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ABSTRACT 

The ‘hnique selling point” of fuzzy systems is usually 
the interpretability of its rule base. However, very often 
only the U C C U T U C ~  of the rule base is measured and used to 
compare a fuzzy system to other solutions. We  have sug- 
gested an index to measurz the interpretability of fuzzy rule 
bases for classification problems. However, the index can be 
used to describe the interpretability of any rule-based sys- 
t e m  that uses sets to partition variables. We  demonstrate 
the features of the index b y  using two data sets, one simple 
benchmark set and a real-world example. 

I. INTRODUCTION 

In order to transform data into valuable information an 
intelligent approach to  data analysis is required. We do 
not simply require models for prediction which we would 
blindly follow and let them determine our business deci- 
sions. In order to  properly facilitate our decision making 
processes we also require models for understanding, i.e. in- 
terpretable models that provide us with explanations. 

In data analysis applications an interpretable model of 
the data is especially important in areas where 

humans usually make decisions, but where machines can 
now support the decision making process or even take full 
responsibility for it, . prior knowledge is to  be used in the data analysis pro- 
cess and the modification of this knowledge by a learning 
process must be checked, 

solutions must be explained or justified to  non-experts. 
For generating an interpretable model automatically 

from data, we must be able to measure its interpretabil- 
ity. This measure should at least be useful for ranking 
different models such that a data analysis process can pick 
a model with a higher ranking without user intervention. 

The application that we discuss in this paper belongs 
to the last area. At BTexact we have developed ITEMS, 
an intelligent data analysis system for estimating and vi- 
sualizing the travel patterns of a mobile workforce. The 
application allows users to track journey times and to gen- 
erate explanations why a particular journey was possibly 
late, for example. We use the neurc-fuzzy approach NEF- 
CLASS to  generate such explanations. 

In  this paper we discuss some aspects of interpretable 
fuzzy systems (Section 11) and consider the special circum- 
stances of generating models for explanation instead of pre- 

diction. Then we suggest an interpretability index (Section 
111) and discuss its features. In Section IV we show how to  
use NEFCLASS to build explanatory rules and in Section 
V we present a real world example before we conclude the 
paper. 

11. INTERPRETABILITY IN F U Z Z Y  SYSTEMS 

The “unique selling point” of fuzzy systems is usually 
that they are capable of producing simple rule-based solu- 
tions using simple terms. However, in the literature most 
applied fuzzy systems are evaluated according to  their per- 
formance or accuracy. Especially, data-driven fuzzy sys- 
tems, i.e. fuzzy systems generated by learning algorithms 
focus on accuracy. This is obviously the easiest way for 
comparing fuzzy systems to  other solutions that are based 
on different approaches. 

In order to  evaluate fuzzy systems in an area where they 
are supposed to excel we need a way to assess what we 
could call their interpretability, simplicity or user friend- 
liness. In this paper we suggest a way of measuring the 
interpretability of a fuzzy system. We will focus on data- 
driven fuzzy systems that are generated by, for example, 
neuro-fuzzy approaches. We assume that the purpose of a 
fuzzy system generated in a learning process is not only to  
provide prediction but also to generate explanations about 
the data set. 

If we want a fuzzy system to  provide explanatory rules 
for a given data set then we must consider the following 
issues. 

What does interpretability mean in the context of fuzzy 
sets? 

What kind of explanations does the user want and can 
understand? - How can we build such rules quickly in interactive appli- 
cations? 

How do we present the explanations? 
We have already discussed several aspects about the in- 

terpretability of fuzzy in other publications [ 5 ] ,  [8], 191, [lo], 
[ll], [12]. This topic is discussed for some time in the lit- 
erature [l] and more studies about the interpretability of 
fuzzy systems are being published [Z]. 

In this paper we only consider Mamdani-type fuzzy rules 
of the form 

if x is p and . . . and xn is pn then . . ., 
i.e. fuzzy rules that use operators like “or” and “not” or lin- 
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guistic hedges are not discussed here. The consequent of a 
fuzzy rule can be a linguistic term (regression) or a class la- 
bel (classification). In this paper we only consider systems 
classifications, i.e. we do not discuss the interpretability of 
rule consequences. The following list describes a number 
of desirable features of an interpretable fuzzy rule base. . Small number of fuzzy rules. . Small number of variables used in each rule. . Small number of fuzzy sets per variable (coarse granular- 
ity). . Unambiguous representation of linguistic terms, i.e. only 
one fuzzy set for each linguistic term. . No completely contradictory rules, i.e. there is no pair 
of fuzzy rules (A ,  C) and (A’, C’) with 

A = A‘ A C # C‘, 

where A,A‘ are antecedents and C,C’ are consequents. 
However, partial contradiction 

( A  g A’)AnA’ # 0 A C # C’ 

is a feature of fuzzy rules and is therefore acceptable. 
No redundancy, i.e. there is no pair of rules (A ,  C) and 

(A’ ,  C’) with 
A 2 A’ A C = C‘. . Avoiding exceptions, i.e. there should not he a pair of 

rules (A ,C)  and (A‘,C’) with 

A c A‘ A c # C‘. 

Although exceptions can be a way to reduce the number of 
rules they can make the,rule base harder to  read. 

Fuzzy partitions should be “meaningful”, i.e. fuzzy sets 
should he normal and,convex and must keep their relative 
positions during learning. 

111. AN INTERPRETABILITY INDEX 

When fuzzy systems are generated in a learning process, 
for example in a data analysis scenario, the usual target is 
to  build a reasonably accurate predictor with a reasonably 
interpretable rule base. Obviously, there is a trade-off be- 
tween accuracy and interpretability and depending on the 
application the solution will concentrate more on predic- 
tion than interpretability, or vice versa. 

In order to obtain a model that can he used for predic- 
tion we have to  avoid over-generalization. This means, we 
usually split up the available data in training and valida- 
tion sets. In order to obtain a useful estimate of the error 
on unseen data this procedure is usually repeated several 
times (n-fold cross-validation). 

We can also build a model solely for the purpose of ex- 
plaining patterns in a data set and then we have a different 
target. The model will not (and must not) he used for pre- 
diction. The idea of the model is to provide a summary of 
the currently available data in a meaningful way. In this 
sense an explanatory model is like a descriptive statistic of 
a sample, where we are only interested in describing the 
sample and not the underlying population. 

That means to build an explanatory model we will use all 
available data and do not worry about over-generalization. 
Actually, we try to  get the best possible fit to the data be- 
cause that means we obtain the most accurate description 
of the data. We will also restrict the degrees of freedom 
for our model in order to obtain a small, simple and inter- 
pretable model. Obviously this leads to  the same dilemma 
as for predictive models: the trade-off between accuracy 
and interpretability. 

The demand for a predictive model usually does not im- 
pose strict time constraints on the model building process. 
The only real requirement is that the model is available be- 
fore the first prediction is due. Explanations, however, are 
more likely to he demanded in a real time process. A typi- 
cal scenario is that a user explores some data and demands 
an explanation for some findings. It is then not accept- 
able to wait a long time for a model. The model building 
process must be completed within seconds or minutes at 
most. 

This time constraint forbids an extensive search for the 
smallest, most interpretable model with an acceptable ac- 
curacy. That means in a real world applications there is 
no typically time for building a model, checking its inter- 
pretability and then restart the model building with dif- 
ferent parameters until we have reached the hest result. 
However, it may he possible to do this in parallel, if the 
computing resources are available. 

Therefore, we are interested in learning approaches that 
either try to build small models from the beginning or are 
capable of pruning a large model as part of the learning 
process. 

Rule induction methods based on decision trees try to 
build small models by selecting the most promising vari- 
ables first in the hope of not requiring all variables for the 
final model [4], [14]. Another option is to use a hypcrbox- 
oriented fuzzy rule learning method Ill] as it is imple- 
mented in the neuro-fuzzy system NEFCLASS. This ap- 
proach first detects all rules that are induced by a data set, 
selects the hest rules based on a rule performance measure, 
trains the fuzzy sets, and then pruncs the rule base. For 
ITEMS we have implemented explanation facilities based 
on (crisp) decisions trees and neuro-fuzzy rules. Users can 
select which version of rules they prefer. 

If enough computing resources are available, it may he 
possible to generate several different explanatory models 
in parallel. The system can then try to measure the in- 
terpretability based on approaches like tbe minimum de- 
scription length principle [6] that can also be applied to 
neuro-fuzzy learning 151. Another possibility to  compare 
different rule based models is to consider the number of 
relevant parameters. In the application that we discuss in 
this paper we are interested in classification rules. We can 
measure the complexity comp of a classifier by 

comp = m I ?  1 

where m is the number of classes, T is the number of rules 
and n, is the number of variables used in the zth rule. This 
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measure is 1, if the classifier contains only one rule per class 
using one variable each and it approaches 0 the more rules 
and variables arc used. We assume that at least one rule 
per class is required, i.e. systems with a default rule must 
be suitably recoded. 

When we want to compare fuzzy rule bases we also want 
to measure the quality of the fuzzy partitions. Usually, 
a fuzzy partitioning is considered to  be “good“, if it pro- 
vides complete coverage (i.e. membership degrees add up 
to 1 for each element of the domain) and has only a small 
number of fuzzy sets. If we assume that the domain Xi 
(i E {l, . . . ,  n}) of the ith variable is partitioned by pi 
fuzzy sets p:’), . . . , p P 1  then we can measure the degree 
of coverage provided by the fuzzy partition over X i  by the 
coverage index 

J,, L ( x ) d x  
covi = ,where (1) 

with N; = Jxi dx for continuous domains. For discrete 
finite domains we have N, = 1x1 and replace the integral 
in (1) by a sum. 

We can see that COY% E [0,1], where covi = 0 means 
that the variable is either not partitioned or that we have 
a crisp partition such that all p(’1 = Xi. Both extreme 
cases mean that the variable would be considered as ‘don’t 
care’ and would not appear in any rule. Complete coverage 
is indicated by cov; = 1. Note that a partition that covers 
onIy 10% of all values gets approximately the same score as 
a partition where 90% of the whole domain is completely 
covered by all sets. This feature may be disputable and 
has to be considered when applying the index. 

In order to  penalize partitions with a high granularity 
we can use the partition index 

I 
part, = __ 

Pi - 1 

assuming that pi 2 2, because otherwise we would not 
consider that variable. We use COV to  denote the average 
normalized coverage and part to denote the average nor- 
malized partition index for all variables actually used in 
the classifier. 

Finally, we can use the interpretability index 

I = comp  part 

for measuring the interpretability of a fuzzy classifier. Ob- 
viously, we can apply I to any rule-based classifier that uses 
sets to  partition variables, by simply representing crisp sets 
by corresponding fuzzy sets. 

A classifier would only score I = 1 if it contains one rule 
per class, using only one variable per rule and providing 

complete coverage for each variable with two (fuzzy) sets 
and m 2 2n holds, where n is the number of variables. The 
value of I can give us an idea if we want to  compare two 
rule-based classifiers for the same problem. It is less useful 
to compare the interpretability of classifiers for different 
domains. 

We also have to point out that for an explanatory model 
local interpretability can be more important than global 
interpretability. If, for example, an explanatory model is 
used for obtaining explanations only for individual patterns 
and not for obtaining an understanding of the data set as 
a whole, then the number of rules that fire for any given 
pattern are of interest and not the overall number of rules 
in the rule base. In this case the complexity index comp 
could be replaced by an average value based on the rules 
that fire for a selected pattern. 

IV. CREATING INTERPRETABLE RULE BASES I N  
NEFCLASS 

The NEFCLASBlearning structure and parameter learn- 
ing algorithms are designed in a way that they can operate 
fully automatically if this is required. Usually, if inter- 
pretable solutions are required from a neuro-fuzzy system, 
then user interaction is a desired feature, because only the 
user can decide what “interpretable“ means in a certain 
application scenario. If, however, a fuzzy rule base shall he 
created within an application, then we cannot assume that 
the user is willing or capable of supervising a neuro-fuzzy 
learning process. Therefore it must be possible to create 
a rule base completely automatically while trying to ob- 
tain a high degree of interpretability. NEFCLASS uses the 
following strategies in order to achieve this goal. . Automat i c  best per class ru le  learning: this feature 
creates a rule base that contains so many rules that all 
patterns of the training set are covered by at least one rule. 
In the first stage NEFCLASS creates a new rule each time 
it encounters a pattern that is not yet covered by a rule, 
i.e. if the pattern does not have a degree of membership of 
at least 0.5 with any rule antecedent currently stored in the 
rule base. During the second stage NEFCLASS selects for 
each class the best rules for the final rule base. It does that 
by selecting a rule for each class in a round-robin fashion 
until all patterns are covered by at least one rule. This 
algorithm also guarantees a similar number of rules for each 
class. 

Au tomat i c  fuzzy set tuning:  the fuzzy set learning 
algorithm uses a heuristic to  modify the membership func- 
tion in order to  reduce the sum of squared errors (SSE) and 
the number of misclassifications. A small overall SSE usu- 
ally indicates that the classifications are nearly crisp and 
a small number of misclassifications is an obvious target. 
In order to obtain meaningful fuzzy sets, the learning al- 
gorithm is constrained. For example, fuzzy sets must not 
change their relative position to each other and must al- 
ways overlap. 

Au tomat i c  exhaust ive pruning:  NEFCLASS in- 
cludes four pruning strategies that try t o  delete variables, 
rules, terms and fuzzy sets from the rule base. In order to 
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obtain a rule base that is a small as possible all those four 
strategies are applied one after the other in an exhaustive 
way to all possible parameters. For the sake of speed the 
fuzzy sets are not retrained after each pruning step, but 
only once after pruning. 

In order to  start the learning process NEFCLASS re- 
quires initial fuzzy partitions for all variables. This part 
is not yet fully automated, because for numeric variables a 
number of fuzzy sets must be specified. For the discussed 
scenario this should be done by the application designer. 
We are currently working on automating this process as 
well. For symbolic variables, NEFCLASS can determine 
the initial fuzzy partitions automatically during rule learn- 
ing [7]. 

When we execute NEFCLASS in an application envi- 
ronment with no user intervention, then we must try to 
balance the required computation time with the quality of 
the rule base. While rule learning and pruning are usu- 
ally fast, fuzzy set learning can take a lot of time, because 
it requires many iterations through the training data set. 
Fuzzy set learning is influenced by some parameters (learn- 
ing rate, batch/online learning, look ahead mode for trying 
to escape local minima) and by the already mentioned con- 
straints for guaranteeing meaningful fuzzy sets. 

For running fuzzy set learning automatically we can se- 
lect a small learning rate (e.g. 0.1) together with batch 
learning to  avoid oscillation and select a small look ahead 
value (10 epochs) which continues training beyond a local 
minimum in the hope to escape it again. The number of 
epochs are usually chosen in such a way that a minimum 
number of learning steps are computed (e.g. 100) and that 
learning is stopped after, for example, 30 seconds. This 
time has to be set according to  the application scenario. If 
users of the application usually tend to inspecting other fea- 
tures of the requested data first before checking the fuzzy 
rules, learning may continue for longer. If the user mainly 
waits for the rules, learning may have to be shorter. 

We also must balance the constraints we impose on the 
learning algorithm. We could enforce strict constraints likc 
that the membership degrees for each element must add 
up to 1.0 Ill], [13]. However, strict constraints tend to 
prevent the system froin reaching a acceptable classification 
performance and usually require inspection of the learning 
outconie and repeated trials, for example, with different 
numbers of fuzzy sets. In an automated scenario this is 
not possible and we would use only the above-mentioned 
less strict constraints. 

In order to illustrate how interpretable fuzzy rule bases 
generated by NEFCLASS are we may consider the Iris data 
set as a very simple, but frequently used benchmark. If we 
force NEFCLASS to create fuzzy partitions with complete 
coverage (membership degrees add up to  1 for each element 
of the domain) then NEFCLASS can create the following 
rule base for the Iris data set after pruning: 
if petal width is small then Iris setosa, 
if petal width is medium then Iris versicolour, 
if petal width is large then Iris virginica. 

On our suggested interpretability index this rule base 
scores 

- - 3 
1 + 1 + 1  

comp = 

- 
COY = 1 (we enforced complete coverage) 
- 

= 0.5 (only one variable is used) 
1 

part = - 
3 - 1  

I = 0.5 

The rule base was generated on 50% of the data (2 errors), 
while the remaining 50% were used for testing (4 errors). 
On the complete set (150 records) we obtain a performance 
of 96%. 

If we generate a decision tree on the complete data set 
using information gain ratio and transform this tree into 
a rule base, then after pruning the tree we obtain 6 rules 
using one or two variables. The variable petal length is 
partitioned into four intervals and the variable petal width 
into three intervals. This rule base has a performance of 
98.7% (2 errors) on the whole data set and its interpretahil- 
ity scores as follows: 

= 0.27 3 
1 + 2 + 2 + 2 + 2 + 2  

comp = 

- cov = 1 (crisp subsets) 

I = 0.11 

This very simple example illustrates that fuzzy rule bases 
can indeed be measurably simpler than rule bases of other 
approaches. On the other hand we have to  expect a slight 
reduction in accuracy. The suggested interpretability index 
can illustrate this feature of fuzzy rule bases and it is es- 
pecially useful for selecting an appropriate rule base when 
user interaction is not possible. If users can be involved 
in the rule generation and selection process then they will 
usually select a result based on their personal preferences. 
However, even in such a scenario an interpretability index 
can be useful in order to  rank different results. 

In the following section we will explore the features of 
the interpretability index by using a real-world example. 

v. EXPLAINING TRAVEL PATTERNS OF A MOBILE 
WORKFORCE 

Any organization with a large mobile workforce needs to 
ensure efficient utilization of its resources as they move be- 
tween tasks distributed over a large geographical area. BT 
employs around 20000 engineers in the UK who provide ser- 
vices for business and resident customers such as network 
maintenance, line provision and fault repairs. In order to 
manage its resources efficiently and effectively, BT uses a 
sophisticated dynamic scheduling system to  build proposed 
sequences of work for field engineers. 

A typical schedule for a field engineer contains a sequence 
of time windows for travel and task. To generate accurate 
schedules the system must have accurate estimates for the 
time required to  travel between tasks and estimates for task 
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duration. At BTexact Technologies - BT's advanced com- 
munications technology business - we have implemented a 
system that improves the accuracy of travel time estimates 
by 30% compared to the previous system. The system [3] 
contains an estimation module, a visual data mining mod- 
ule and an explanation facility. 

Note that the travel time is calculated as the difference 
between the time a task is issued and the arrival time on 
site, Specifically, travel time includes the time required 
to leave the current site, walk to the car-park, start the 
car, drive to the destination site, park the car, and gaining 
access to the premises of the next customer. However, all 
these individual activities are not logged, only the start 
time of the journey and the start time of the actual work 
are available. It is obvious that we have to deal with huge 
differences between urban and rural areas, for example, just 
in finding a space to park. 

The Intelligent Travel Estimation and Management Sys- 
tem (ITEMS) is a web-enabled, Java-based software system 
that predicts, manages, visualizes and explains travel pat- 
terns of a mobile workforce. ITEMS is a tool for service 
industries like telecommunications, gas, water, electricity 
etc. that have to  schedule jobs for large mobile workforces. 
Successful scheduling requires suitable estimates of inter- 
job times that are mainly determined by travel time. How- 
ever, it is not sufficient to simply use routing software, be- 
cause that cannot estimate the time that is required to find 
a parking space, to gain access to the site etc. It is also im- 
possible for technicians to log detailed information about 
the routes they have taken, but they only log their actual 
travel (inter-job) time. Thus, it is not possible to compare 
actual travel data with recommendations from routing so&- 
ware. 

ITEMS has a learning component that constantly builds 
new models for travel time prediction. It compares the new 
model with the performance of the model currently used 
by the scheduler and recommends updating the scheduler 
if the new model performs significantly better. The learn- 
ing component makes sure, that the scheduler will gradu- 
ally adapt to changes in travel behaviour. So if, for exam- 
ple, technicians are frequently late on specific journeys, the 
scheduler will obtain new travel time estimates for those 
journeys after a sufficient amount of data has been gath- 
ered. It can then compute better schedules and try to  
avoid those critical journeys. While updating the travel es- 
timates may take time, managers can still quickly react to 
critical situations by making use of the visualization and 
explanation facility of ITEMS. 

In addition to reliable estimates workforce managers also 
regularly need to analyze the travel behaviour of their 
workforce in order to  determine if improvements are re- 
quired. ITEMS provides a color-coded geographical visu- 
alization of travel patterns. Managers can easily identify 
areas where travel is slow and can assess the performance 
of technicians on a weekly, daily and individual basis. 

ITEMS contains an explanation facility based on deci- 
sion trees and neuro-fuzzy systems that display rule-based 
information about individual journeys. The rules derived 

from travel data explain, for example, why a certain jour- 
ney may have been late. The information of those rules 
can be used by managers to improve the overall system 
behaviour. Let us, for example, assume that the automati- 
cally generated rules reveal that travel between two specific 
areas takes usually longer than predicted at a certain time 
of day. In this case, thc scheduler can be advised and try 
avoid scheduling journeys between those two areas at that 
time of day. 

The purpose of the explanatory rules is to provide re- 
source managers with a tool to  investigate workforce travel 
patterns. The rules provide a summary of the actual data 
and highlight influential variables. In order to be useful 
the rules must be simple and sparse. It must also be pos- 
sible to  create the rule base on the fly in a very short time. 
The user would select a specific set of journeys for which 
he requires explanations. The system must then create the 
rules completely automatically without user interaction. 

For the explanation module we can use a decision tree 
learner or the NEFCLASS algorithms to  generate rules. 
Figure 1 displays a screen shot of typical situation while 
using ITEMS. A user analyzes the travel pattern of some 
technician and has clicked an arrow in the displayed map. 
Additional windows display detailed information about the 
corresponding job. The top right window displays two 
fuzzy rules that match the travel information of the se- 
lected job. The user can see the degree of fulfilment of a 
rule and decide, if a particular rule is useful to explain the 
selected travel pattern, i.e. why the technician was late. 
early or or on time. 

Fig. 1. Screen shot of ITEMS displaying two fuzzy rules 
In the following we present a small example of how NE- 

FCLASS can generate rules for explaining travel patterns. 
The data contains both numeric and symbolic data and we 
are using the algorithm described in [9]. For confidentiality 
reasons we can only reveal parts of the result. 

As an example we take a closer look at one model for one 
organizational unit comprising 13 technicians, using three 
weeks of data. This is a typical set of data analyzed by a 
unit manager. The data contains 10 input variables, where 
five are symbolic. The data was classified into three classes: 
early, on time and late. After rule learning, fuzzy set tuning 
and pruning, NEFCLASS presented a rule base of seven 
rules using four variables (Technician, Time (hour), Start 
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Location, Destination). 
The accuracy of the fuzzy rule base was 76.6% with the 

following class accuracies: early = 30%, late = 32%, on 
time = 97% As a comparison we created a decision tree 
with 66 rules with more than six variables on average that 
was 70% accurate. The fuzzy rule base obtained a score 
of I = 0.0066 (comp = 0.1875, COV = 0.15, part = 0.2375) 
on our interpretability measure introduced in Section 111, 
while the decision tree has I = 0.0025 (comp = 0.0076, 
3 = 0.33, ??S = 1). 

Let us concentrate on the fuzzy rules that describe late 
journeys for this particular set of jobs. Group,,, Start, and 
and End, are list fuzzy sets for the symbolic variables ID 
(technician), Start (start location) and End (destination), 
where n is an index. 

If ID is Groupl and Start Hour is small and Start is 
Startl and End is Endl then Late . If ID is Group4 and Start is Start2 and End is Ends then 
Late 

If ID is Group5 and Start is Starts and End is End4 then 
Late 

Further analysis of the classification of individual jobs 
shows that 85% of the misclassified late patterns have al- 
most equal membership with late and on time. In addition 
all late patterns have actually non-zero membership with 
the class late. 

When the user clicks on the graphical representation of a 
journey in the graphical user interface, he will see all rules 
that fire for that particular record. If the user is partic- 
ularly interested in late travel, at least one of the above 
presented rules will be displayed. Even if the pattern is 
misclassified, the rules can still provide a useful explana- 
tion. 

Note, that the rules are not meant for prediction, but 
for explanation only. That is why we use all the data to  
generate the rules and do not use validation. The rules rep- 
resent a rule-based summary of the data. For example, if 
there is a rule that correctly classifies a lot of late journeys, 
the manager can investigate, why this particular pattern is 
present in the data. Such a scenario can point to  problems 
in the prediction module or to specific situations like on- 
going road works that are only indirectly reflected in the 
data. On the other hand, if there is a late journey that 
cannot he classified correctly, this means that it cannot be 
explained by the data and may be an outlier (exception) 
so that no action is required. 

Most of the rules shown above contain only symbolic 
variables and therefore list fuzzy sets. They are not as eas- 
ily interpretable as, for example, the fuzzy set small for the 
variable Start Hour in the first rule. However, close inspec- 
tion of the fuzzy sets reveals, that for example technicians 
who were frequently late all have high degrees of member- 
ship with the fuzzy sets Groupl, Group4 and Group,. This 
can help the manager in identifying, for example, individu- 
als who may be require additional training or information 
about better routes, because they are, for example, new on 
the job. 

- 

VI. CONCLUSIONS 

We have suggested an interpretability index to measure 
the simplicity and readability of a (fuzzy) rule based solu- 
tion. This index can he used in data analysis process to 
select an appropriate solution when user interaction is not 
possible or suitable. 

Intelligent data analysis plays a crucial role in modern 
businesses. They do not only require predictions based on 
data but also require a deep understanding of the data that 
is collected from internal or external sources. Rule based 
models that provide explanations can be a valuable tool in 
this area. We have shown how we have used the neuro- 
fuzzy approach NEFCLASS in the an application scenario 
where explanatory rules are required. The learning algo- 
rithms of NEFCLASS are capable of generating explana- 
tions about a data set selected by a user in a reasonably 
short time. 
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