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Abstract—The recent trend in the development of neurofuzzy
systems has profoundly emphasized the importance of synergy
between the fundamentals of fuzzy sets and neural networks. The
resulting frameworks of the neurofuzzy systems took advantage of
an array of learning mechanisms primarily originating within the
theory of neurocomputing and the use of fuzzy models (predom-
inantly rule-based systems) being well established in the realm
of fuzzy sets. Ideally, one can anticipate that neurofuzzy systems
should fully exploit the linkages between these two technologies
while strongly preserving their evident identities (plasticity or
learning abilities to be shared by the transparency and full inter-
pretability of the resulting neurofuzzy constructs). Interestingly,
this synergy still becomes a target yet to be satisfied. This study
is an attempt to address the fundamental interpretability chal-
lenge of neurofuzzy systems. Our underlying conjecture is that
the transparency of any neurofuzzy system links directly with
the logic fabric of the system so the logic fundamentals of the
underlying architecture become of primordial relevance. Having
this in mind the development of neurofuzzy models hinges on
a collection of logic driven processing units named here fuzzy
(logic) neurons. These are conceptually simple logic-oriented
elements that come with a well-defined semantics and plasticity.
Owing to their diversity, such neurons form essential building
blocks of the networks. The study revisits the existing categories
of logic neurons, provides with their taxonomy, helps understand
their functional features and sheds light on their behavior when
being treated as computational components of any neurofuzzy
architecture. The two main categories of aggregative and refer-
ence neurons are deeply rooted in the fundamental operations
encountered in the technology of fuzzy sets (including logic op-
erations, linguistic modifiers, and logic reference operations).
The developed heterogeneous networks come with a well-defined
semantics and high interpretability (which directly translates into
the rule-based representation of the networks). As the network
takes advantage of various logic neurons, this imposes an imme-
diate requirement of structural optimization, which in this study is
addressed by utilizing various mechanisms of genetic optimization
(genetic algorithms). We discuss the development of the networks,
elaborate on the interpretation aspects and include a number of
illustrative numeric examples.

Index Terms—Aggregative and referential fuzzy neurons, fuzzy
neurocomputing, fuzzy neurons, genetic algorithm, interfaces of
fuzzy models (decoding and encoding), logic approximation, net-
work transparency and interpretability, pruning transformations
of logic neurons and networks.
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I. INTRODUCTION

LOGIC AND fuzzy logic occupy a dominant role in what
could be called transparent modeling—a trend strongly

supported by granular computing [2]. The constructs of trans-
parent modeling come with a well-defined semantics [3], [4],
[32], [33]. The models can be easily interpreted as a collection
of rules, analogies, associations or other basic entities describing
experimental data. In the synergistic collaboration with fuzzy
logic, neural networks deliver a vast array of learning abilities
ranging from unsupervised to fully supervised schemes. The
attractiveness of fuzzy neurocomputing directly relates to the
design of effective and highly symbiotic links that are estab-
lished between fuzzy sets and neural networks. In the array of
approaches, architectures and detailed models [15], [19]–[21]
we encounter different schemes of interaction between fuzzy sets
and neurocomputing and other related adaptation schemes. The
essence of the successful synergy (as also clearly demonstrated
in [14] and [16]) lies in the retention of the well-defined identity
of the two contributing technologies. In most of the synergistic
frameworks, one of them becomes predominant and this results
either in more profound learning abilities (and accuracy of
approximation) or higher transparency and interpretability of
the model. The accuracy-interpretability tradeoff is commonly
visible in the constructs of fuzzy neurocomputing. Ideally, we
would like to see these two modeling requirements being met
to the highest extent. The evident requirement leading to the
satisfaction of such objective calls for the elementary constructs
exhibiting high-learning abilities along with the sound logic
underpinnings. Interestingly, the constructs currently available
in the literature position themselves on one or another side of the
fuzzy neurocomputing. Some of them lean quite visible toward
fuzzy rule based systems with very limited learning capabilities
that could exhibit in a quite limited way (say, as adjustable
confidence factors of individual rules). There could be a sub-
stantial learning slant and high-adaptive capabilities that tend to
compromise the interpretability of the resulting construct. For
instance, we may see systems with a significant number of layers
where each layer is pretended to carry out some logic processing
but sometimes those seem to be pretentious claims permeating
the literature rather than strongly substantiated statements. For
instance, the product operation used in some input layer of some
“standard” constructs may refer to the and operation. This is
fully legitimate as the and operation is one among t-norms. There
is, however, some uneasiness to accept the standard sum as the
model of the or operation (unfortunately this is a well rooted po-
sition one can easily encounter in the literature). Overall, there is
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a tendency toward far more attention being placed on the neural
side of neurofuzzy systems with the approximation capabilities
being highly glorified and focused upon and the interpretation
abilities being left out and quietly reduced. This tendency may
not be surprising at all: the approximation abilities are easier to
quantify and eventually easier to realize.

The underlying conjecture of this study is that neurofuzzy
systems should be constructed on a basis of simple processing
units—fuzzy (logic) neurons whose transparency and learning
abilities are accentuated to the highest possible extent [12], [25],
[27]. This would assure us that the resulting constructs will
directly benefit from these features that will manifest in the
overall network. The notion of logic (two-valued logic) has been
broadly exploited as the sound basis for Boolean networks. On
the other hand, the concept of fuzzy logic and logic processing
seems to be far less exploited in this setting.

The primordial objectives of this study are fourfold.

• The revisit and systematize the array of the existing fuzzy
logic neurons (fuzzy neurons, for short) with respect to
their functionality, underlying logic, interpretation aspects
and learning abilities. These are well documented in the
existing literature but still require some systematization
and their “readability.”

• To develop architectures of fuzzy neural networks based
on different fuzzy neurons. As the systems of such char-
acter are inherently heterogeneous, their functionality
could be quite diversified and a suitable arrangement of
the neurons in successive layers could result in a surpris-
ingly rich collection of logic expressions and nonlinear
characteristics of the neural mappings.

• To discuss various schemes of the development of the net-
works with a special emphasis put toward the structural
aspects of learning and its realization in terms of genetic
optimization.

• To discuss interpretability of fuzzy networks and intro-
duce means of their effective readability through pertinent
pruning mechanisms.

The organization of the material is structured in a way it reflects
the research agenda outlined above. First, in Section II, we intro-
duce basic processing modules of fuzzy neurons and elaborate on
their underlying taxonomy that is pertinentwhen building hetero-
geneous network and allocating the neurons to successive layers.
The understanding of the functionality of the neurons is essential
to the resultingcharacteristicsof thenetworksand their further in-
terpretation. Section III highlights the relationships between the
fuzzy neurons and fuzzy relational equations. This is of partic-
ular interest as they help us reveal links in terms of existing ana-
lytical, semianalytical and optimization mechanisms of solving
this category of equations. A general topology of the network is
outlined in Section IV, which is followed by a comprehensive dis-
cussion on the evolutionary development framework of such net-
works(SectionV).SectionVI links the logic-drivennetworkwith
the modeling environment and this helps us emphasize the links
with the existing experimental data. Interpretation issues of the
networks that lead us to a systematic way of pruning connections
and eliminating reference points of the neurons are covered in
Section VII. Experimental studies are included in Section VIII.

The terminology used here adheres to the standards used in
two-valued logic, many-valued logic, and fuzzy logic. The logic
operators are modeled via t- and s-norms. If not stated other-
wise, in this study we use two standard realizations of t- and
s-norms in the form of a product and probabilistic sum. An
overbar denotes a complement treated in a usual way encoun-
tered in logic (that is ).

II. BASIC TYPES OF LOGIC NEURONS

In this section, we discuss the main categories of the logic
neurons as they were introduced and discussed in [25], [27],
[28]. The underlying taxonomy involves aggregative and refer-
ential neurons and very much ties up to their logic functionality.
Their names reflect the underlying processing realized by the
neurons. The aggregative neurons concentrate on the logic type
of aggregation of the inputs (truth values) while the referential
neurons are aimed at logic processing of results of referential
transformations of the corresponding truth values.

A. Aggregative Neurons

Formally, these neurons realize a logic mapping from
to . Two main classes of the processing units exist in this
category.

OR neuron realizes an and logic aggregation of inputs
with the corresponding connections (weights)

and then summarizes the partial results
in an or-wise manner (hence, the name of the neuron). The con-
cise notation underlines this flow of computing, OR
while the realization of the logic operations gives rise to the ex-
pression (referred to as an s-t combination)

(1)

The two essential operators used in the composition are the t-
and s-norms. Let us recall that by t-norms we mean an and
type of logic connective used to aggregate two fuzzy sets.
The commonly used examples of t-norms include minimum,
product, and Lukasiewicz and connective. The typical examples
of s-norms (that are realizations of or logic connectives) involve
maximum, probabilistic sum , and Lukasiewicz
or connective. Bearing in mind the interpretation of the logic
connectives (t- and s-norms), the OR neuron realizes the fol-
lowing logic expression being viewed as an underlying logic
description of the processing of the input signals

and or and or or and (2)

Apparently the inputs are logically “weighted” by the values
of the connections before producing the final result (see also
[8]). In other words, we can treat “y” as a truth value of the
above statement where the truth values of the inputs are af-
fected by the corresponding weights. Noticeably, lower values
of discount the impact of the corresponding inputs; higher
values (especially those being positioned close to 1) do not af-
fect the original truth values of the inputs resulting in the logic
formula. In limit, if all connections are set
to 1 then the neuron produces a plain or-combination of the in-
puts, or or or . The values of the connections
set to zero eliminate the corresponding inputs. Computationally,
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Fig. 1. Characteristics of the OR neuron for selected pairs of t- and s-norms.
In all cases, the corresponding connections are set to 0.l and 0.7 with intent
to visualize their effect on the input–output characteristics of the neuron.
(a) Product and probabilistic sum. (b) Lukasiewicz and and or connectives.

the OR neuron exhibits nonlinear characteristics (that is inher-
ently implied by the use of the t- and s-norms that are evidently
nonlinear mappings). The plots of the characteristics of the OR
neuron shown in Fig. 1 visualize this effect (note that the charac-
teristics are affected by the use of some norms). The connections
of the neuron contribute to its adaptive character; the changes in
their values form the crux of the parametric learning.

AND neuron The neurons in the category, denoted by
AND with and being defined as in case of the OR
neuron, are governed by the expression

(3)

Here theorandandconnectivesareused ina reversedorder.First,
the inputs are combined with the use of the s-norm and the par-
tial results are aggregated and-wise. Higher values of the connec-
tions reduce impact of the corresponding inputs. In limit

eliminates the relevance of . With all set to 0, the output
of the AND neuron is just an and aggregation of the inputs

and and and (4)

One can also consider the complements of , (that is
) and in this way come up with the same interpretation of the

connections as done for the OR neurons. Obviously this could
be a matter of convenience and some tradition inherited from
neural networks where higher value of the connections reflects
its more evident impact. The characteristics of the AND neuron

Fig. 2. Characteristics of AND neurons for selected pairs of t- and s-norms.
In all cases, the connections are set to 0.l and 0.7 with intent to visualize their
effect on the characteristics of the neuron. (a) Product and probabilistic sum.
(b) Lukasiewicz logic connectives.

are shown in Fig. 2; note the influence of the connections and
the specific realization of the triangular norms on the mapping
completed by the neuron.

Let us conclude that the neurons are highly nonlinear pro-
cessing units depending upon the specific realizations of the
logic connectives. They also come with potential plasticity
whose usage becomes critical when learning the networks
involving these neurons.

B. Referential (Reference) Neurons

The essence of referential computing deals with processing
logic predicates. The two-argument (or generally multivariable)
predicates such as similar, included in, and dominates are es-
sential components of any logic description of a system. In gen-
eral, the truth value of the predicate is a degree of satisfaction
of the expression where “a” is a certain reference value
(reference point). Depending upon the meaning of the predicate
(P), the expression reads as “x is similar to a,” “x is
included in a,” “x dominates a,” etc. This terminology makes
sense as we are concerned with truth values in [0, 1] and there-
fore the term “:point” should be interpreted in this context. In
case of many variables, the compound predicate comes in the
form or more concisely
where and are vectors in the n-dimensional unit hypercube.
We envision the following realization of :

and and and

(5)
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Fig. 3. Schematic view of computing realized by a reference neuron an
involving two processing phases (referential computing and aggregation).

meaning that the satisfaction of the multivariable predicate re-
lies on the satisfaction realized for each variable separately. As
the variables could come with different levels of relevance as to
the overall satisfaction of the predicates, we represent this ef-
fect by some weights (connections) so that (5)
rewrites in the form

or and or and

and or (6)

Taking another look at the above expression and using a no-
tation , it converts to a certain AND neuron
AND with the vector of inputs being the result of the
computations done for the logic predicate. Then the general no-
tation to be used reads as REF and using the explicit
notation we have

REF (7)

In essence, as visualized in Fig. 3, we may conclude that the
reference neuron is a realized in a two-stage construct where
first we determine the truth values of the predicate (with a treated
as a reference point) and then treat these results as the inputs to
the AND neuron.

So far we have used the general term of predicate computing
not confining ourselves to any specific nature of the predicate.
Among a number of possibilities, we discuss the three of them,
which tend to occupy an important role. Those are inclusion,
dominance, and match (similarity) predicates. As the names
stipulate, the predicates return truth values of satisfaction of the
relationship of inclusion, dominance, and similarity of a cer-
tain argument “x” with respect to the given reference “a.” The
essence of all these calculations is in the determination of the
given truth values and this is done in the carefully developed
logic framework so that the operations retain their semantics and
interpretability. What makes our discussion coherent is the fact
that the proposed operations originate from triangular norms.
The inclusion operation, denoted by is modeled by an impli-
cation that is induced by a certain left continuous t-norm [31]

(8)

For instance, for the product the inclusion takes on the form
. The intuitive form of this predicate is

self-evident: the statement “x is included in a” and modeled as
INCL comes with the truth value equal to 1 if x is
less or equal to a (which in other words means that x is included

Fig. 4. Temporal signal x(t) and its acceptance signals (levels of the signals—
thick lines) formed with respect to its (a) lower and (b) upper threshold. The
complements of the acceptance are then treated as warning signals.

in a) and produces lower truth values once x starts exceeding
the truth values of “a.” Higher values of “x” (those above the
reference point “a”) start generating lower truth values of the
predicate. It is worth mentioning that (8) generates a family of
implication operators induced by specific t-norms. While the
detailed form could vary between different t-norms, all of them
preserve the general format of dependency as described above.

The dominance predicate acts in a dual manner. It returns
1 once “x” dominates “a” (so that its values exceeds “a”) and
values below 1 for x lower than the given threshold. The formal
model can be realized as DOM . With regard to
the reference neuron, the notation is equivalent to the one being
used in the previous case (7), that is DOM with the
same meaning and role played by and .

The similarity (match) operation is an aggregate of these two,
SIM INCL DOM which is appealing from
the intuitive standpoint: we say that x is similar to a if x is in-
cluded in a and x dominates a. Noticeably, if the predi-
cate returns 1; if x moves apart from “a” the truth value of the
predicate becomes reduced. The resulting similarity neuron is
denoted by SIM and reads as

SIM (9)

The reference operations form an interesting generalization
of the threshold operations. Consider that we are viewing “x”
as a signal of time whose behavior needs to be monitored with
respect to some bounds ( and ). If the signal does not exceed
some threshold then the acceptance signal should go off. As
shown in Fig. 4(a), if the signal does not exceeded the value of
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Fig. 5. Characteristics of the reference neurons for the product (t-norm) and
probabilistic sum (s-norm). In all cases, the connections are set to 0.l and 0.7
with intent to visualize the effect of the weights on the relationships produced
by the neuron. The point of reference is set to (0.5, 0.5). (a) Inclusion neuron.
(b) Dominance neuron. (c) Similarity neuron.

0.6, its acceptance is equal to 1, otherwise it becomes reduced
and attains lower values. Likewise we require another accep-
tance mechanism indicating a situation where the signal does
not go below another threshold value of . In case of fuzzy pred-
icates, the level of acceptance assumes values in the unit interval
rather than being a Boolean variable. The strength of acceptance
reflects how much the signal adheres to the assumed thresholds.
An example illustrating this behavior is shown in Fig. 4. Here
the values of and are set up to 0.6 and 0.5, respectively.

The plots of the referential neurons with two input variables
are shown in Figs. 5 and 6. Here we have included two real-

Fig. 6. Characteristics of the reference neurons for the Lukasiewicz t-norm
and s-norm (that is a t b = max(0; a+b�1) and a s b = min(1;a+b)). In
all cases, the connections are set to 0.l and 0.7 with intent to visualize the effect
of the weights. The point of reference is set to (0.5, 0.5). (a) Inclusion neuron.
(b) Dominance neuron. (c) Similarity neuron.

izations of the t-norms to illustrate their effect on the nonlinear
characteristics of the processing units.

It is worth noting that by moving the reference point to the
origin of the unit hypercube, the dominance neuron starts resem-
bling the aggregative neuron. More specifically, for

the dominance neuron reduces to the AND neuron.
One can draw a loose analogy between some types of the ref-

erential neurons and the two categories of processing units en-
countered in neurocomputing. The analogy is based upon the
local versus global character of processing realized therein. Per-
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ceptrons come with the global character of processing. Radial
basis functions realize a local character of processing as focused
on receptive fields. In the same vein, the inclusion and domi-
nance neurons are after the global nature of processing while
the similarity neuron carries more confined, local processing.

III. RELATIONSHIPS OF FUZZY NEURONS WITH

FUZZY RELATIONAL EQUATIONS

One can look at the fuzzy neurons discussed in the previous
section from a slightly different perspective. The s-t and t-s
calculations are in essence examples of so-called s-t and t-s
composition operators used in fuzzy sets. The inputs and con-
nections can be treated as discrete n-dimensional fuzzy sets
whose convolution is computed by means of the s-t composi-
tion (OR neuron) and t-s composition (AND neuron). This
simple observation links fuzzy neurons with the theory of
fuzzy relational equations—a well established area of funda-
mental and applied pursuits in fuzzy sets. The early results
in this domain go back as early as the mid seventies as pro-
posed by Sanchez with a number of significant results ob-
tained afterwards (see [5], [22], [24], and [31]). We can treat
a fuzzy neuron as a realization of some fuzzy relational equa-
tion OR or AND . Two fundamental
problems are sought: (a) solving the equation with respect to

for and y given (usually referred in the theory of rela-
tional equations to as an estimation problem), and (b) solving
the equation with respect to assuming that and y are pro-
vided (which refers to as an inverse problem). In both cases,
the theory provides us with interesting and general results. The
first problem concerns the estimation of the connections of the
neuron and is inherently tied to the learning of the network
composed of logic neurons. Its generalized version involving
solving a system of relational equations with a finite set of
input–output pairs given is the standard version
of the estimation problem. The inverse problem is focused on
constructing inputs leading to the required output. The
theory of fuzzy relational equations shows that in general there
could be families (rather than unique solutions) to such equa-
tions, states how to effectively construct extreme (viz. maximal
or minimal) solutions. These findings hold under a strong as-
sumption that there is a nonempty family of solutions. Further-
more the generality of the results is assured for some subset of
t- and s-norms used in the design of the composition operator;
these solutions are obtained for max (sup)—t composition and
min (inf)—s convolution of fuzzy sets [31]. Interestingly, the
generality of the solutions is not guaranteed for the general
s-t or t-s composition for any t- and s-norm. The relevance
of the theoretical framework should be cast in a certain set-
ting; in essence we can envision that the solutions can only be
approximate and we can use them as a starting (initial) config-
uration of the connections the learning could start off. This is,
in particular, quite relevant in case of gradient-based methods
for which the choice of the starting point plays an essential
role. The point worth mentioning here is that while relational
equations form an important theoretical frameworks, they are
not extremely well positioned to deal with problems of high
dimensionality (in virtue of their logic framework they never

Fig. 7. General architecture of the network constructed with logic-based
neurons; see a detailed description in text. The dimensions of the layers is
marked by numbers in bracket (upper part of the figure).

intended to assume a leading role there). We relate to them in
our discussion yet exploiting a different optimization environ-
ment of genetic algorithms, their role becomes more profound
at the interpretation end along with some specialized systems
obtained after pruning.

IV. GENERAL TOPOLOGY OF THE NETWORK

As we have developed a host of logic processing units, we can
use then in the developing a general architecture of the network.
In this design, we are guided by several requirements. First, we
would like to achieve a substantial level of flexibility so that the
structure could be easily and effectively adjusted to the experi-
mental data. Second, we would like to assure a high level of in-
terpretability: evidently each neuron comes with a well-defined
semantics and our intent is to retain it so at the very end the net-
work can be easily mapped (translated) into a well-structured
and transparent logic expression. This quest for interpretability
and transparency has been clearly identified in the most recent
literature [3]. In the logic description, we will dwell upon the
well-established components of fuzzy logic: logic operators and
linguistic modifiers. Having these requirements in mind, a gen-
eral architecture of the network is shown in Fig. 7.

The network comes with several layers where each of them
has a clear functional role to play and is highly interpretable.
The first layer (referred to as a referential processing) is com-
posed of “h” referential neurons (inclusion, dominance, simi-
larity). The results of this processing are taken to some power
(indicated by some small shadowed circle) and then combined
and-wise in the second layer of the network. The elements there
are AND neurons with all connections hardwired to zero. The
width of this layer is equal to “m.” In the sequel, the results
are combined by the layer of OR neurons. Let us now move on
to the computational details by the same time concentrating on
the interpretation of the underlying processing. The truth values
generated by the referential neurons reflect the level of satisfac-
tion of the logic predicates

(10)

The powers of , denoted as where assumes a few
discrete values (say 1/2, 0, 1, 2, and 4) are interpreted as lin-
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guistic modifiers operating upon and producing some concen-
tration or dilution effect [31]. More specifically, the collection
of the modifiers maps on the corresponding powers in a usual
way we encounter in the literature where
1/2 more or less (dilution effect);
0 unknown;
1 true (neutral);
2 very (concentration effect);
4 very very very (strong concentration effect).

The result of this processing (coming as the output of the
shadowed circle) is a logically modified referential logic pred-
icate with a straightforward interpretation. For instance, the
expression INCL translates
into the following linguistic statement:

more or less included in or and

included in or

(noticeably, the core part of this expression could be extracted
by carrying out some additional pruning; we elaborate on this
matter in Section VII). The AND layer of the network com-
bines and-wise referential expressions constructed in the pre-
vious layer. Finally, the output layer includes a single OR neuron
whose connections represent the relevance of information orig-
inating at the input nodes. By looking at the two layers com-
bined (the ones formed by the AND and OR neurons), we note
that this forms a realization of the generalized version of the
Shannon theorem which shows this type of network realization
of any Boolean function. Obviously, here we are concerned with
the continuous version (so the realization need to be viewed as
approximation) and the network operates on the results of ref-
erential computing rather than direct inputs.

While the AND and OR neurons are the two categories of the
standard processing units being encountered in a number of neu-
rofuzzy constructs, the layer of linguistic hedges requires more
attention. They are useful in the linguistic structuralization of
the network (in the sense they affects linguistically the outputs
of the referential neurons). From the computational standpoints,
the linguistic hedges help develop the required nonlinear char-
acteristics between input and output variables; noticeably the re-
lationships can be easily formed by choosing a suitable hedge.

In what follows, we visualize the diversity of the character-
istics of the networks leading to nonlinear and multimodal re-
lationships we can easily construct by putting together various
neurons, see Fig. 8. Note that the linguistic hedges play an im-
portant role in shaping the logic mapping completed by the net-
work.

Owing to the inherent roots of the logic backbone of the
neurons, we can directly exploit the transparency of the con-
struct when capturing the essence of the data. If the network is
large enough, we can conclude that such network can capture
the data with any required accuracy. While the theorem of uni-
versal approximation is not of our concern, it becomes advan-
tageous to note that a suitable topology is at immediate reach.
As an example, consider a finite data set of input–output pairs

. Then the network with “N” ref-
erential neurons of the matching nature, linguistic modifiers as-
suming high values and a single OR neuron with the connections

Fig. 8. Input–output characteristics of the network with the topology shown as
in (a); here all connections of the OR neuron are set up to 1.0 and the number of
the referential neurons is equal to 2 (b)–(c) or 4 (d), (b) two inclusion neurons
INCL(x ; x ;w; a)w = [0:4 0:2]; a = [0:5 0:3] (1st neuron) and w =
[0:0 0:0]a = [0:2 0:9] (2nd neuron) � = 2 � = 0:5; (c) two SIM neurons
SIM(x ; x ;w; a) with w = [0:4 0:2] and a = [0:8 0:3] (1st neuron) and
w = [0:0 0:0];a = [0:4 0:9] (2nd neuron), � = 4 � = 0:5; (d) four
SIM neurons with the weights and connections equal to w = [0:1 0:0] and
a = [0:1 0:3] (1st neuron) w = [0:2 0:1];a = [0:8 0:2] (2nd neuron),
w = [0:2 0:1]a = [0:5 0:7] (3rd neuron) w = [0:2 0:1];a = [0:9 0:8]
(4th neuron), � = 1 � = 1; � = 4 � = 2. Note a multimodal character of
the characteristics caused by the existence of several referential neurons.

equal to the required target values becomes
a suitable network. Interestingly, we developed the structure
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Fig. 9. Input–output characteristics of the network mapping four input-output
data ([0:2 0:1]; 0:2); ([0:6 0:8]; 0:9); ([0:2 0:9];0:95); ([0:4 0:63]; 0:65) � =
8 (a) and � = 4 (b).

without any learning but simply through mapping the problem
into the logic setting formed by the proposed network.

An example of such network shown for data points and
is included in Fig. 9. The four matching neurons are al-

located to the individual data points. The high value of the logic
modifier (that produces a high-concentration effect,

) leads to highly localized receptive fields.
Using lower values of the modifiers, say
leads to a less visible concentration effect as seen in Fig. 9(b).

V. EVOLUTIONARY DEVELOPMENT OF THE NETWORK

A structural optimization becomes a critical feature of the de-
velopment environment. The heterogeneity of the network (if
properly exploited) becomes an evident asset of the architec-
ture that implies its flexibility. The structure optimization how-
ever requires a suitable development environment that can cope
with the optimization of this nature. The genetic optimization
is a sound option to be explored with this regard. While the ge-
netic algorithm is standard to a high extent, we spend less time
on the description of the genetic operators and concentrate on
the organization of a chromosome as it maps the problem into
the optimization environment. Because of the anticipated het-
erogeneous character of the chromosome, it is advantageous to

consider a floating-point version of coding. The benefits of this
version of coding over the binary content of the chromosome
has been discussed quite intensively in the existing literature
[9], [18]. As a prerequisite let us assume that the number of
reference neurons and AND neurons is given in advance and
these are equal to “h” and “m,” respectively, (these could be
optimized as well but a straightforward enumeration could be
quite appropriate in this setting because of a fairly limited search
space). The connections of the AND neurons are “hardwired” to
zero and therefore do not need to be optimized. Alluding to the
topology of the network, the content of the chromosome shown
in Fig. 10 becomes self-explanatory. The thresholding opera-
tion of the continuous entries of the neuron is used to select
one of the types of the reference neurons. The unit interval is
split into equal parts to represent each type of the neuron. Be-
cause of this arrangement of the coding, we treat all referential
neurons in the same manner (so the likelihood of their appear-
ance in the structure becomes the same). Likewise, we threshold
the portion of the chromosome corresponding to the linguistic
hedges following the reference neurons. Finally, the weights of
the OR neuron assume continuous values from the unit interval
and they are taken directly from the corresponding entries of the
chromosome.

In the sequel, we discuss the realization of the main functional
components of the GA, that is selection, mutation, and crossover
operations and discuss the fitness function that is used to guide
the optimization process.

1) Selection Process: In this process, we use an elitist
ranking selection [1]. This selection mechanism means that
individuals to be selected for the next generation are based on
their relative rank in the population, as determined by the fitness
function. The best individual from each generation is always
carried over to the next generation (elitist mechanism) meaning
that the solution found so far during the genetic optimization is
guaranteed to never disappear.

2) Mutation: The mutation operator is a standard construct
encountered in a number of genetic algorithms [8]. Given an in-
dividual string , we generate a new string

where , is a random
number confined in the range of [0, 1] and subject to the fol-
lowing replacement (mutation) rule: is mutated that is re-
placed by with some probability of mutation otherwise
the entry of the chromosome is left intact, that is .

3) Crossover: The operation is realized as the BLX-0.5
crossover operator [7], [11] which is carried out as fol-
lows. Given are two individuals and

. The resulting offsprings are formed in
the form and ,
where , are random numbers located in
the range . Here,

, and I defined in the
form . This particular crossover operation
provides a good balance between using the information of the
parents and avoiding premature convergence, cf. [11]. The
crossover operator ensures that all values of the generated
offspring are confined to the unit interval [0, 1]. The operator
is employed with probability of crossover, , otherwise the
individuals are left unchanged and .
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Fig. 10. Organization of a chromosome representing the structure of the network.

4) Fitness Function: The fitness function quantifies how the
network approximates the data and is taken as
with Q being a sum of squared errors between the target values
(experimental output data) and the corresponding outputs of the
network (or any other measure of error). A small positive con-
stant standing in the denominator of the above expression
assures that the fitness function remains meaningful even for

(which in practice never occurs).
Two other parameters of the GA involve a size of the popula-

tion and number of generations. Their values have to be exper-
imented with. Typically, these two parameters are in the range
of 100–200 individuals in a population and between 200–500
generations.

VI. INTERFACES OF FUZZY NETWORKS

In a nutshell, the fuzzy networks completes a logic-based pro-
cessing of input signals and realizes a certain logic-driven map-
ping between input and output spaces. As they interact with a
physical world whose manifestation does not usually arise at
the level of logic (multivalued) signals, it becomes apparent that
there is a need for some interface of the model. Such interfaces
are well known in fuzzy modeling [2] (see also [23], [26] and
[30]). They commonly arise under a name of fuzzifiers (granular
encoders) and defuzzifiers (granular decoders). The role of the
encoder is to convert a numeric input coming from the external
environment into the internal format of membership grades of
the fuzzy sets defined for each input variable. These results of
a nonlinear normalization of the input (no matter what original
ranges the input variables assume) and a linear increase of the
dimensionality of the new logic space in comparison with the
original one). The decoder takes the results of the logic pro-
cessing and transforms them into some numeric values. The lay-
ered architecture of the fuzzy models with clearly distinguished
interfaces and the logic-processing core is illustrated in Fig. 11.

With the design of the interfaces, we exercise two general ap-
proaches (in the literature we encounter far more various tech-
niques but they are usually more specialized).

1) Granulation of individual variables: This mechanism
of granulation is quite common in the realm of fuzzy
modeling. In essence, we define several fuzzy sets in the
universe of discourse of the variable of interest so that
any input is transformed via the membership functions
defined there and the resulting membership grades are
used in further computations by the model. From the de-
sign standpoint, we choose a number of fuzzy sets, type

Fig. 11. General layered structure of fuzzy modeling. The use of granular
encoders and decoders are essential in the development of communication
mechanisms with the modeling environment.

of membership functions and a level of overlap between
consecutive fuzzy sets. Some general tendencies along
this line are thoroughly reported in the literature. By
selecting the number of fuzzy sets (usually between 3 and
9), we position modeling activities at some required level
of information granularity (a level of modeling details
we are interested in). The type of membership functions
helps model the semantics of the information granules.
Among many possibilities, we commonly encounter tri-
angular fuzzy sets and Gaussian membership functions.
These two types come with an extensive list of arguments
that help make a suitable selection with respect to the
main objectives of the model (e.g., those concerning a
tradeoff between interpretation and accuracy of mod-
eling). The overlap level is essential from different points
of view, namely a) semantics of the linguistic terms,
b) nonlinear numeric characteristics of the fuzzy model,
and c) completeness of the model.

2) Nonlinear or linear normalization: Here we transform an
original variable defined in some space, say [a, b] (subset
of ) is scaled to the unit interval. This could be done
with the aid of some mapping . The
mapping may be chosen to be linear (with some ramping



PEDRYCZ: HETEROGENEOUS FUZZY LOGIC NETWORKS 1475

effect) or nonlinear. In any case, we consider that $\phi$
is monotonically increasing with the boundary conditions

. This transformation does not affect
the dimensionality of the problem.

So far, we have not discussed any recurrent type of architec-
tures that are used with intent of developing models of dynamic
systems. Nevertheless, the general topology outlined in Fig. 11
can be easily extended by introducing auxiliary inputs at the
level of the granular encoder.

VII. INTERPRETATION ASPECTS OF THE NETWORKS

While each neuron in the network comes with a well-de-
fined semantics and can be easily interpreted, the result of in-
terpretation could lead to a quite lengthy description in case of
multivariable systems. To facilitate the process of interpretation
and reduce the structure of the detailed logic expression to its
essential substructure with the most meaningful topology, we
do the pruning of the weakest (unnecessary) connections. The
following are the detailed thresholding expressions supporting
such pruning activities.

1) For the referential neurons REF we
admit the following pruning mechanism: connection

is binarized producing a connection assuming
Boolean values

if
if

(11)

where denotes a certain threshold level. Considering
that we are concerned with the AND neurons, the con-
nections higher than the assumed threshold are prac-
tically eliminated from the computing. Apparently we
have where A denotes the re-
sult of computing realized by the neuron for the rest of
its inputs.

In case of referential neurons, their reference point
requires different treatment depending upon the type

of the specific referential operation. For the inclusion
operation, INCL we can admit the threshold op-
eration in the form

INCL
INCL if

if
(12)

with being some fixed threshold value. In other
words, we consider that INCL is approximated
by the complement of x (where this approximation is
implied by the interpretational feasibility rather than
being dictated by any formal optimization problem),
INCL . For the dominance neuron, we
have the expression for the respective binary version
of DOM, DOM

DOM
DOM if

if
(13)

2) For the linguistic hedges associated with the AND neu-
rons. Here the hedge leads to the unknown input
and as such this input could be completely eliminated.

.

3) For the OR neuron the weakest connections are elim-
inated as the corresponding inputs do not impact the
output. We have

if
if

(14)

The connection set up to 1 is deemed essential. If we accept
a single threshold level of 0.5 and apply this consistently to the
all the connections of the network and set up the threshold 0.1
for the inclusion neuron, the statement

more or less included in or and

included in or

translates into a concise (yet approximate) version assuming the
form of the following logic expression

more or less included in

The choice of the threshold value could be a subject of a sepa-
rate optimization phase but we can also admit some arbitrarily
values especially if we are focused on the interpretation issues.
One should become aware (which is quite intuitive, though) that
by increasing the threshold levels and, thus, making more rad-
ical changes to the connections of the network, its performance
expressed in terms of approximation abilities could be reduced.
The size of the network is reduced that enhances its interpreta-
tion abilities. Interestingly, the issue of approximation, interpre-
tation tradeoff arises here and through the threshold values, we
are provided with an effective instrument to control this impor-
tant modeling aspect.

VIII. EXPERIMENTAL STUDIES

The experiments reported in this section are intended to il-
lustrate the development, performance, and interpretation issues
of the proposed network. In all experiments, the t-norm is im-
plemented as a product operator while the s-norm treated as a
probabilistic sum. Furthermore in training the network we ad-
here to the 60%–40% data split with 60% of randomly selected
data being used for the training of the network. The perfor-
mance index Q used in the experiments on basis of which the
fitness function is developed concerns a RMSE measure given in

a standard format ( with
being the output of the network). These values concerns the

output normalized to the unit interval. In plots and while re-
porting results, we also show the performance index for the orig-
inal (not normalized) output variable; its values will be denoted
by V.

We start with a low-dimensional synthetic data set
shown in Fig. 12. These data points are here

for illustrative purposes and are not governed by any specific
probabilistic characteristics. As shown, there are three inputs
and a single output.

In the series of experiments we changed the number of the
referential neurons as well as modified the number of AND neu-
rons in the hidden layer. The GA used a population of 100 indi-
viduals and was run for 500 generations. The optimal configura-
tion emerged in the form of 3 reference neurons and 3 AND neu-
rons; it leads to the lowest value of the performance index on the
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Fig. 12. Synthetic data set (a) input variables (x) and (b) output (y).

training set and this is confirmed by the lowest value achieved
on the testing set (as visualized in Fig. 13).

The progress of the optimization is gauged in terms of the
fitness function of the population (average fitness) as well as
the best individual obtained in the successive generations, see
Fig. 14.

The interpretation of the network leads us to an interesting
logic description of the data. The referential neurons located in
the second layer are of all types (DOM, SIM, and INCL). They
come with the following connections and reference points

DOM

INCL

SIM

The connections of the AND neurons aggregating the signals
of the referential neurons are equal to , and

, respectively. Finally, the connections of the OR neuron
are equal to .

If we proceed with the thresholding operation (assuming the
same threshold level of 0.5 for the aggregative neurons and 0.05
and 0.95 for the reference neurons as well as following the
pruning mechanism of the rules outlined in Section VII) and
reduce the least significant connections then the core part of the
network arises in the following format:

Reference neurons

DOM

INCL and INCL

SIM and SIM

Fig. 13. Performance index (Q) on the (a) training and (b) testing set versus
the number of reference and AND neurons.

Fig. 14. Fitness function (average and best individual) in successive genera-
tions. The results are given for the best configuration (three referential neurons
and three AND neurons).

AND neurons

very and more or less and very very

more or less and very very

more or less andvery very

OR neuron

or more or less DOM

and very very INCL and INCL or

or more or less DOM

and very very SIM and SIM
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TABLE I
INPUT VARIABLES AND THE RESULTS OF ITS ENCODING (EITHER USING A

COLLECTION OF FUZZY SETS OR 1-OUT-OF-n DECODING)

Fig. 15. Genetic optimization of the network; fitness function (best and
average) produced in successive generations of the GA.

The two subsequent datasets come from the machine learning
repository [17] and concern auto and Boston housing data.

1) Auto Data Set: This dataset deals with the description of
various car makes completed in terms of several main charac-
teristics such as number of cylinders, acceleration, and gas con-
sumption. We can develop a logic description of such data in
which we predict gas consumption (mpg) as a logic function
of the parameters of a vehicle. As the data considered here are
either continuous (acceleration) or discrete with a few nominal
values, we develop an interface in which any continuous vari-
able is granulated through a collection of fuzzy sets while a dis-
crete variable is coded in the form of 1-out-of-n. For each con-
tinuous variable we use three Gaussian membership functions
uniformly distributed across the universe of discourse. This se-
lection is primarily dictated by the interpretability of such gran-
ules (as they could easily assume some clear semantics such
as low, medium, and high). The overlap between two adjacent
fuzzy sets is set to 0.5 (which makes these terms easily distin-
guishable and enhances their semantics). With this form of the
interface, we end up with 23 inputs to the network. The output
is linearly normalized by converting the range [9, 46.6] into the
unit interval. Bearing the encoding used in this network, the de-
tails of this mapping clearly identifying each variable are in-
cluded in Table I.

In the development of the network we use 60% of the dataset
(training data) selected at random from the entire set with the
rest used for testing purposes. The population consists of 200
individual and the genetic optimization was run for 700 genera-
tions. The mutation and crossover rates were equal to 0.10 and
0.80, respectively. As shown in Fig. 15, the genetic optimiza-
tion proceeds in a fairly typical way where in the first genera-
tions most of the optimization takes place. Because of the elitist

Fig. 16. Performance index V as a function of the number of referential and
AND neurons.

Fig. 17. Network versus data. All data shown with a few discrepancies
between the network and data.

strategy, the best individual shows up quite quickly and remains
for the rest of the course of the GA optimization (the curve sat-
urates quite quickly with some minor enhancements obtained
during the later part of the process).

Again we found these values to be typical for the experiments
and in line with the typical range of the values of the GA param-
eters encountered in the literature. The experiments were carried
out for different combinations of the AND and reference neu-
rons. The performance index treated as a function of these two
parameters is shown in Fig. 16. These results lead to the op-
timal configuration of the neurons with three reference neurons
and four AND neurons.

The overall performance of the network (shown for the entire
dataset) is presented in Fig. 17 with the experimental data visu-
alized with respect to the corresponding outputs of the network;
the cloud of the points obtained in this way locates around the
straight line of the slope 45 .

The optimal network comes with the three referential neu-
rons: two inclusion and one dominance neuron. The connections
and the reference points of them as well as the connections of
the AND and OR neuron are all shown in Figs. 18 and 19. Our
intent is to deliver a certain “global” picture as to the meaning of
the connections rather than get into details so that we can focus
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Fig. 18. Connections and reference points of the referential neurons. (a) First INCL neuron. (b) DOM neuron. (c) Second INCL neuron.

Fig. 19. Connections of the OR neuron.

on the pruning of the network and produce a compact descrip-
tion of data.

The reference neurons give rise to highly heterogeneous
space; remarkably different values of the connections cor-
responding with the specific inputs have been selected. The
linguistic hedges associated with the three AND neurons
are determined to be equal to [0.5 2 2], [2 2 0.5], [0.5 0 0], and
[1 1 4]. In case of the third neuron, two of its inputs become
irrelevant (unknown).

We observe a substantial diversity in the values of the con-
nections. For instance, in the third AND neuron we have only a
single significant connection while the remaining are set up to
1 (reflecting the unknown aspect of the corresponding input to
this neuron).

Using the thresholding operation, the core part of the net-
work can be easily revealed. The arbitrarily assumed value of the
threshold level for the connections is taken as 0.3. In this case,
all the connections of the OR neuron are retained. The subsets
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TABLE II
SUBSETS OF THE VARIABLES RETAINED BY THE REFERENCE NEURONS;
INCLUDED ARE THE VALUES OF THE ASSOCIATED REFERENCE VALUES

OFTHE REFERENCE POINT

Fig. 20. Regions (intervals) of input variable resulting from the satisfaction of
the logic predicates of inclusion and dominance and induced by different forms
of the membership function. (a) Inclusion, INCL(x is A, ref) and (b) dominance,
DOM(x is A, ref).

of the variables of the retained by the corresponding reference
neurons are included in Table II.

The logic description of data can be directly inferred from the
network developed so far. A few observations are helpful in this
regard. In case of continuous variable that has been discretized
(quantized) in terms of fuzzy sets, the logic expression INCL(A,
ref) where the satisfaction of this predicate attains high-truth
values (preferably close to 1) induces some corresponding re-
gions positioned in the original input variable as visualized in
Fig. 20. Note that the location of the region depends upon the
form of the membership function.

Fig. 21. Values of the performance index Q for the training set.

For the discrete inputs with the 1-out of-n decoding, the in-
terpretation of the logic expression INCL(x is , ref) with
being a discrete value of the variable gives rise to the expression

x is with confidence level equal to ref.

With these interpretation mechanisms in mind, the network
translates into the following expression:

INCL cylinders and INCL cylinders

and INCL displacement is large and

INCL horsepower is high and

INCL weight is medium and

INCL origin Japanese

or

DOM displacement is small and

DOM horsepower is high and

DOM weight is low and

DOM acceleration is medium

or

INCL cylinders and INCL cylinders

and INCL cylinders and

and INCL displacement is low

and INCL acceleration is high

Higher values of mpg (let us stress that their values are
normalized to the unit interval) are associated with higher
truth values of the compound logic expression describing the
data.

2) Boston Housing Data: The dataset concerns the price of
real estate in the Boston area providing several features of the
houses (age, distance to employment centers, number of rooms,
student-teacher ratio, etc) and their prices. In our discussion, the
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Fig. 22. Parameters of the fuzzy neurons. (a) Inclusion neuron. (b) Similarity. (c) OR neuron in the output layer.

price is treated as the dependent variable whose logic relation-
ship with the inputs we are interested in. The setup of the ge-
netic optimization is the same as in the previous case. With the
same coding (3 fuzzy sets per variable and 1-out of-n coding) we
end up with 56 input variables. The optimization with respect to
the number of reference and AND neurons leads to the config-
uration of 2–4 (2 reference neurons, 4 AND neurons), refer to
Fig. 21.

The parameters of the neurons (reference points and their
connections) are illustrated in Fig. 22. The optimal configura-
tion leading to the minimal value of the performance index on
the training set involves four AND neurons and two reference
neurons (one inclusion and one similarity neuron). The perfor-
mance index V is equal to 2.283; its value on the testing set is
equal to 2.468. Bearing in mind the original range of the output
that is [5, 50] this amounts to about 3.4% and 3.5% of its total
range (that and ).

The connections of the AND neurons are equal to [0 1], [4
1], [0.5 0], and [0.5 0]. It becomes evident that some inputs are
irrelevant (those associated with zeros that is being regarded as
unknown). For the OR neuron, one of the connections is subject
to pruning as its value is lower than 0.5.

IX. CONCLUSION

Being motivated by the genuine need of constructing net-
works that exhibit plasticity and retaining interpretability,
we have developed a heterogeneous structured composed of
logic neurons. The two main categories of aggregative and
reference neurons are deeply rooted in the fundamental oper-
ations encountered in fuzzy sets (including logic operations,
linguistic modifiers, and logic reference operations). The di-
rect interpretability of the network we addressed in the study
helps develop a logic description of data. As the network
takes advantage of using various neurons, this imposes an
immediate requirement of structural optimization and leads
to the utilization of the mechanisms of genetic optimization
(genetic algorithms). This study was aimed at addressing the
fundamental conceptual and algorithmic (design) issues of
the networks. There are a number of advanced issues worth
pursuing including.

• Interpretation mechanisms with an emphasis placed on the
systematic pruning process that should be guided by some
well-defined development criteria. The two potential can-
didates could involve a criterion of accuracy (which ex-
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presses how much the pruning affects the performance
index) and a criterion of interpretability. This one could be
more difficult to interpret and attach a tangible interpreta-
tion; as one among possible alternatives we can count the
number of connections dropped and link it to the structural
measure of complexity (such as, e.g., Akaike criterion in
system identification) of the reduced network.

Developing templates of networks for mapping domain
knowledge onto a network’s topology; one can envision
that building a number of “templates” could be of substan-
tial benefit

• The realization of the templates may trigger more research
into hierarchical networks composed of a collection of
specialized subnetworks.
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