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Improving the Interpretability of TSK Fuzzy Models
by Combining Global Learning and Local Learning
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Abstract—The fuzzy inference system proposed by Takagi,
Sugeno, and Kang, known as the TSK model in fuzzy system
literature, provides a powerful tool for modeling complex nonlin-
ear systems. Unlike conventional modeling where a single model
is used to describe the global behavior of a system, TSK modeling
is essentially amultimodel approach in which simple submodels
(typically linear models) are combined to describe the global
behavior of the system. Most existing learning algorithms for
identifying the TSK model are based on minimizing the square
of the residual between the overall outputs of the real system
and the identified model. Although these algorithms can generate
a TSK model with good global performance (i.e., the model
is capable of approximating the given system with arbitrary
accuracy, provided that sufficient rules are used and sufficient
training data are available), they cannot guarantee the resulting
model to have a good local performance. Often, the submodels
in the TSK model may exhibit an erratic local behavior, which
is difficult to interpret. Since one of the important motivations of
using the TSK model (also other fuzzy models) is to gain insights
into the model, it is important to investigate the interpretability
issue of the TSK model. In this paper, we propose a new learning
algorithm that integrates global learning and local learning in
a single algorithmic framework. This algorithm uses the idea of
local weighed regression and local approximation in nonpara-
metric statistics, but remains the component of global fitting in
the existing learning algorithms. The algorithm is capable of ad-
justing its parameters based on the user’s preference, generating
models with good tradeoff in terms of global fitting and local
interpretation. We illustrate the performance of the proposed
algorithm using a motorcycle crash modeling example.

Index Terms—Fuzzy modeling, fuzzy systems, learning algo-
rithms, TSK model.

I. INTRODUCTION

T HE method of fuzzy inference proposed by Takagi,
Sugeno and Kang [19], [21], which is known as the

Takagi–Sugeno–Kang (TSK) model in fuzzy systems litera-
ture, has been one of the major topics in theoretical studies
and practical applications of fuzzy modeling and control. The
basic idea of this method is to decompose the input space into
fuzzy regions and to approximate the system in every region
by a simple model. The overall fuzzy model is thus considered
as a combination of interconnected subsystems with simpler
models.
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Typically, a TSK model consists of IF–THEN rules that
have the form

if is and and is then

for (1)

where is the number of rules, are input variables, are
local output variables, are fuzzy sets that are characterized
by membership functions , and are real-valued
parameters. The overall output of the model is computed by

(2)

where is thefiring strengthof rule , which is defined as

(3)

The great advantage of the TSK model is its representative
power; it is capable of describing a highly nonlinear system
using a small number of rules. Moreover, since the output of
the model has an explicit functional expression form (2), it
is conventional to identify its parameters using some learning
algorithms. Several commonly used fuzzy neuro systems such
as adaptive neuro-fuzzy inference system (ANFIS) [10] and
that in Takagi and Hayashi [20] have been constructed on the
basis of the TSK model.

One major concern in building a TSK model is how well the
model can approximate a real system. Most existing learning
algorithms [1], [10], [21], [23] choose the parameters of the
model to minimize the objective function

(4)

where is the output of the real system, is the output
of the identified model, and is the number of training data.
These algorithms areglobal algorithms in the sense that the
parameters of the model are identified using the whole training
data set in a single algorithmic operation. If sufficient rules
and training data are used, the resulting model from these
algorithms is guaranteed to converge to the real system.

While these global learning algorithms can lead to a TSK
model with arbitrary approximation accuracy, they cannot
always guarantee the model to be locally well behaved. To
illustrate this, we use a three-rule TSK model to fit the target
function

(5)

Suppose the input varies in the range of . The input
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Fig. 1. Antecedent membership functions.

Fig. 2. TSK model with inappropriate local models.

space is partitioned into three fuzzy regions with membership
functions shown in Fig. 1. In Fig. 2, we present a globally
optimal TSK model. The local linear submodels in the model
are indicated by the straight lines, with the centers of the
triangular membership functions depicted by the small stars.
This model fits the target function precisely, but the behaviors
of the local submodels two and three are difficult to interpret.
In general, a large number of TSK fuzzy models with identical
global behaviors can exist, because shifting the hyperplanes
associated with adjacent fuzzy partitions in a complementary
manner to compensate for each other results in equivalent
fuzzy models [25]. Since one of the important motivations of
using fuzzy models is to gain insights into the local behavior
of the models, it is important to address the interpretability
issue of the TSK model.

Before presenting our results, it is helpful to discuss several
existing methods that are relevant to this paper.Locally
weighted regression(LWR) is a way of constructing regression
surface through a multivariate smoothing procedure [2]. In
such a scheme, the estimate of the regression surface at any
value of the input variables is obtained by local fitting
of a polynomial function of degree ( small) of the input
variables. That is, LWR defines a neighborhood in the space of
the input variables. Each point in the neighborhood is weighted
according to its distance from ; points close to have
large weight, and points far from have small weight. The
polynomial function of the input variables is fitted to the output
variable using weighted least squares with these weights; the
estimate of the regression surface is taken to be the value of
this fitted function at .

LWR is a smoother.1 Its purpose is to find thetrend
embedded in the input–output observations rather than seek
the precise fit between the model and observations. Thus, the
global behavior of the model is not its concern. Nevertheless,
since LWR typically uses as many polynomial functions as
data points, the resulting model usually has a good global
behavior. Locally fitting a number of simple models to achieve
a good global fitting is also the principle underlying the
local model networksproposed in Murray–Smith and Johansen
[15].

LWR requires a weight function and a specification of
neighborhood size. The weight function in the original LWR
is thetricube function: for and
otherwise, but other form of weight functions such as Gaussian
function can also be used [17]. The size of neighborhood (i.e.,
the number of data points in the neighborhood) should be
not less than the degreeof the polynomial function for the
weighted least-squares problem to have a unique solution. As
the size of neighborhood increases, the estimate of regression
surface becomes smoother.

The modeling philosophy of the LWR is quite similar to
that of the TSK in the sense that both methods use the
combinations of simple polynomial functions to construct a
complex function. The main differences between the two
methods lie in the determination of the parameters of poly-
nomial functions and in the computation of the outputs of the
model. In LWR, the parameters of each polynomial function
are estimated using the data points in its neighborhood, and
the output of the model at any point is the output of a
single polynomial function; in TSK, the parameters of each
polynomial function are estimated using the data points in the
whole input space and the output of the model at any point

is the weighted average of the outputs of all polynomial
functions.

Another approach that is similar to the LWR is proposed in
Farmer and Sidorowich [3] for predicting chaotic time series.
This approach is calledlocal approximation(LA) because
it uses only nearby observations to make predictions. To be
specific, let and denote the current observation
and future observation, respectively. To predict ,
LA first finds the nearest neighbors of , i.e., the
observations with that minimize ,
where denotes an Euclidean norm. A polynomial function
of degree is then fitted through the nearest neighbors, by
ordinary least-squares algorithm. The only difference between
LA and LWR is that LA uses an ordinary least-squares method
to estimate the parameters of polynomial functions and no
weight function is needed; LWR uses a weighted least-squares
and, thus, requires a weight function. Several other methods
that follow the same spirit of LA includethreshold models
[16], codebook prediction[18], and competitive local linear
models[16].

1A smoother is a tool for summarizing the trend of an output measurementy

as a function of one or more input measurementsx1; x2; � � � ; xr. It produces
an estimate of the trend that is less variable thany itself; hence, the name of
smoother. An important property of a smoother is itsnonparametricnature:
it does not assume a rigid form for the dependence ofy on x1; x2; � � � ; xr .
For this reason, a smoother is often referred to as a tool fornonparametric
regression[7].
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In this paper, we develop a new learning algorithm to
identify the TSK model. This algorithm is acombinedalgo-
rithm in the sense that it integrates global learning and local
learning in a single algorithmic framework. It uses the idea of
local weighting and local approximating in LWR and LA, but
remains the component of global fitting in the existing fuzzy
model identification algorithms. The combination is done by
weighting a global objective function and local objective
function. This allows a user to adjust the algorithm based on
his own preference, generalizing models with good tradeoff
between global fitting and local interpretation. The detail of
the combined algorithm is introduced in Section II.

Since the combined learning algorithm needs to construct
linear regression models in different neighborhoods (fuzzy
partitions), it is important to know the number and the position
of these neighborhoods in the input space. In LWR and LA, the
number of neighborhoods is typically taken as the number of
data points and their position is the same as the position where
the data points appear. In TSK, however, the neighborhoods
are no longer directly relevant to the data points; as a result,
the determination of the number and the position of the
neighborhoods is not a trivial exercise. In Section III, we
provide an orthogonal transformation based procedure to solve
the problem. In Section IV, we apply the proposed combined
learning algorithm to a simulated motor-cycle crash data set
and compare its performance to the global learning algorithm
and the local learning algorithm. Some concluding remarks
are made in Section V.

II. L EARNING ALGORITHMS

The task of learning algorithms is to estimate the parameters
of the model, which include the parameters in the antecedent
membership functions and the parameters in the linear regres-
sion equations. In order to lay down a foundation for the
following derivation of learning algorithms, we rewrite (2)
in a slightly different form

(6)

where

(7)

is the normalizedfiring strength for rule .
Equation (6) is nonlinear in the parameters and has to

be solved using some nonlinear optimization algorithm such
as the gradient descent algorithm [10]. However, if we fix

the parameters in the antecedent membership functions (or
equivalently the parameters in ) at the very beginning
of model construction so that the only free parameters are
those in the linear regression equations, then (6) is linear in
the parameters. This is the case in the present paper where
we predetermine the parameters of antecedent membership
function using some heuristic technique.2 The advantage of
such a treatment is that the parameter identification problem
is reduced to a simple linear optimization problem and, thus,
can be solved using efficient linear learning algorithms [1],
[23], [24].

A. Global Learning

Global learning determines the parameters of the model
through minimizing the objective function defined in (4),
which can be rearranged into a simple matrix form

(8)

where

(9)

(See (10) and (11) at the bottom of the page.)
Because the parameters of antecedent membership functions

are predetermined, the only unknown component inis the
parameter vector whose elements are the parameters in the
linear regression equations of the TSK model. The mostly
commonly used method for computing is the recursive
least-squares(RLS) algorithm (see, e.g., [21]). The advantage
of RLS is its on-line learning ability, but it requires a large
number of iterations. In this paper, we use a computationally
efficient, noniterative method to compute. The heart of the
method is thesingular value decomposition(SVD) [5]. In
particular, applying SVD to yields

(12)

where and
are orthogonal matrices

is a diago-
nal matrix with . The diagonal
elements of are called thesingular valuesof . Substituting
(12) into (8) and after simple algebraic manipulations, we can

2In this paper, we adopt Gaussian functions to express the antecedent
membership functions in the TSK model. The centers of Gaussian functions
are assumed to be uniformly distributed in the input space; the widths of
Gaussian functions are determined using a nearest neighbors heuristic, as
suggested in Moody and Darken [13].

...

(10)

(11)
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obtain the smallest Euclidean norm solution ofas [5]

(13)

where is the number of nonzero singular values in.3

B. Local Learning

Local learning computes the parameters of the model
through minimizing the objective function defined by [25]

(14)

In this objective function each fuzzy rule is encouraged to
produce the whole of the output rather than a component.
Moreover, notice that , the normalized firing strength of
the th rule as defined in (7), has nonzero values only in a
small region of the input space. As a result, each fuzzy rule
acts like an independent model that is only related to a subset
of training data. This is exactly the objective function form
used in LWR except the tricube function (rather than) is
used there.4

Similar to (8), can be rearranged into a simple matrix
form

(15)

where

...

(16)

...

(17)

(18)

3In practice, the minimum Euclidean norm solution is usually approximated
by substitutings with r in (13), wherer � s is the number of “large”
singular values in�. The reason is that the presence of computer roundoff
errors and data uncertainties often make the matrixX have “tiny” singular
values. Setting these “tiny” singular values to zeros can effectively eliminate
the effects of roundoff errors and uncertainties, and thus generates numerically
reliable minimum Euclidean norm solution.

4A similar objective function has also been suggested in [9] under the
framework of modular networks. For an interesting comparison between
modular networks and TSK models, we refer the reader to [12].

Applying SVD to , we have

(19)

Then the smallest Euclidean norm solution ofis computed
as

(20)

where is the number of nonzero singular values in, ,
and are the th column of and , respectively.

Notice that the parameters of each fuzzy rule have been
computed independently using a subset of training data. Thus,
the resulting model has a clear local implication. Also, the
computation can be implemented in parallel and the compu-
tational load is essentially unaffected by the assumed number
of fuzzy rules.

C. Combined Learning

Combined learning aims at striking a good tradeoff between
the global approximation and the local interpretation of a
TSK model; it chooses the parameters of the model through
minimizing a combined objective function

(21)

where and are two positive constants satisfying

(22)

Notice that the local objective function defined in (15) can be
written in a more compact form; that is

(23)

where

(24)

...
(25)

...
(26)

(27)

Substituting (23) and (8) into (21) we get

(28)

Because and as well as and have different
dimensions, we cannot directly apply the SVD (as before) to
a single matrix to obtain the minimum Euclidean solution of

. Instead, we differentiate with respect to and equate
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the result to zero, which yields

(29)

Let , and
. Then (29) becomes

(30)

Applying SVD to yields

(31)

where , , and .
The minimum Euclidean norm solution of is then com-

puted as

(32)

where is the number of nonzero singular values in, ,
and are the th column of and , respectively.

III. PARTITION OF THE INPUT SPACE

Since the combined learning algorithm needs to construct
linear regression models in different fuzzy partitions, it is im-
portant to know the number and the position of these partitions
in the input space. Usually, the number of fuzzy partitions
also determines the number of fuzzy rules comprising the
underlying model.

There are two approaches that can be used to form an
appropriate fuzzy partition. The first approach starts with a
small number of fuzzy partitions (typically one partition), and
then adds more partitions based on some measure criterion
[21]. The second approach goes to another direction; it begins
with an oversized number of fuzzy partitions and then removes
those redundant and less important fuzzy partitions [8], [14],
[24], [26]. In this paper, the second approach is used.

To illustrate the approach, we recall that the antecedent
of a fuzzy model results from the fuzzy partition of input
space. Thus, we construct the following matrix, known as the
firing strength matrix, whose entries are only related to the
antecedent of the model

...
...

...
(33)

This is an -by- matrix, where is the number of training
data and is the number of fuzzy partitions (rules). The
entry in this matrix is the normalized firing strength of
the th rule as defined in (7). Notice that each column of
corresponds to one of the fuzzy partitions. As a result, if one
column of is linearly dependent on other columns or consists
of all zeros, then the partition associated with the column is
redundant or less important and removing it will not affect the
performance of the underlying model greatly. Mathematically,
a linear dependent or zero column will make the matrix
singular and, consequently, the matrix will have a zero singular

value.5 Thus, we may detect the number of redundant or less
important fuzzy partitions by examining the singular values
of the matrix . In order to identify the position of those
redundant or less important fuzzy partitions or, equivalently,
pick out the columns that are linear dependent or full of zeros,
we apply a numerically reliable orthogonal transformation
method, known as SVD-QR with column pivoting algorithm to

. This algorithm was originally proposed in Golubet al. [4]
to solve the subset selection problem in regression analysis and
used by Kanjilal and Banerjee [11] to select hidden nodes in a
feedforward neural network, and by Mouzouris and Mendel
[14] to extract important fuzzy basis functions in a fuzzy
model. A comparison of this algorithm with other orthogonal
transformation based methods is given in Yen and Wang [26].
This algorithm is summarized as follows.

SVD-QR with column pivoting algorithm for selecting fuzzy
partitions:

1) Compute the SVD of and save and .
2) Check the singular values in ,

and determine the number of fuzzy partitions that are
to be used to partition the input space aswhere

.
3) Partition as , where , and

; form .
4) Apply QR with column pivoting algorithm[5] to

and get thepermutation matrix
where is

orthogonal and is upper triangular. The
position of the entries one’s in the first columns of

indicates the position of the most important fuzzy
partitions in the input space.

IV. RESULTS

In this section, we illustrate the above ideas using a sim-
ulated motorcycle crash data set taken from Hardle [6]. This
data set, as presented in Fig. 3, consists of 133 accelerometer
readings taken through time in an experiment on the efficacy
of crash helmets. For various reasons, the time points are not
regularly spaced, and there are multiple observations at some
time points. In addition, the observations are all subject to
error. Our interest here is to discern the general type of the
underlying acceleration curve using a TSK model. The input
of the model is the time, denoted by, and the output of the
model is the acceleration, denoted by.

In order to build the model, we first partition the input space
(i.e., the domain of time observations) using the Gaussian-type
fuzzy membership functions defined by

(34)

5In practice, one column inF is seldom exactly linear dependent on other
columns or consists of exactly zero elements. As a result, the relevant singular
value is not zero but a “small” value. Even worse, the small singular value
and other “large” singular values may not have a clear gap. This makes
the determination of the number of redundant or less important fuzzy rules
a nontrivial exercise. In this case, a certain degree of trial and error is
unavoidable for the determination.
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Fig. 3. The motorcycle data set.

where is the number of fuzzy partitions (also the number
of fuzzy rules). The centers, , of the Gaussian membership
functions are assumed to be regularly distributed in the interval
[2, 58], and the widths are determined using a nearest
neighbor heuristic suggested in Moody and Darken [13], that is

(35)

where are the (typically ) nearest
neighbors of the center . In our experiment, we assume that
all Gaussian membership functions have the same width,
which is obtained by averaging in (35) over all centers,
that is

(36)

Initially, we set the number of fuzzy partitions to 20. These
fuzzy partitions are labeled as to indicate their
position in the input space. For each of the 133 input data
points , to the partitions, we compute
the normalized firing strengths using (7). A 13320 firing
strength matrix is then formed. Applying SVD to , the
resulting singular values are shown in Fig. 4. There is no
clear gap between the “large” singular values and the “small”
singular values. Here we arbitrarily take the first eight singular
values as the “large” singular values and the last 12 singular
values as the “small” ones. As a result, we reduce the number
of fuzzy partitions from 20 to 8. The position of the eight
fuzzy partitions in the input space is identified as 6, 4, 10,
8, 2, 12, 15, 19 using the SVD-QR with column pivoting
algorithm introduced in Section III. The order of the position
also indicates the importance of the associated fuzzy partitions
in the input space (also the importance of the associated fuzzy
rules in the rule base). Fig. 5 shows the Gaussian membership
functions associated with the initial 20 fuzzy partitions and the
retained eight fuzzy partitions.

Fig. 4. Distribution of singular values of the 133� 20 firing strength matrix.

Fig. 5. Membership functions associated with the initial and retained fuzzy
partitions.

Notice that the number of fuzzy partitions determines the
number of fuzzy rules constituting the underlying TSK model.
Thus, by retaining eight fuzzy partitions from the initial 20
fuzzy partitions, we build a TSK model with eight rules.
The consequent parameters (i.e., those in the linear regression
equations) of the model are computed using the three different
learning algorithms introduced in Section II. The performance
of the model are measured by the global and thelocal mean-
squares errors(MSE’s), which are computed, respectively,
by

(37)

and

(38)

Fig. 6–8 present the outputs of the resultant TSK model. The
linear regression equations in the consequent part of the model
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Fig. 6. Global and local outputs of TSK model using only global learning.

Fig. 7. Global and local outputs of TSK model using only local learning.

are indicated by the straight lines, with the centers of fuzzy
partitions depicted by the small stars. The model identified
by the global learning algorithm (Fig. 6) has the best global
performance but worst local performance. The submodels one,
two, four, and five in the model exhibit an erratic local
behavior and are hard to interpret. On the contrary, the model
identified using the local learning algorithm (Fig. 7) shows
the best local performance, while its global performance is
the worst. A good tradeoff between global approximation and
local interpretation has been achieved in the model identified
by the combined learning algorithm with the weights
and (Fig. 8). Notice that the weights and in
the combined learning algorithm can be adjusted by the user
according to his own preference: if the user prefers to have a
model with better global performance, then he should assign
a larger value to ; if the user prefers to have a model
with better local performance, then he should assign a larger
value to . In particular, the combined learning algorithm
is reduced to the global one when and to the local
one when . Table I presents the global MSE and
local MSE of several TSK models with varying and
values.

Fig. 8. Global and local outputs of TSK model using combined learning.

TABLE I
GLOBAL AND LOCAL PERFORMANCE OF THETSK MODEL IDENTIFIED

USING THE COMBINED LEARNING ALGORITHM WITH VARYING WEIGHTS

V. CONCLUSION

The TSK modeling methodology is essentially a multi-
model approach in which simple submodels (where each
submodel acts like a “local model”) are coupled to de-
scribe the global behavior of the system. Since one of the
important motivations of using the TSK model (also other
fuzzy models) is to gain insights into the model, it is im-
portant to investigate the local interpretation issue of the
TSK model. In this paper, we present a combined learn-
ing algorithm that is capable of generating a TSK model
with both good global approximating ability and good lo-
cal interpretation capacity. We illustrate the performance of
the proposed algorithm using a motorcycle crash modeling
example.

The singular value decomposition (SVD) has played a cen-
tral role in forming the combined learning algorithm and the
input space partitioning algorithm. However, the computation
of SVD can become memory and time intensive for high-
dimensional (i.e., a large number of input variables) and large
data sets. Developing alternative computationally efficient
procedures for combining global learning and local learning
for high-dimensional/large data sets modeling problems is our
current research focus.
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