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Generating an Interpretable Family of Fuzzy
Partitions From Data
Serge Guillaume and Brigitte Charnomordic

Abstract—In this paper, we propose a new method to construct
fuzzy partitions from data. The procedure generates a hierarchy
including best partitions of all sizes from n to two fuzzy sets. The
maximum size is determined according to the data distribution
and corresponds to the finest resolution level. We use an ascending
method for which a merging criterion is needed. This criterion is
based on the definition of a special metric distance suitable for
fuzzy partitioning, and the merging is done under semantic con-
straints. The distance we define does not handle the point coordi-
nates, but directly their membership degrees to the fuzzy sets of the
partition. This leads to the introduction of the notions of internal
and external distances. The hierarchical fuzzy partitioning is car-
ried independently over each dimension, and, to demonstrate the
partition potential, they are used to build fuzzy inference system
using a simple selection mechanism. Due to the merging technique,
all the fuzzy sets in the various partitions are interpretable as lin-
guistic labels. The tradeoff between accuracy and interpretability
constitutes the most promising aspect in our approach. Well known
data sets are investigated and the results are compared with those
obtained by other authors using different techniques. The method
is also applied to real world agricultural data, the results are ana-
lyzed and weighed against those achieved by other methods, such
as fuzzy clustering or discriminant analysis.

Index Terms—Distance, fuzzy partitioning, interpretability,
learning, rule induction.

I. INTRODUCTION

FUZZY inference systems have proven useful to represent a
system behavior by means of IF–THEN fuzzy rules. Fuzzy

rules can be based on expert knowledge available from human
experts. This point of view, which seems natural, was histor-
ically the first one to be implemented, as in [1]. However, it
soon appeared that for complex partially unknown systems the
interactions are very difficult to grasp and expert rules are not
sufficient to yield a satisfactory simulation of the system. For
this reason, fuzzy rule induction from data has been given a
lot of attention in the recent literature [2]. Such approaches are
mostly inherited from numerical learning techniques, such as
neural networks or evolutionist algorithms. They typically seek
to optimize the numerical performance while interpretability of
the induced rules is not their first concern. In many cases when
induced rules meaning matters, this is a serious drawback. It is
necessary to develop new fuzzy rule induction methods, so that

Manuscript received March 28, 2001; revised May 9, 2002, February 14,
2003, and October 8, 2003.

S. Guillaume is with Cemagref, 34196 Montpellier Cedex 5, France (e-mail:
serge.guillaume@montpellier.cemagref.fr).

B. Charnomordic is with INRA, LASB, 34060 Montpellier, France (e-mail:
bch@ensam.inra.fr).

Digital Object Identifier 10.1109/TFUZZ.2004.825979

the semantic integrity of the fuzzy inference system is guaran-
teed. A recent review of rule induction methods [3] has shown
that the fuzzy partition for the system inputs is then of prime
importance. The fuzzy sets are to be interpretable as linguistic
labels to allow the cooperation between expert rules and induced
rules. This may be contradictory with the numerical error min-
imization objective.

Focusing on the interpretability, this paper presents a new
method for deriving fuzzy partitions from data. Although being
generic, it has been designed for dealing with complex multidi-
mensional systems, such as food processes.

The proposed approach is called hierarchical fuzzy parti-
tioning (HFP) and is inspired from two different clustering
methods. It has some similarities with hierarchical clustering
which is widely used in Statistics, while it shares other points
with clustering techniques adapted to the fuzzy formalism.

Hierarchical clustering makes clusters of multidimensional
data pairs according to a given criterion. The starting point is
a -cluster partition, each cluster containing a single individual.
The final partition obtained by recursive group aggregating is a
one-cluster partition including all data pairs. At each stage the
two “nearest” clusters are combined to form one bigger cluster.
The commonly used Ward criterion combines the two clusters
which least increase the within cluster variance.

Fuzzy clustering methods, such as fuzzy c-means [4], find
a partition of the observations into a predetermined number of
groups. The data points are divided into groups of points that
are “close” to each other. Each data point belongs to a group
or cluster with a given membership degree. Closeness between
data points is defined by a metric distance, and each metric
yields a different partitioning. The importance of the concept
of distance and the sensitivity of the results with respect to the
choice of different distances has often been underlined in clus-
tering [4], [5], but not in fuzzy partitioning. Many metrics have
been tried out, but none of them takes account of the partition
structure. At best, it is related to cluster shape, as in [6]. Some
authors also defined distances between fuzzy sets [7], [8] for
approximate reasoning. Some of these distances fulfill the tri-
angle inequality [9], [10], other ones are pseudo metrics only
[11]. The distance introduced by [12], [13] is close to human
appreciation.

In our approach, we wish to derive a fuzzy partition from data
in each dimension. Instead of making data point clusters, we
aggregate fuzzy sets. As in hierarchical clustering, we start from
an initial -item partition, and end with a one-item set partition.
However, the items to be clustered are fuzzy sets instead of data
points. At each stage the procedure aggregates two fuzzy sets to
form a new wider range one. To aggregate we use a pairwise data
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point distance, which takes account of the particularities of the
items to be merged: fuzzy sets within a given partition. In other
words, this distance takes fuzzy partitioning into consideration,
and is used as the basis of the aggregating criterion.

The aggregating procedure merges the fuzzy sets under
semantic constraints, one of them being the fuzzy set distin-
guishability. Thus, the fuzzy partitions only contain fuzzy sets
which can be read as linguistic labels. The method is carried
out independently over each input dimension, and the partitions
are used at a further stage to define the fuzzy rule premises in a
fuzzy inference system.

These fuzzy inference systems can be useful for modeling
a complex system and extracting elements of knowledge from
data in a variety of cases. Indeed rule induction done this way
is very different from rule induction based on fuzzy clustering.
In Fuzzy Clustering, fuzzy rules are built from clusters of mul-
tidimensional data pairs. Each rule premise has its own fuzzy
sets, which are obtained by projecting the corresponding cluster
onto each dimension. For a given dimension, the fuzzy partition
results from the union of the fuzzy sets for all rules. The fuzzy
set distinguishability, which is essential for semantic integrity,
is not guaranteed and is even unlikely to be met.

The paper is organized as follows. Section II outlines the
overall HFP procedure, introducing the concepts of internal
and external distance used in the merging criterion. Section III
presents a distance metric suitable for fuzzy partitioning.
Section IV is centered about the concept of partition validity.

The fuzzy partition families can serve as an input for other
methods that intend to build fuzzy inference systems. Although
the goal of this paper is not to propose a complete system gen-
eration method, the potential is illustrated by generating fuzzy
inference systems of increasing complexity through a simple al-
gorithm. Section V explains the fuzzy inference system gener-
ation and selection algorithm. Section VI gives the results ob-
tained on several well-known data sets, available in the machine
learning repository,1 and compares them with those reported in
[14]. Section VII presents a detailed case study of real world
agricultural data, and comments the results with respect to other
techniques.

Finally, Section VIII gives some conclusions.

II. HIERARCHICAL FUZZY PARTITIONING

The HFP method generates a collection of univariate fuzzy
partitions from a multidimensional training dataset. The dataset,
denoted , is a collection of multiple-input–single-output nu-
merical data pairs ( , ), where is the

-dimensional input vector and is the one-di-
mensional output vector.

To make computation independent of measurement units, all
data are scaled into the unit space.

A univariate fuzzy partition is composed of fuzzy sets,
the th fuzzy set for the th input variable being defined by its
membership function ( , ).

The procedure is carried independently over all dimensions.
In each dimension it builds a family of fuzzy partitions as
follows.

1http://www.ics.uci.edu/~mlearn/MLRepository.html

The initial fuzzy partition is determined by choosing
fuzzy sets according to the data sample distribution in the
considered dimension, with .

The family of fuzzy partitions is obtained using recursive
fuzzy set merging so that at each step, the resulting partition
is of size , , and best satisfies a merging
criterion. Each merging modifies at most four fuzzy sets, the
two being merged and their immediate neighbors when they
exist. The final partition is composed of a single fuzzy set which
covers the entire data range in the considered dimension.

The HFP procedure can be summarized as a sequence of
( ) iterations in each dimension, as shown
in Algorithm 1. is the criterion for merging two fuzzy sets.
It will be given in Section II-C, (3).

Algorithm 1 Hierarchical fuzzy
partitioning
1: base partition = = initial parti-
tion of size
set

2: while do
3: evaluate ;
4: while do
5: merge fuzzy sets and , modify
neighboring fuzzy sets

6: evaluate
7: restore base partition
8:
9: end while
10: select and store the partition

for which:
11:
12: base partition ;
13: end while

The next section explains how to choose , and the initial
fuzzy set location. The merging procedure is then presented.
The last section gives the definition of the merging criterion,
and introduces the important notions of internal and external
distance.

A. Choice of the Initial Fuzzy Partition

The proposed approach is applicable regardless of the shape
of the fuzzy sets. Both for computational time considerations
and for clarity in demonstrating the method we chose all fuzzy
sets of triangular shape, except at the domain edges, where they
are semi trapezoidal.

The fuzzy sets are labeled and they overlap so
that the fuzzy partition is standardized as follows:

(1)

This choice is justified by the preoccupation of semantic in-
tegrity, which guarantees that the membership functions will
represent a linguistic concept. It is discussed in great detail in
[15]–[17].
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Each triangle fuzzy set is defined by its breakpoints
left , , right . A standardized fuzzy partition can be built
by choosing fuzzy set breakpoints as shown in Fig. 1. Two
contiguous fuzzy sets cross at the point of membership value

, and three contiguous fuzzy sets , , have such
boundaries as

left
left
right
right

The first and last fuzzy sets in the partition are semi trapezoidal,
with respective breakpoints , , and , ,

such as

data lower bound
left noted

right
right noted
data upper bound

By construction, all points at most belong to two fuzzy sets.
We also have .

Each fuzzy set is assigned a weight equal to its cardinality,
noted for fuzzy set

(2)

In all rigor the initial partition could include as many fuzzy
sets as , the number of pairs in the training dataset. The th
triangular membership function would then be centered on .
In practice, the initial partition size can be reduced. The goal is
to accelerate the procedure without a loss of performance. We
therefore form clusters of so-called unique values. These
unique values are determined by sorting the ,
values and setting an equality threshold . The cluster center

, , is defined as the average of all values that
fall within the cluster. Finally, each cluster center is used as a
fuzzy set center. The initial fuzzy set weight, defined in (2), is
equal to the number of observations in the cluster.

Sensitivity to the number of unique values and the choice of
will be studied in Section VII. If data are numerical mea-

surements, the meaning of can be related to their numerical
resolution.

B. Fuzzy Set Merging

Recursive fuzzy set merging is a multistep procedure, that
reduces the fuzzy partition size by one at each step. Merging
is restricted to adjacent fuzzy sets, and seeks the best possible
arrangement according to a given criterion. That criterion will
be given in the next section and is to be computed for every
possible fuzzy set combination.

Merging two fuzzy sets labeled 2 and 3 is illustrated in Fig. 2.
The resulting fuzzy set is labeled 2 and defined as follows:

left

right

Fig. 1. Standardized fuzzy partition.

The neighboring fuzzy sets 1 and 4 are turned into 1 and 3 .
Their left and right breakpoints are modified so that the fuzzy
partition is kept standardized. Fuzzy weights , , need
to be updated after the merging, according to (2).

C. Merging Criterion

We seek a partition level index to be used in the merging
process that summarizes the partition structure with regard to
the data points. For that purpose, a special metric

is needed that allows to define pairwise dissimilarity coeffi-
cients, so called distances, while taking account of the fuzzy
partition structure. Such a metric will be proposed in the next
section. For now, let us outline only one key feature necessary
to understand the approach.

Consider two data points with respective , coordinates in
the th dimension. Due to the fuzzification procedure, they can
belong to several fuzzy sets with a non zero degree. To alleviate
the notations we will denote .

Two nonexclusive cases are to be distinguished.

1) and partially belong to the same fuzzy set ,
, .

2) and partially belong to two different sets and ,
, , .

We introduce the terms of internal distance in the first case,
external distance in the second one.

We impose a fundamental restriction to insure that the dis-
tance will reflect the partition structure and preserve the fuzzy
set label semantic. Two points which mainly belong to the same
fuzzy set will always be considered closer than others which
mainly belong to distinct fuzzy sets.

The pairwise distance will take into account and
memberships to the various fuzzy sets by combining the respec-
tive parts of internal and external distances. A given size par-
tition can then be characterized by the sum of pairwise distances
over all the data points

(3)

During the merging process, the number of fuzzy sets is reduced
by one at each stage. Obviously, some external distances be-
come internal distances, inducing a change on the index. On
Fig. 2, this is the case for all , , ,
when considering memberships to fuzzy sets 2 and 3.

The best merge at a given stage can be considered as the one
that minimizes the variation of . The underlying idea is to
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Fig. 2. Merging fuzzy sets 2 and 3 results in 2 , 1) 1 , 4) 3 .

maintain as far as possible the homogeneity of the structure built
at the previous stage.

Due to the fact that internal distances are smaller than external
ones, the sum of distances decreases, except for some particular
cases in the very first steps of the procedure.

The merging algorithm has a reduced complexity. Assuming
a size partition at a given step in a given dimension, the
number of possible merges is equal to . The index
is computed on the prototypes resulting from the preliminary
stage, whose number can be reasonably bounded according to
the chosen tolerance .

Let us now specify the distance metric in use.

III. DISTANCE METRIC SUITABLE FOR FUZZY PARTITIONING

In the previous section, we introduced the notions of internal
and external distances related to a fuzzy partition. We will now
give a definition of both of them and see how they can be com-
bined to deal with the multiple membership characteristic of
fuzzy logic. Let us first recall some basic properties of a dis-
tance.

A. Distance Properties

A function is a dissimilarity if

(4)

A dissimilarity is semiproper if

(5)

A dissimilarity is proper if

(6)

A semidistance is a dissimilarity which verifies the triangle
inequality

(7)

A proper semidistance is called a distance.
We limit our study to convex standardized fuzzy sets and

check the properties of the internal and external distances we
define.

B. Internal Distance

The membership degree complement can be in-
terpreted as the distance of to the fuzzy set . It measures
the similarity of to the fuzzy set prototypes that delimit the

kernel. Recall that a prototype is such that . Given
two data points with ( , ) coordinates, we compute the in-
ternal distance by differencing the prototypes similarities, which
comes to differencing the membership degrees

Property (4) is trivial and (5) is easily checked. Counter ex-
amples for property (6) are also easy to find. Many distinct data
pairs have an identical membership degree, yielding a null in-
ternal distance, as illustrated in Fig. 3.

A ( , , ) triplet is relevant to one of the following three cases
for which property (7) is to be checked.

1) Trivial case: identical membership for all three points:
.

2) Identical membership for two points: and
, with for instance .

The following inequalities are to be proven:

3) All membership degrees are distinct, for instance
.

The inequalities to be checked are written as

then

then

then

In all cases, the proof is straightforward, therefore, the
proposed internal distance function is a semidistance.

C. Prototype Distance

We propose two different definitions of the distance
between the prototypes of fuzzy sets and .

1) A numerical prototype distance

where , are the respective fuzzy set kernel locations.
This definition corresponds to the kernel Euclidean dis-
tance.

2) A more symbolic prototype distance

(8)

where is the partition size, and are the indexes of
the fuzzy sets sorted in ascending order relatively to the
center coordinates.

Within the partition illustrated in Fig. 1, the symbolic choice
for the prototype distance makes the fuzzy set 3 at the same
distance from 2 and 4, while the numerical choice puts it closer
to 4. The symbolic distance is more faithful to the symbolic
representation.

Both definitions can easily be checked to fulfill conditions (6)
and (7).



328 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 12, NO. 3, JUNE 2004

Fig. 3. Internal distance d(q; r) equals zero.

D. External Distance

The external distance must take account of the point location
within its reference fuzzy set, and of the relative fuzzy set lo-
cation within the fuzzy partition, which implies combining the
internal and the prototype distances.

We propose the following definition for the external distance
between two points which belong to and :

(9)

where is a constant correction factor, which ensures that
the external distance is always superior to any internal distance.
Note that the external distance reduces to the prototype distance
plus the correction factor, when points , have internal iden-
tical membership degrees.

Fig. 1 can be used to illustrate external distances on the
( , , ) triplet. When considering fuzzy sets 2–4, external dis-
tances can be written as

which proves the triangle inequality (7).
There are other external distances concerning the ( , , )

triplet. They are dealt with in the same way, and we now examine
the problem of distance combination.

E. Distance Combination and Continuity

To manage multiple memberships, the pairwise distance
is taken as a combination of the internal and external

distances previously defined, depending on the number of
fuzzy sets for which and are different from zero.

Let us denote the partial ( , ) distance that repre-
sents respective memberships to and . It is an internal dis-
tance if , an external distance otherwise.

results from the combination of at most distances

(10)

For a standardized fuzzy partition, as defined in (1),
is a combination of at most four distances and all denominators
in the previous formula are equal to 1.

One point is said to mainly belong to a fuzzy set if
Consequently, the pairwise distance will be mainly in-
ternal when both points , mainly belong to the same fuzzy

set. These points must be closer than points whose distance is
mainly external to enforce the fundamental constraint given in
Section II-C. Due to our implementation, the maximum value
of a mainly internal distance is 0.5. Therefore, we set
in (9).

The term has been shown to be a combination of
semidistances. Thus, it is a semidistance. Nevertheless, to al-
leviate the notations we will refer to as a distance.

IV. VALIDITY CRITERION

What is a good partition? This question, widely studied, is
still open. There is no universal answer. Within the supervised
learning framework one can assess the performance of the cor-
responding fuzzy inference systems. Nevertheless, the perfor-
mance depends on many factors: induction method, number of
rules, variable selection, which makes it a challenge to de-
cide on the quality of the partition itself. To assess the validity
of a fuzzy partition we propose a new index based on the homo-
geneity of the fuzzy set densities.

The fuzzy set density, called for fuzzy set , is equal to
the ratio of its weight, or fuzzy cardinality, , defined in (2),
to the fuzzy set area. The overlapping subareas are excluded, as
shown in Fig. 4, for more robustness regarding the standardized
fuzzy partition construction. The density homogeneity, , is
defined as the density standard deviation for all the fuzzy sets

of the partition: , being
the mean of the fuzzy set densities. A good, steady partition
is expected to be homogeneous, i.e., to have a small standard
deviation.

is not significant for the first steps of the merging
process, all the fuzzy set are designed to be properly filled up. It
is useful for the last steps. From the homogeneity point of view
the best partition is the one for which reaches a minimum.
Checking the evolution of versus the partition size is
informative. Local minima and singular points can be found.

Illustration on the Iris Data: The iris data [18] are 150
items, representing four numerical measurements: Petal Length,
Petal Width, Sepal Length, and Sepal Width, for three different
species Setosa, Virginica, and Versicolor. We applied the HFP
method to the four numerical features. The Petal Width his-
togram is plotted in Fig. 5. In the bottom part of this figure, the
fuzzy set centers, for the last steps of the HFP procedure (parti-
tion size six to two), are reported together with values. The
Fig. 6 shows the corresponding results for Petal Length.

The results are in favor of a three fuzzy set partition. One can
note that reaches a lower minimum for Petal Width than for
Petal Length, leading to believe that the Petal Length partition
fuzzy set densities are more heterogeneous.

Complexity Analysis: To assess the computational load of
the whole procedure we consider the generation of fuzzy par-
titions for a given mono dimensional variable (Algorithm 1 in
Section II).

This algorithm complexity is measured according to the
number of fuzzy sets in the initial partition, . As explained in
Section II-A, this number results of a clustering. The number of
clusters depends both on the data distribution and the equality
tolerance threshold . As the values are scaled into the unit
space, expresses a relative variation: A value of 2% leads to
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Fig. 4. Areas used for computing the fuzzy set densities.

Fig. 5. Validity indicator evolution for iris petal width.

Fig. 6. Validity indicator evolution for iris petal length.

a maximum of 50 clusters. The considered algorithm generates
partitions, each of them results from attempts. A

try is characterized by the the sum of distances [see
(3)]. The HFP algorithm global complexity is thus measured
by .

V. FUZZY INFERENCE SYSTEM GENERATION AND SELECTION

Our objective in this part is to generate fuzzy inference sys-
tems (FIS), using a refinement procedure based on a known hi-
erarchy of fuzzy set partitions of increasing size. This hierarchy
can be the result of the HFP stage, it can also be obtained by
other means, for instance a series of regular grids of different
sizes. This will allow us to compare the results yielded by dif-
ferent hierarchies.

We start by considering the simplest system, which has only
one rule including a single fuzzy set in each dimension

. The selection procedure builds new systems by re-
fining the fuzzy partitions.

The refinement algorithm is detailed in Section V-B. It calls
a FIS generation algorithm described in Section V-C.

First, we give the definition of some elements that will be
used all along.

A. Definitions

Fuzzy Partition Notation: In each dimension, the HFP proce-
dure yields a family of partitions of decreasing size. For a given
dimension , let us denote the HFP generated fuzzy par-
tition of size , being the maximum size of the partition
(see Section II-A), by construction. To improve
interpretability, is limited to a reasonable number ( 7)
[19].

is uniquely determined by its size , the fuzzy set
centers being the coordinates given by the hierarchy,

, where refers to the th
membership function of the fuzzy partition for the th variable.

Performance Index: Two cases are to be considered.

1) Numerical output (regression case):
The numerical performance index is chosen as the root

mean square error over the training sample

where is the sample size, the observed output for
the th example, and the inferred output for the th
example.

2) Nominal output (classification case):
The performance index is equal to the number of mis-

classified items

if
otherwise

Blank Examples: A rule potentially covers the subset of the
multidimensional input space corresponding to the combination
of the fuzzy sets composing its premise. The th rule will be
activated by the th example to a degree, called rule weight

(11)

where is a -norm operator for fuzzy set intersection.
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The th example will be considered as inactive or blank for
a given rule if , being a fixed threshold
value.

We call the subset of nonblank examples for the th rule.
It is a subset of the learning sample such as

(12)

The examples in are sorted by descending order of .
They are said to fire the rule .

In the same way, an example is said to be blank for the
rule base if . Due to the

cumulated sum, some examples which are blank for all rules
may not be blank for the rule base. This could be avoided by
using a max operator.

Note: The presence of blank examples should not always be
considered as a drawback. It is a voluntary choice to make the
rule base contain only general rules, and not too specific ones.
This yields a smaller number of rules and a parsimonious fuzzy
system.

B. Refinement Procedure

The iterative algorithm is presented below. It is not a greedy
algorithm, unlike other techniques. It does not implement all
possible combinations of the fuzzy sets, but only a few chosen
ones.

Algorithm 2 Refinement procedure
1: ;
2: CALL FIS Generation (Algorithm 3)
3: while do
4: Store system as base system
5: for do
6: if then next j (partition
size limit reached for input j)

7:
8: CALL FIS Generation (Algorithm 3)
9:
10:
11: Restore base system
12: end for
13: if then exit (no more in-
puts to refine)

14:
(Select input to refine)

15:
16: CALL FIS Generation (Algorithm 3)
17: keep
18:
19: end while

The key idea is to introduce as many variables, described by
a sufficient number of fuzzy sets, as necessary to get a good rule
base. A good FIS represents a reasonable tradeoff between com-
plexity, in relationship with the number of rules, and accuracy,
measured by the performance index.

The refinement procedure is responsible for the selection of
the variables or fuzzy sets to be introduced in the FIS. The ini-

tial FIS is the simplest one possible (Algorithm 2, lines 1 and 2).
The search loop (lines 5–12) builds up temporary fuzzy infer-
ence systems. Each of them corresponds to adding to the initial
FIS one fuzzy set in a given dimension. The selection of the
dimension to retain is done in lines 14 and 15. Following this
selection, a FIS to be kept is built up. It will serve as a base to
reiterate the sequence (lines 3–19). Thus the result of the proce-
dure is not a single FIS, but a series of increased
complexity.

When necessary, the procedure calls a FIS generation algo-
rithm, referred to as Algorithm 3, which is now detailed.

C. FIS Generation

A fuzzy inference system is completely defined by its rule
base and the inference method.

The rule generation is done by combining the fuzzy sets of the
partitions for , as described by Algorithm 3.

The algorithm then removes the less influential rules and eval-
uates the rule conclusions. The condition stated in line 5, where

is a given threshold, ensures that the rule is significantly
fired by the examples of the training set.

Algorithm 3 FIS generation
Require:
1: get
2: Generate the rule premises
3: for all Rule do
4:
5: if then remove rule
6: else initialize rule conclusion
7: end for
8: Compute Perf

The rule conclusion initialization, line 6, depends on the
system output type. In the following we consider the case of a
nominal output (classification problem). The rule conclusion is
then initialized as the most frequent output label in , and the
FIS output, , is an integer value obtained by rounding off the
result of a simple weighted average defuzzification procedure
(Sugeno type inference).

Other inference methods, including fuzzy rule conclusions
and more sophisticated defuzzification procedures, can be im-
plemented for a numerical output, without changing the FIS
generation algorithm itself.

D. Final Choice

As we said above, the outcome of the procedure is not a single
fuzzy inference system, but FIS of increasing complexity.
The selection of the best one takes into consideration the per-
formance and the number of blank examples. We propose the
following simple criterion.

such as
, where is the number of blank examples for

the rule base in .
Complexity Analysis: The refinement algorithm (Algo-

rithm 2, given in Section V-B) complexity mainly depends on
the number of input variables, . The number of iterations can
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be chosen according to , for instance with
, and each iteration calls the FIS generation algorithm

(Algorithm 3) times. To generate a fuzzy inference system,
the weight of each rule is computed for each of the data
items. The number of rules corresponds, at each step, to all
premise combinations. It reaches in the worst case .

VI. APPLICATION TO BENCHMARK DATA

This section illustrates the potential of the Hierarchical Fuzzy
Partitioning method by applying it to some well known bench-
mark data sets, the Wisconsin breast cancer data and the wine
classification data, from the machine learning repository.2

These classification problems have been recently revisited by
[14], who give an interesting summary that we will use as a basis
for our analysis of the results.

A. Data Processing

The same protocol has been applied to each data set. First,
sampling was done by extracting ten training samples–represen-
tative of the class distribution—from the whole set. The extrac-
tion consists of a random selection of 50% of the items of each
class. The complement of each training set becomes the test set.

Then, the HFP partitions were induced from each training set
and used by the selection algorithm, introduced in Section V, to
generate fuzzy inference systems. We used the numerical dis-
tance, and a 0.01 tolerance threshold to build the initial parti-
tion. The regular hierarchy was built by splitting the whole data
set range in equally spaced fuzzy sets, and, as with HFP, the se-
lection algorithm was run with each training set.

Amongst the various configurations proposed by the selec-
tion algorithm, we kept the configuration which satisfied the
constraints of accuracy and number of blank examples detailed
in Section V-D. The configurations are characterized by their
number of rules (#R) and their number of variables (#V). Their
performances are assessed both on the training and the test sets,
and given as a percentage. All results (configuration charac-
teristics and performance) are given as an average on the ten
samples.

B. Wisconsin Breast Cancer Diagnostic Data

The Wisconsin Breast Cancer Diagnostic data set contains
699 patterns distributed into two output classes, benign and
malignant. Each pattern consists of nine input features: clump
thickness, uniformity of cell size, uniformity of cell shape,
marginal adhesion, single epithelial cell size, bare nuclei,
bland chromatin, normal nucleoli, and mitoses. After removing
examples containing missing values, 683 items remain avail-
able: 444 are in the benign class and the other 239 are in the
malignant one.

Previous results found in the literature, from [14] and [20] are
recalled in Table I.

As shown in Table II the proposed method leads to good per-
formance results for the Wisconsin breast cancer data set. The
1.6% test error value appearing for HFP in Table II is particu-
larly low. This is partly due to a relatively high number of blank
examples in the test sample (20%). This comes from the fuzzy

2http://www.ics.uci.edu/~mlearn/MLRepository.html

TABLE I
SOME PREVIOUS RESULTS ON THE WISCONSIN BREAST CANCER DATA

inference system selection procedure, which is focused on gen-
eralization, and dismisses too specific items in the data set. The
average number of three input variables in the rule premise is
smaller than in other results found in the literature, which makes
the interpretation easier. The variables of most interest are vari-
able 2 and 6 when using regular grids, while the most frequent
combinations using HFP include variables 1 (clump thickness),
3 (uniformity of cell shape), and 6 (bare nuclei).

Fig. 7 shows one of the fuzzy partitions obtained using HFP
for the clump thickness feature. It is clear that each fuzzy set can
be assigned a readable linguistic label. The corresponding rule
base system is defined by five input variables, given in Table III,
together with their number of fuzzy sets (#MF) and tentative
linguistic labels.

One of the rules is given as follows as an illustration of their
intuitive interpretation:

If Clump thickness is Large
And Uniformity of cell size is High
And Uniformity of cell shape is High
And Bare nuclei is High
And Normal nucleoli is High
Then Class is Malignant

C. Wine Classification Data

The wine classification data set contains 178 wines that
are grown in the same region of Italy but derived from three
different cultivars. The numbers of instances in each class
are: 59, 71, and 48. Each pattern consists of 13 continuous
features resulting from chemical analysis: Alcohol, malic acid,
ash, alkalinity of ash, magnesium, total phenols, flavonoids,
nonflavonoid phenols, proanthocyanins, color intensity, hue,
OD280/OD315 of diluted wines and proline. Some known
results gained using this data, from [14], [25] and [20] are
summarized in Table IV.

Table V shows the average results obtained by the proposed
method. There is an important difference between the systems
built using the HFP family partitions and the regular grid hier-
archy. Contrary to what happens for the breast cancer data, the
number of blank examples remains very small. Four variables
are selected when the partitions are HFP type, the most frequent
ones being variables 1, 6, 7, and 13. In the case of regular grids,
only two variables (1 and 12) are selected.

One focusing on the numerical performance index may
conclude that these results are not very good (10% represent
nine examples). However, let us make some comparisons with
the systems described in Table IV. The first two consist of
60 rules, instead of seven with ours. As fuzzy systems are
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TABLE II
RESULTS ON THE WISCONSIN BREAST CANCER DATA

Fig. 7. Fuzzy partition for the clump thickness feature.

TABLE III
EXAMPLE OF SELECTED VARIABLES FOR THE BREAST CANCER DATA

TABLE IV
SOME PREVIOUS RESULTS ON THE WINE DATA

universal approximators [29], it is always possible to increase
the performance by adding new rules. The drawback lies in
the relevantness of these rules: how many examples do they
concern?

The model built by [28], given on the third row of the table,
has only three rules. However, due the clustering induction
method, each fuzzy set is specific to a rule, making rule
comparison impossible.

SANFIS provides three linguistic rules. Let us first notice the
lack of test sets, the training being done on the whole data set.
Moreover, all input features appear in each rule. This makes rule
comparison and influential variable identification difficult. The
lack of constraints in the partition optimization process leads to
a loss of semantic. Fig. 8 displays the linguistic labels found by
SANFIS for the 9th wine feature. We can see that the fuzzy set
named large is not really distinguishable from the one labeled
medium. This throws a shadow on the use of such fuzzy systems
in interpretability concerned applications.

SLAVE has been applied on ten random samples (70% for
the learning set and 30% for the test one). Two remarks have to
be made. First, the way of designing variable partitioning is not

TABLE V
RESULTS ON THE WINE DATA

Fig. 8. SANFIS fuzzy partition for the 9th input wine feature.

detailed, but examples show that linguistic interpretability is not
guaranteed. Second, several clauses of a given variable can be
part of the same premise using a OR connector. This makes the
rule number comparison with only AND connected premise rule
impossible.

In [20], various ways of splitting numerical attributes are
applied to decision tree induction using the famous C4.5
algorithm. The work includes a ten-fold cross validation by
a nonpruned tree. As no depth level is given it is difficult to
compare the tree structure with a number of rules.

The wine data benchmark shows that the proposed HFP
method can achieve a good compromise between accuracy and
interpretability, and that it is suitable for cases where knowledge
induction is at least as important as numerical performance.

VII. CASE STUDY: A CORN CLASSIFICATION PROBLEM

We now apply a similar procedure to multidimensional agri-
cultural data. The sample is made of 352 items, 80 corn, and
272 weeds. Spectrum data have been collected in order to dis-
criminate corn crop from weeds. Eight spectrum wavelengths,
corresponding to peaks, valleys, and other singular points have
been preselected by the user. Consequently, the system to be
modeled is made up of eight input variables, the output being a
class label: one for corn, two for weed.

Our study focuses on the analysis of the results obtained by
our HFP method. It includes a sensitivity analysis to initial pa-
rameters, and it also gives some complexity analysis elements.
As no references are available in the literature, we also present
some results that we obtained using other well known tech-
niques, such as discriminant analysis or fuzzy clustering.

We worked either with the whole dataset, or by taking ten
random samples from this dataset, as explained in the previous
section.

A. HFP Partitions

As all data are numerical, we use the numerical distance in
the HFP procedure.
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TABLE VI
HFP UNIQUE VALUE SENSITIVITY TO THE TOLERANCE THRESHOLD

A study has been done to examine the sensitivity of the
method to the tolerance threshold which determines the number
of unique values used in the HFP procedure, as explained in
Section II-A. Results on the whole dataset are summarized in
Table VI, for a few variables (1, 5, 7).

The most important variations due to the tolerance threshold
appear for Variable 5. If we observe the corresponding his-
togram, plotted in Fig. 9, we can see that it looks like a
door function, with no clear structure. That could explain the
variability in that case.

To save computational time, the HFP procedure has thus been
applied using a tolerance threshold . Table VII gives
the fuzzy set centers for the fuzzy partitions of size 2 and 3,
and variables 1, 5, and 7. The first line is relative to the whole
dataset, and the other two to the samples. The figures in the
second line represent the average for the ten samples, and the
standard deviation is given in brackets in the third line.

Fig. 10 displays the evolution of . For the first and fifth
variables, the minimum, obtained for a two fuzzy set partition, is
well marked. This is not the case for the seventh variable. There
are two close minima, corresponding to two and ten fuzzy sets.
Their absolute values are much higher than for the other two
variables. The indicator does not seem to be significant in this
case.

Comparison of the fuzzy set centers with those of a regular
grid, recalled in Table VIII shows that they are very different.

B. FIS Generation and Selection Using HFP

The FIS generation and selection are either done on the whole
data set, or on each of the training samples. In the first case, the
performance is measured on the whole data set, in the second
one it is evaluated on the test sample. Table IX gives the test
sample size (Test), the percentage of misclassified items (MIS),
the number of variables in the FIS premises (#V), the number
of rules (#R), and in the last column, the number of times that
each variable has been selected.

From Table IX, we can see that the most often selected inputs
are Variables 1, 5, and 7. This leads us to believe that these
variables are of particular importance. The average number of
9.9 rules would drop to 6.6 if one configuration which includes
32 rules were replaced by a simpler one, with six rules only,
which has a slightly lessened performance (three misclassified
items instead of two).

Fig. 9. Input variable histograms.

TABLE VII
MF CENTERS FOUND BY HFP

C. Comparison With Other Approaches

Using Regular Grid Hierarchies: The FIS generation and
selection are now done using hierarchies based on regular grids,
and the results are shown on Table X.
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Fig. 10. � evolution for three input variables.

TABLE VIII
MF CENTERS WITHIN REGULAR GRIDS

TABLE IX
HFP BASED FIS CHARACTERISTICS

TABLE X
REGULAR GRID BASED FIS CHARACTERISTICS

Most FIS based on regular grids, generated using the criterion
given in Section V-D, include a single variable: This is the case
for the whole data set, and 5 times out of ten for the random sam-
ples. Intermediate results (not given here) show that, in the first
steps of the refinement procedure, when a variable is added into
the rules, the performance is not improved. The performance
gets better when the partition sizes are higher, but the number
of blank examples rapidly goes over the limit of ten percent.
This is due to the fact that the fuzzy set centers are not designed
according to data distribution.

Compared to HFP, the regular grid performance is lower.
Subtractive Fuzzy Clustering: Subtractive clustering is a

fuzzy clustering method introduced by [30]. It divides a multidi-
mensional data set into an a priori unknown number of clusters.
It estimates the cluster centers by setting a range of influence
in each of the data dimensions, and choosing as cluster cen-
ters the points with the strongest attracting potential. We used
the matlab implementation, which includes the generation of an
order 1 Sugeno-type FIS with as many rules as clusters, the rule
conclusions being optimized using a least squares method. The
average misclassified number is equal to 1.6%. The 8 variables
appear in the rule premises, the average number of rules being
equal to 6.2.

A FIS generated with such a fuzzy clustering method is char-
acterized by each rule using its own fuzzy sets, all different from
one rule to the next.

The fuzzy sets not being shared by the rules makes any com-
parison between the rules impossible, and therefore prevents the
identification of the influent variables.

Discriminant Analysis: Linear discriminant analysis is a
well-known multivariate statistics technique, devised to distin-
guish between groups. It uses linear functions of the input vari-
ables, to define a new subspace, based on the maximization of
the ratio of the between-group sum of squares to the within-
group sum of squares. An observation can then be classified by
computing its Euclidean distance from the group centroids, pro-
jected onto the new subspace. The observation is assigned to the
closest group.

The projecting matrix and the group centroids have been cal-
culated using each of the training sets, and the performance eval-
uated over the corresponding test set. The average misclassified
number comes to 2.7%. The eight variables are included in the
definition of the new subspace.

The results of discriminant analysis or subtractive clustering
show that this spectrum data problem is not an easy one. Sub-
tractive clustering obtains the best performance. However, the
price to be paid is a greater number of parameters, a more so-
phisticated optimization procedure for the rule consequent parts,
and a totally opaque model, disadvantage which also applies to
discriminant analysis.

Generally speaking, we can consider that refinement based on
fuzzy partition hierarchies leads to a good compromise between
performance and interpretability of a fuzzy model. Moreover,
when fuzzy set parameters are determined according to the data
distribution, the results are better than with regular grids.

VIII. CONCLUSION

The hierarchical fuzzy partitioning presented in this paper
aims to generate a family of fuzzy partitions from data. The
originality is double. First the product is not one partition, but
a hierarchy including partitions with various resolution levels.
In each dimension, the initial partition is made up of fuzzy sets
centered about the input values, if there are a few of them only.
If the input values are too numerous, they are first clustered into
so-called unique values.

Instead of a descending procedure, such as partition refine-
ment [31]–[34], an ascending technique has been applied. It
consists of merging two adjacent fuzzy sets at each step, the
ones which best satisfy a merging criterion. The criterion pre-
serves the previous step structure by considering a special sum
of distances over the training data set. These distances are con-
ceived to reflect the fuzzy partitioning under design. This con-
cept is the second strong point of this paper. To enforce it, we
introduced the notions of internal and external distances relative
to fuzzy sets. The internal distance concerns the part of mem-
bership within a single fuzzy set, and the external distance the
part of membership related to two distinct fuzzy sets.

The generated partitions can be used to build up the premises
of a fuzzy inference system, or as an input for other rule induction
techniques, such as fuzzy decision trees. We introduced in this
paper a simple fuzzy inference system generation and selection
procedure designed to alleviate the curse of dimensionality. To
highlight its potential, we first applied the method to well-known
benchmark data, for which reference results are available, then
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to agricultural corn data. The comparison with other techniques,
fuzzy clustering, or discriminant analysis, shows encouraging
results.

The comparison includes the numerical performance, but is
not restricted to it. Other important aspects, dealing with rule
base interpretability, most influential variable identification or
semantic integrity of the fuzzy partitions, are taken into ac-
count. The goal of the learning process is not only the numer-
ical index improvement, but knowledge induction. In numerous
cases, such as decision support system design, diagnosis appli-
cations, one may accept a controlled loss of performance to gain
a better understanding.

The proposed approach does not try to compete with function
approximation techniques, but is a promising way for managing
the tradeoff between performance and interpretability in multi-
dimensional complex problem modeling.

Further work should consider more sophisticated selection
procedures, to take into account the model complexity: Number
of rules, number of variables, and partition refinement degree.
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