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In this paper we develop an objective finction- 
based clustering algorithm to build fizzy models 
of the Takagi-Sugeno (TS) type automatically 
from data. In contraPt to most of the TS models 
that cun be found in the literature, we decided 
to we very simple input-space partitions and 
a higher degree of consequence polynomials 
(quadratic). Only in this way transparency and 
intevretability cun be guaranteed. We also show 
how to derive linguistic labels for the polynomials 
found by the algorithm. 
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1 Introduction 

Fuzzy models are widely used in many areas 
like expert systems, pattern recognition, or sys- 
tem modelling. When using rules to describe an 
input-output relation instead of classical function 
approximation techniques, this is mainly because 
of the transparency of the resulting fuzzy model. 
Fuzzy models are especially useful when facing 
inter-disciplinary problems, where the presenta- 
tion of a purely mathematical description to the 
domain expert is not desirable. Unfortunately, 
this transparency aspect is neglected in many 
approaches that can be found in the literature. 
Aiming at a high approximation quality, some 
authors tend to  allow any transformation of the 
fuzzy sets, ending up with a fuzzy model that is 
not interpretable any longer. 

'This work was supported by the Deutsche Forschungs- 
gemeinschaft (DFG) under grant no. K1648/1-1. 

In this paper we deal with fuzzy models of the 
Takagi-Sugeno type [8], consisting of rules like 

Q .  
R : i f z i s p t h e n  f ( z ) M C a j z J  

j = O  

where p denotes the fuz:ay set in the premise 
and CI E Rq+' the coefficient tuple of the conse- 
quence polynomial. With 41 = 0 we obtain rules 
similar to  the Mamdani type rules that read like 
if z is low then f(z) is high. With Mamdani rules, 
both linguistic terms low and high represent fuzzy 
sets, here high denotes E R. 

If we choose triangular functions for the 
premise fuzzy sets p and constant terms for the 
conclusions (q = 0), one can easily see that the 
resulting model becomes a piecewise linear func- 
tion. (An objective function-based algorithm to 
derive an optimized model automatically from 
data for this case can be found in [5] .) To increase 
approximation quality we can either increase the 
complexity of the premise fiuzzy sets (others than 
triangular memberships) or we increase the d e  
gree of polynomials in the conclusion. It can be 
shown [7, 11 that a given filnction can be recon- 
structed only by selecting appropriate premise 
fuzzy sets. However, if we build a linguistic rule 
base the user does not “sed' the premise fuzzy 
sets but only the linguistic terms. Let us con- 
sider two singleinput singleoutput functions f 
and g as shown in figure 1. If we approximate the 
different functions f and g in this way we would 
get very different premise fuzzy sets for, let us 
say the linguistic term x is zero in both rule sets. 
But the user will identify both fuzzy sets since 
the same linguistic term has been used. Fine- 
tuning premise fuzzy sets in a fuzzy model that 
uses linguistic terms is therefore not transparent 
to the reader. 
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ters {kl, ..., kc} is modelled by means of a ‘mem- 
bership matrix’ U, where each Uj,j denotes the 
degree of belongingness of data object X j  to clus- 
ter ki. Having fixed the number of prototypes 
(and thus the dimension of U) one can perform 
clustering by means of minimizing the objective 
function 

n c  

under the ‘probabilistic constraint’ 

Figure 1: Functions f (lower) and g (upper). 

Qj E NI, : 
Therefore we choose the other possibility, in- 

crease the polynomial degree in the conclusion. 
This requires new types of linguistic terms, de- 
scribing the “shape of a function”, for instance 

if x is nearly zero 
then f(x) is absolutely constant zero 
then g(x) has a steep local minimum near zero 

This corresponds much more to the notion of 
intuitive fuzzy rules than the previously discussed 
approach, because we use the same fuzzy set in 
the premise and reflect the different behaviour in 
the consequence. To build these rules automati- 
cally from data, we make use of fuzzy clustering 
techniques, which will be introduced in brevity in 
the next section, see [SI for a thorough overview. 
In section 3 we combine two clustering methods 
[2, 41 to obtain a new algorithm that yields a 
certain type of TS models as output. In sec- 
tion 4 we discuss the linguistic transformation 
of second-degree polynomials into descriptive lin- 
guistic terms. We give an example of an automat- 
ically generated linguistic rule base in section 5. 

2 Objective Function-Based 
Fuzzy Clustering 

Subdividing a set X = (21, .-.,Xn} C IRp, p E IN, 
of data objects into groups of similar data objects 
is called clustering. Given a ‘model’ P for clus- 
ters we can define a distance d : IRp x P + Q’ 
between data objects and cluster models or ‘pro- 
totypes’, yielding d ( x , k )  = 0 if data object x 
matches model IC perfectly. For example, the 
popular fuzzy c-means (FCM) algorithm [2] uses 
points as elements of &CM := lRp for prote 
types and the Euclidean distance measure as d. 
The relationship between data objects and clus- 

C 

ui,j = 1 
i=l 

which is necessary to avoid the trivial solu- 
tion U = 0. The so called ‘fuzzifier’ m E l R > 1  

influences the ‘fuzziness’ of the final partition, 
with m + 00 membership degrees become to- 
tally fuzzy ui j  I+ $, with m + 1 they become 
more crisp ui,j I+ (0, I}. 

The objective function (1) is minimized by al- 
ternating optimization (AO), that is, J is first 
minimized with respect to membership degrees 
ui,j (considering prototypes to be constant) and 
then with respect to  prototypes ki (considering 
membership degrees to be constant). In case 
of FCM there are closed-form solutions for both 
minimization steps. In this paper, we also utilize 
the fuzzy c-regression models (FCRM) algorithm 
[4], which uses polynomials as cluster prototypes. 
With real functions IR + lR the cluster models 
are characterized by the coefficients of the poly- 
nomial, f i c ~ ~  := R*+’ where q is the degree of 
the polynomials. The distance of a data object, 
consisting of input value z and output value y, 
to the polynomial h is defined as Iy - h(z)l. Due 
to the limited space, we refer to the literature for 
detailed descriptions of the algorithms. 

3 Combining FCM and 
FCRM 

If we consider fuzzy models as shown in the intro- 
ductory example, we expect the function to b e  
have near zero as it has been described. Again, 
many systems in the literature allow overlapping 
premise fuzzy sets for higher-order TS models. In 
this case, the resulting function does not behave 
at all like one might expect from the conclusion 
of the rule, but is composed out of polynomials 
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of many different rules. The fuzzy model will 
behave as desired only if the premise fuzzy sets 
have a large support of 1 and thus there is only 
one rule applicable at the same time. This leads 
us to trapezoidal or even crisp premise fuzzy sets. 
Note that in case of crisp membership functions 
we have the classical case of piecewise polyno- 
mial function approximation. Since the support 
of the local polynomials is not fixed in advance, 
this is a non-trivial problem in the classical case, 
too. With crisp premise memberships and lin- 
ear functions in the conclusion we again have the 
piecewise linear case, we therefore consider poly- 
nomials of degree 2 in this paper - but the algo- 
rithm can also be used for even higher polynomial 
degrees. 

Thus, the goal is to partition the input space 
such that the resulting fuzzy membership func- 
tions have a large support of 1. This can be 
done by means of fuzzy clustering, for example 
the fuzzy c-means algorithm (using a fuzzifier 
1 < m 5 1.5)'. For each cluster in this parti- 
tion, we use a polynomial of degree 2 to locally 
approximate the input-output relationship in this 
cluster. This can be done by means of switching 
regression models [4]. If we combine both alge 
rithms, we obtain a fuzzy clustering/regression 
algorithm where each cluster can be interpreted 
as a rule in a TS model. 

Since both algorithms are objective function- 
based, their combination is straightforward. The 
new fuzzy model (FM) algorithm uses P = 
&CM X ~ C R M  and d = dFcM 4- dFCRM, where 
PFCM = IR' and r denotes the dimensionality 
of the input space only. In case of real-valued 
functions the data objects are pairs (%,U) E IR2 
and we use f i c ~  = R for a partition of the Z- 
values. Since there are no dependencies between 
the parameters of the FCM and FCRM proto- 
types, the same prototype update equations hold 
for the combined algorithm. Nevertheless, FCM 
centres and FCRM polynomials influence each 
other indirectly by means of the membership de- 
grees, which depend on the distance to both mod- 
els. (A different way to combine FCM and linear 
FCRM can be found in [3].) 

Figure 2 shows the result of the FM algorithm 
when approximating f and g using c = 3. Al- 
though it is not shown which polynomial belong 
to which function one can guess it easily from the 
figure. Of course, polynomials of degree 2 cannot 
match the original functions (locally) perfect, but 
they catch the behaviour or shape of the function 
very well. 

'By means of a fuzzifier near 1 we obtain more crisp 
and convex membership degrees 

1 1 

0 0.2 0.4 0.6 0.8 1 

Figure 2: FM algorithm applied to f and g.  

4 Linguistic Model 
Description 

We assume real-valued functions in this section. 
The FM algorithm yields c clusters, each con- 
sisting of a centre V j  E IR and a polynomial 
h&) = ~ ~ = o u k ~ h .  From the data objects and 
the clusters we construct histograms 

Hxi(z) = max{uif I z = zj, j = 1..n} 
Hyi (y) = max{ui,j I y = yj, j = l..n} 

H h t ( ~ i ) ( d )  = max{uid I d = h'(zj), j = l..n} 

and generate approximating convex fuzzy sets 
as described in [6]. The resulting fuzzy sets px i ,  
pyi and pht(xi) denote the support of the rule, 
the output values of the rille, and its derivative 
which is approximated with the help of the poly- 
nomial h. 

From a list of landmark values we build a fixed 
dictionary of fuzzy sets for linguistic approxima- 
tion. The dictionary contains single values (tri- 
angular membership functions) as well as inter- 
vals (trapezoidal membership functions). A list 
of values { - l , O ,  1) with associated labels nega- 
tive one, zero, one, for instance, would result in 
the singletons -1, 0, 1 and the intervals (trape- 
zoidals) [-1,0], [0,1] and [-1,1]. The landmark 
values specify the granularity to be used in the 
rules. Since the vocabulary is fixed, the user can 
be sure that the same linguistic term describes 
approximately the same filzzy set even in differ- 
ent rule bases. 

The landmark values that have been chosen to 
approximate pxi are used to generate the linguis- 
tic term for the premise Fuzzy set, those of pyi 
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are used to  describe the range of output values 
of this rule. The linguistic terms that charac- 
terise the shape of the local function are derived 
from p h l ( X i )  as follows: Let us denote the left- 
most and rightmost landmark value of the a p  
proximation of the fuzzy set p h f ( X i )  by di and 
4, resp. If4 = 4 the fuzzy set C(h'(Xi) is char- 
acterized by a singleton, the derivative is nearly 
constant and the function therefore nearly lin- 
ear. Furthermore, if this singleton corresponds 
to the zero singleton, the linear function is al- 
most constant. Otherwise, i.e. # 4, we have 
a non-linear shape of the function. If the zero 
singleton is included in the trapzoidal fuzzy set 
the derivative has a zero passage and the func- 
tion therefore a local extremum. Some linguistic 
labels are summarized in table 1. 

shape condition 
constant 

quadratic di # 
increasing df. > 0 A @ > 0 
decreasing d! < 0 A < 0 
actremum df: # 4 A sign(df:) # sign(4) 

Table 1: Development of linguistic terms. 

di = dr = 0 
linear d'i = 4 

Linguistic hedges, like absolutely zero or more 
or less zero are used to further specify the shape 
of a fuzzy set. 

5 Example 

Using a fixed vocabulary with singletons at &, 
i = 0..10, for the input and output space the 
described system generated the following rules for 
the functions f 

if x is 
close to 10.0.31 

then f(x) is 
nently increasing to 0.2 

more OT iess [6.4,0.6] 
about [0.7,1.0] 

absolutely coGstant at 0.2 
gently increasing to 0.3 

and 9 

if x is 
about [0,0.3] 
about [0.4,0.6] 
about [0.7,1] 

then f(x) is 
moderately convex decreasing to 0.6 
has a steep local minimum at 0.2 
moderately convex increasing to 0.8 

6 Conclusions 

We have combined two fuzzy clustering alge 
rithms to get a new fuzzy clustering a lge  
rithm that constructs a Takagi-Sugeno type fuzzy 

model automatically from data. We have shown 
how to build readable, transparent rule bases au- 
tomatically from these models. Thus the p r e  
posed system yields a qualitative functional de- 
scription of the input-output relation within a 
data set. This kind of rules are useful in many ap- 
plications, for instance with short term weather 
forecast or material science. 

For more information and implementation see 
http://vwv.et-inf .fho-emden.de/"dmlab. 
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