
those redundant and less important fuzzy partitions [8], [14L]I
[24], [26]. In this paper, the second approach is used.

In this section, we illustrate the above ideas using a sim-
ated motorcycle crash data set taken from Hardle [6]. This

To illustrate the approach, we recall that the antecedeqﬁtz.set' ?skpretshentedhl?_ F'g‘. 3 COﬂSIStS. of 1t3 3 afﬁ eleltfqmeter
of a fuzzy model results from the fuzzy partition of inpu{ea INgs taken through time In an expenment on the etlcacy

space. Thus, we construct the following matrix, known as tl% Crf‘slh helmetj. FO(; \t/ﬁlrlous reasol?s,l thebtlme e.omts ?re not
firing strength matrix whose entries are only related to th(%_egu arly ?pafe ' d?jr']t' etrr:a art; mu 'Ft).e 0 serval;onsbg stotme
antecedent of the model ime points. In addition, the observations are all subject to

error. Our interest here is to discern the general type of the
wi(l)  wa(l) - wr(l) underlying acceleration curve using a TSK model. The input
e wi(2)  w2(2) - wr(2) (33) of the model is the time, denoted hy and the output of the
B : : : ' model is the acceleration, denoted by
wi(N) wa(N) -+ wr(N) ~ In order to build the model, we first partition the input space
o _ _ ~ (i.e., the domain of time observations) using the Gaussian-type
This is an/N-by-L matrix, whereN is the number of training fuzzy membership functions defined by
data andL is the number of fuzzy partitions (rules). The
entry w; in this matrix is the normalized firing strength of
the ith rule as defined in (7). Notice that each columnrof
corresponds to one of the fuzzy partitions. As a result, if one
column of /' is linearly dependent on other columns or consists, _ . .
f all zeros. then the partition associated with the column i In practice, one column i is seldom exactly linear dependent on o_ther
o a ! ) p we W &8lumns or consists of exactly zero elements. As a result, the relevant singular
redundant or less important and removing it will not affect thelue is not zero but a “small” value. Even worse, the small singular value
performance of the underlying model greatly. Mathematicallgel 0%, 00 Srd T 8 Mo T e e important fuzzy rules
linear dependent or zero column will make the matri i i : : P! y e
a. : h ) X nontrivial exercise. In this case, a certain degree of trial and error is
singular and, consequently, the matrix will have a zero singularavoidable for the determination.

_ )2
Ai(a:):exp<—(x27§z)>, i=1,2---,L (34)
a;



YEN et al: IMPROVING THE INTERPRETABILITY OF TSK FUZZY MODELS BY COMBINING GLOBAL AND LOCAL LEARNING 535

100 : . : : T 35
#*
3.
501
*
2.5}
b= w
2 of s )
ks 3 3 x
08) 50+ 21.51 %
< 7] *
*
: ! *
-100} i ] *
# % «
-150 L s . s L o N . * X % % %
0 10 20 30 40 50 60 0 5 10 15 20
Time (ms) k
Fig. 3. The motorcycle data set. Fig. 4. Distribution of singular values of the 13320 firing strength matrix.
where L is the number of fuzzy partitions (also the number | Gaussian funcfions for initial 20 flzey parttions
of fuzzy rules). The centerg;, of the Gaussian membership
functions are assumed to be regularly distributed in the interval
[2, 58], and the widthsy; are determined using a nearest 05}
neighbor heuristic suggested in Moody and Darken [13], that is
0
17 ) 1/2 10 20 30 40 50
7i= 5 Z(CZ —a) ;=12 L (35) Gaussian functions for retained 8 fuzzy partitions
=1 1 T T T T \
where¢; (1 =1,2,---,p) are thep (typically p = 2) nearest
neighbors of the centet. In our experiment, we assume that 051 1
all Gaussian membership functions have the same width
which is obtained by averaging; in (35) over allL centers, o / ‘ ‘ A
that is 10 20 30 40 50
X
1 & Fig. 5.  Membership functi iated with the initial and retained f
_ ) 1g. o. embership functions associated with the initial and retained fuzzy
g= I Z Ti- (36) partitions.
i=1

Initially, we set the number of fuzzy partitions to 20. These Ntice that the number of fuzzy partitions determines the
fuzzy partitions are labeled as 2,---,20 to indicate their nmber of fuzzy rules constituting the underlying TSK model.
position in the input space. For each of the 133 input daf@ys, by retaining eight fuzzy partitions from the initial 20
pointsz(k), k = 1,2,---,133 to the partitions, we compute f;77y partitions, we build a TSK model with eight rules.
the normalized firing strengths using (7). A 13320 firing  The consequent parameters (i.e., those in the linear regression
strength matrixF" is then formed. Applying SVD ta¥, the equations) of the model are computed using the three different
resulting singular values are shown in Fig. 4. There is nNearning algorithms introduced in Section II. The performance
clear gap between the “large” singular values and the “smali} the model are measured by the global andltiwal mean-

singular values. Here we arbitrarily take the first eight singulaguares errors(MSE’s), which are computed, respectively,
values as the “large” singular values and the last 12 singulgy

values as the “small” ones. As a result, we reduce the number
of fuzzy partitions from 20 to 8. The position of the eight Global MSE — 1 Ak — u(E)2 37
fuzzy partitions in the input space is identified as 6, 4, 10, onat- N Z[ (k) = y(k)] (37)
8, 2, 12, 15, 19 using the SVD-QR with column pivoting

algorithm introduced in Section IIl. The order of the positio"

also indicates the importance of the associated fuzzy partitions 1 X )
in the input space (also the importance of the associated fuzzy Local MSE = — > ld(k) — (k). (38)
rules in the rule base). Fig. 5 shows the Gaussian membership =1 k=1

functions associated with the initial 20 fuzzy partitions and the Fig. 6—8 present the outputs of the resultant TSK model. The
retained eight fuzzy partitions. linear regression equations in the consequent part of the model
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Global learning: global_mse=460.62, local_mse=2333.80

Combined learning: global_mse=472.29, local_mse=980.17

100 100
50} sok
3 c
Z O Z or
2 S
e e
° g
[ [
g -50r 8 -50r
< <
-100+ -100
150 L N L \ . -150 . . . . .
0 10 20 30 40 50 60 (o} 10 20 30 40 50 60
Time (ms) Time (ms)

Fig. 6. Global and local outputs of TSK model using only global learningFig. 8. Global and local outputs of TSK model using combined learning.

Local learning: global_mse=599.23, local_mse=793.37 TABLE |
100 j T i j ) GLOBAL AND LocAL PERFORMANCE OF THETSK MODEL IDENTIFIED
UsING THE COMBINED LEARNING ALGORITHM WITH VARYING WEIGHTS
501 Coe 1 o B Global MSE | Local MSE
EPS 00 [10 59923 793.37
S 0.1 0.9 685.64 794.11
c O 02 |08 571.60 796.60
s 0.3 0.7 557.30 801.42
2 0.4 0.6 542.63 809.37
§ 501 0.5 0.5 527.74 821.62
0.6 0.4 512.83 839.99
. } 0.7 0.3 498.19 867.43
-1001 A 1 0.8 0.2 484.37 909.47
BT 0.9 0.1 472.29 980.17
) ) ) . ) 1.0 0.0 460.62 2333.80
150 10 20 30 40 50 60
Time (ms)
Fig. 7. Global and local outputs of TSK model using only local learning. V. CONCLUSION

The TSK modeling methodology is essentially a multi-
are indicated by the Straight |ineS, W|th the centers Of fUZWOde| approach in which Simp'e submodels (Where each
partitions depicted by the small stars. The model identifiedpmodel acts like a “local model”) are coupled to de-
by the global learning algorithm (Fig. 6) has the best globgyipe the global behavior of the system. Since one of the
performance but worst local performance. The submodels ofjghqrtant motivations of using the TSK model (also other
E’V‘;’ four, a:jnd f'\;le ('jn the model eth']b't an erratlﬁ loca} ;7 models) is to gain insights into the model, it is im-
pehavior and are har to mterpr_et. Ont _econtrgry,t € mo ?thant to investigate the local interpretation issue of the
identified using the local learning algorithm (Fig. 7) show. SK model. In this paper, we present a combined learn-

the best local performance, while its global performance is algorithm that is capable of generating a TSK model

o ing
the worst. A good tradeoff between global approximation anﬁ . .
local interpretation has been achieved in the model identifi(\évdth both good global approximating ability and good lo-

by the combined learning algorithm with the weights= 0.9 cal interpretation cgpacity. .We illustrate the performance.of
and 8 = 0.1 (Fig. 8). Notice that the weights and 3 in the proposed algorithm using a motorcycle crash modeling
the combined learning algorithm can be adjusted by the ugé@mplg. .

according to his own preference: if the user prefers to have al N singular value decomposition (SVD) has played a cen-
model with better global performance, then he should assij# role in forming the combined learning algorithm and the

a larger value tow; if the user prefers to have a modefnPut space partitioning algorithm. However, the computation
with better local performance, then he should assign a largdrSVD can become memory and time intensive for high-

value to 3. In particular, the combined learning algorithnflimensional (i.e., a large number of input variables) and large
is reduced to the global one when = 1 and to the local data sets. Developing alternative computationally efficient
one whenf = 1. Table | presents the global MSE anddrocedures for combining global learning and local learning
local MSE of several TSK models with varying and 3 for high-dimensional/large data sets modeling problems is our
values. current research focus.
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