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Abstract

Hybrid neuro-fuzzy systems have been in evidence during the past few years, due to its attractive combination of the
learning capacity of arti2cial neural networks with the interpretability of the fuzzy systems. This article proposes a new hybrid
neuro-fuzzy model, named hierarchical neuro-fuzzy quadtree (HNFQ), which is based on a recursive partitioning method
of the input space named quadtree. The article describes the architecture of this new model, presenting its basic cell and
its learning algorithm. The HNFQ system is evaluated in three well known benchmark applications: the sinc(x; y) function
approximation, the Mackey Glass chaotic series forecast and the two spirals problem. When compared to other neuro-fuzzy
systems, the HNFQ exhibits competing results, with two major advantages it automatically creates its own structure and it
is not limited to few input variables. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Hybrid neuro-fuzzy systems, or simply neuro-fuzzy
systems (NFS) [5,8,12–14,16–18,20–22,25,26,29],
match the learning capacity and the fault tolerance of
arti2cial neural networks (ANN) [9,15] with the lin-
guistic interpretation ability of the fuzzy systems (FS)
[24]. This feature has made them the focus of intense
research in the last years. The learning paradigms of
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neural networks allow the NFS to learn new informa-
tion from a speci2c data set. On the other hand, the
theory of fuzzy sets allows the NFS to present the in-
formation learned in a format which is interpretable
by humans.

The standard NFS learning process is divided in
two stages: the structure identi3cation, where the
input=output space partitioning and number of rules
are evaluated; and the parameters identi3cation
where fuzzy weights and weights associated with
the rules are adjusted. Depending on the neuro-fuzzy
system in question, these stages can occur simultane-
ously or not.

In the structure identi2cation stage, a pre-de2ned
method to partition the IN=OUT spaces is initially
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Fig. 1. Membership function of triangular pro2le.

speci2ed. The result of this partitioning greatly inJu-
ences the structure and the rule base obtained after the
training phase is completed.

In the parameters identi2cation stage, the fuzzy
weights are established. These fuzzy weights are the
parameters that de2ne the format of the membership
functions used in rules antecedents and consequents,
as well as the rule’s weights. Fig. 1 illustrates a typ-
ical example of a triangular membership function
�(x), used in NFS rules, and its three parameters (a; b
and c) which de2ne its format.

Both FS and NFS map fuzzy regions of the in-
put space into fuzzy regions of the output space. This
mapping is accomplished through the system’s fuzzy
rules. The fuzzy regions of the input=output space are
determined in the structure identi2cation process, ac-
cording to a speci2c method. The most common par-
titioning methods used by the NFS currently found
in literature are: Fuzzy Grid, Adaptive Fuzzy Grid,
Fuzzy Boxes and Fuzzy Clusters. These methods are
illustrated in Fig. 2.

The Fuzzy Grid [5] (Fig. 2a) is a 2xed partitioning
that does not allow any adjustment in the member-
ship functions. Systems that use this partitioning only
update parameters in the consequent of the rule. The
Adaptive Fuzzy Grid partitioning in Fig. 2b allows the
adjustment in the membership functions shape [12–
14]. The Fuzzy Grid partitioning methods (2xed and

Fig. 2. NFS partitioning methods.

adaptive) are simple and intuitive. However, as the
number of input variable increases, the number of
partitions grows accordingly, generating the curse of
dimensionality problem. Other partitioning methods,
presented in Figs. 2c and d, include Fuzzy Box and
Fuzzy Cluster partitioning, respectively. The Fuzzy
Box (2c) appears in the system fuzzy self-organized
map—FSOM [29]. The Fuzzy Cluster (2d) is gener-
ated by neural networks such as radial basis function
networks (RBFs) [9].

The partitioning process of the IN=OUT space has
great inJuence on the NFS performance in relation to
its desirable features (accuracy, generalisation, auto-
matic generation of rules, etc.). This work proposes the
use of recursive partitioning methods of the IN=OUT
space, resulting in a new class of NFS, called hierar-
chical neuro-fuzzy quadtree (HNFQ), that overcomes
two of the main weaknesses of current NFS: their 2xed
structure and limited number of inputs. It has been
shown by Brown and Harris [2] that a rule base us-
ing an hierarchical structure leads to a linear growth
in the number of the rules.

The quadtree partitioning was inspired by the
quadtree structures proposed by Finkel and Bentley in
1974 [7], which has been widely used in the area of
image manipulation and compression. The proposed
HNFQ model has been implemented and tested in
three classic benchmarks: sinc(x; y) function approx-
imation, Mackey Glass chaotic series forecast, and
the two spirals problem.

The remainder of this article is divided in 2ve more
sections. The following section describes the most
common recursive partitioning methods and their
representations. Section 3 introduces the recursive hi-
erarchical neuro-fuzzy model (HNFQ), its basic cell
and its architecture. Section 4 presents the HNFQ
learning algorithm, which is based on the gradient de-
scent method for parameters adjustment, and uses the
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Fig. 3. (a) Quadtree partitioning example, (b) Quadtree tree representing quadtree partitioning.

recursive feature of quadtree partitioning for its struc-
ture development. In Section 5, the results of the tests
performed with the HNFQ, in three distinct applica-
tions, are shown. Finally, Section 6 presents the con-
clusions and future perspectives of this work.

2. Recursive partitioning

We consider basically two recursive partitioning
forms in our NFS hierarchical approach:

(a) BSP partitioning (binary space partitioning) [3,4];
and

(b) quadtree partitioning [7].

Such forms of partitioning the space are said to be
recursive because they use recursive processes in their
generation. These partitioning forms have been chosen
in order to preserve the independence of the input fea-
tures, which is fundamental to achieve interpretability.
Other recursive partitioning forms, such as the poly-
gonal, mixes the input features just like multilayer per-
ceptrons do, losing the interpretation capability.

The following subsections brieJy introduce the BSP
[3,4] partitioning and detail the quadtree [2] partition-
ing, on which this article is based.

2.1. BSP partitioning

In this type of partitioning, the space is succes-
sively divided in two regions, in a recursive way. This
partitioning can be represented by a binary tree that
illustrates the successive n-dimensional space subdi-
visions in two convex subspaces. The construction of

Fig. 4. (a) Conventional quadtree partitions designation, (b) this
work convention.

this partitioning tree (BSP tree) is a process in which
a subspace is divided by a hyper-plan parallel to the
co-ordinates axes. This process results in two new
subspaces that can be later partitioned by the same
method.

2.2. Quadtree partitioning

In this partitioning, the n-dimensional space is suc-
cessively subdivided in quadrants that, in turn, can be
again subdivided in four regions (quadrants) in a re-
cursive operation.

Fig. 3a illustrates this type of partitioning for the
two-dimensional case, and Fig. 3b shows its represen-
tative quadtree tree [7]. The designation of partitions
showed in this 2gure follows a diNerent convention
from the one usually applied for representing pictures
by the quadtree partitioning. Figs. 4a and b illustrate
these two designation forms.

The traditional convention uses the directions NW
(north–west), NE (north–east), SW (south–west) and
SE (south–east), of the “Compass Rose”, to nomi-
nate each quadrant. The convention used in this work
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Table 1
Relation between quadrants numeration and �2 and �4 values

# Quadrant x1(�2) x2(�4)

1 = 00 + 1 Low membership degree (0) Low membership degree (0)
2 = 01 + 1 Low membership degree (0) High membership degree (1)
3 = 10 + 1 High membership degree (1) Low membership degree (0)
4 = 11 + 1 High membership degree (1) High membership degree (1)

Fig. 5. (a) The high and low membership functions, (b) division into 4 quadrants performed by the sigmoid membership functions.

is associated to a binary numbering as explained
below.

The universe of discourse of the variable x1 is di-
vided in two fuzzy sets, �1 (low) and �2 (high), and the
universe of discourse of the variable x2 is divided in
two fuzzy sets, �3 (low) and �4 (high). Table 1 shows
the relation of the numbers adopted for the quadrants
and the regions where membership functions high (�2

and �4) assume its minimum or maximum member-
ship degree.

Fig. 5a shows the shape and the analytical expres-
sions of high and low membership functions, which
divide the input space generated by x1 and x2. The
analytical expressions of high and low membership
functions are given by a sigmoid function and its com-
plement to 1, respectively. The “a” and “b” constants
determine, respectively, the fuzzy set inclination and
the middle point of the transition between the values
zero and one. Other shape can be used for these mem-
bership functions, however, the sigmoid has been cho-
sen due to its simple form. Fig. 5b shows how the four

Fig. 6. Adaptive quadtree partitioning.

membership functions (�1; �2; �3 and �4) generate
the division in 4 quadrants with fuzzy borders.

The quadtree partitioning can be 2xed (Fig. 3a) or
adaptive as shown in Fig. 6, where the partitioning
borders are adjusted during the NFS training (this will
be discussed in Section 4). In this case, the regions
generated in each subdivision are rectangular and not
square shaped, as in the 2xed partitioning case.
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Fig. 7. (a) Hierarchical neuro-fuzzy quadtree, (b) HNFQ simpli2ed cell diagram.

3. Hierarchical neuro-fuzzy quadtree model
(HNFQ)

The HNFQ models form a new class of recursive
NFS with a dynamic structure, which evolves to in-
crease accuracy, without incurring in the dimension-
ality problem.

In this model, the generation of rules is obtained
with an automatic partitioning process. The combina-
tory explosion of the number of rules (dimensionality
problem) is minimised with a partitioning method that
only details the de2cient regions in which an increase
in the accuracy is necessary. Both types of recursive
partitioning, quadtree and BSP, described in Section 2,
present this desirable feature.

An hierarchical model in the scope of this work
refers to a model where each input space partitioning
de2nes a subsystem that, in turn, is another model
with the same structure (recursiveness). This model is
inspired by Takagi–Sugeno fuzzy system [13,14], in
which a fuzzy rule has the following format:

if x1 ∈ �1 and x2 ∈ �2 then y = f(x1; x2): (1)

Usually, the function f(x1; x2) is a simple constant
(fuzzy singleton) or a linear combination of x1 and
x2 inputs (a1x1 + a2x2 + a3). In the HNFQ model,
the function in the rule consequent can take various
forms: a NFS of the same type; a “singleton”; a linear
combination of inputs; or a fuzzy set of a particular
shape. When the rule consequent is implemented by a
NFS, a subpartitioning of the input space is obtained.
This subpartitioning can follow the quadtree format or
any other format, such as the BSP.

To accomplish each partitioning in a quadtree for-
mat, a mini NFS, called neuro-fuzzy quadtree cell,
is used. This cell is described in details in the next
subsection.

3.1. Neuro-fuzzy quadtree cell

A HNFQ model is composed of one or more stan-
dard cells, named neuro-fuzzy quadtree cells. The cell
in the highest level of the hierarchy generates the sys-
tem’s output, while the cells in the lowest level of
the hierarchy behave as consequents of the higher hi-
erarchy cells. Intermediate and output cells have as
consequent the output of the lower hierarchy cells.
Section 3.2 presents an example of this model.

A HNFQ cell is a neuro-fuzzy mini-system that
performs a quadtree partitioning of a certain space,
according to the membership functions described in
Section 2, and generates a crisp output (y) after a de-
fuzzi2cation process, as will be shown later. Fig. 7a
illustrates a HNFQ cell and Fig. 7b presents its sim-
pli2ed diagram.

The linguistic interpretation of the mapping imple-
mented by the cell in Fig. 7a is given by the following
set of rules:

if x1 ∈ �1 and x2 ∈ �3 then y = d1; rule 1;

if x1 ∈ �1 and x2 ∈ �4 then y = d2; rule 2;

if x1 ∈ �2 and x2 ∈ �3 then y = d3; rule 3;

if x1 ∈ �2 and x2 ∈ �4 then y = d4; rule 4:

(2)
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Fig. 8. (a) An example of HNFQ architecture, (b) Input space partitioning of HNFQ architecture.

Each rule corresponds to one of the quadrants
shown in Fig. 4b. When the inputs fall in quadrant 1,
rule 1 has the greatest 2ring level. When the inputs
fall in quadrant 2, rule 2 has the greatest 2ring level.
When the inputs fall in quadrant 3, rule 3 has the
greatest 2ring level and, 2nally, when the inputs fall
in quadrant 4, it is the rule 4 that has the greatest
2ring level. Each quadrant, in turn, can be subdivided
in four parts, through another HNFQ cell.

In the HNFQ cell, x1 and x2 inputs produce the
four fuzzy rules antecedents, after the values of
�1(x1); �2(x1); �3(x2); �4(x2) have been computed.
The output of a HNFQ cell is given by the weighted
mean

y =

(∑4
i=1 �i × di∑4

i=1 �i

)
; (3)

where di corresponds to a singleton, a linear combina-
tion of inputs, or an output of a previous level cell; and
�i’s corresponds to the 2ring levels of each rule, ob-
tained by a T-norm operation of the rules’ antecedents.
Thus, �1 = �1(x1)�3(x2); �2 = �1(x1)�4(x2); �3 =
�2(x1)�3(x2); and �4 = �2(x1)�4(x2).

As can be seen in Fig. 5a, the membership functions
have been implemented by sigmoids for �2 and �4,
and by its complement to one (1 − �(x)), for �1 and
�3. The use of the complement to one simpli2es the
defuzzi2cation procedure performed by the weighted
mean process (Eq. (3)), since the summation in the
denominator of Eq. (3) is equal to 1 for any value of
x1 and x2, as Eq. (4) states

4∑
i=1

�i = 1: (4)

The output of a basic cell can, therefore, be simpli-
2ed as shown by Eq. (5). This simpli2cation will also
ease the task of obtaining the equations for parameters
adjustment (see Appendix A).

y =
4∑

i=1

�i × di: (5)

3.2. HNFQ architecture

HNFQ models are built from the interconnection
of the HNFQ cells. This is exempli2ed in Fig. 8a.
The partitioning implemented by the small system il-
lustrated in Fig. 8a is shown in Fig. 8b. Each non-
subdivided partition is called quad-partition.

In the above example, quadrants 1 and 4 have
not been subdivided. Therefore, the consequents of
their respective rules are only singletons d1 and d4.
Quadrants 2 and 3 have been subdivided and the
consequents of its rules are the outputs (y2 and y3)
of subsystems 2 and 3 that, in turn, have, as con-
sequent of its rules, singletons d21; d22; d23; d24 and
d31; d32; d33; d34, respectively.

The output of this system is given by

y = �1 × d1 + �4 × d4 +
3∑

i=2

4∑
j=1

�i × �ij × dij : (6)

The partitioning in Fig. 8b can be represented by
a quaternary tree (“quadtree tree”) with the structure
shown in Fig. 9.

In this tree, circles represent internal nodes that cor-
respond to regions that have been subdivided. The
squares represent terminals nodes that correspond to
quad-partitions, that is, regions that have not been



F.J. de Souza et al. / Fuzzy Sets and Systems 130 (2002) 189–205 195

Fig. 9. A quadtree tree representing Fig. 8b partitioning.

subdivided. The root of the tree symbolises the whole
space to be partitioned. The set of rules that translate
the example of Fig. 8a is

if x1 ∈ �1 and x2 ∈ �3 then y = d1

if x1 ∈ �1 and x2 ∈ �4 then

{if x1 ∈ �21 and x2 ∈ �23 then y = d21

if x1 ∈ �21 and x2 ∈ �24 then y = d22

if x1 ∈ �22 and x2 ∈ �23 then y = d23

if x1 ∈ �22 and x2 ∈ �24 then y = d24}

if x1 ∈ �2 and x2 ∈ �3 then

{if x1 ∈ �31 and x2 ∈ �33 then y = d31

if x1 ∈ �31 and x2 ∈ �34 then y = d32

if x1 ∈ �32 and x2 ∈ �33 then y = d33

if x1 ∈ �32 and x2 ∈ �34 then y = d34}
if x1 ∈ �2 and x2 ∈ �4 then y = d4;

where

• �1; �2; �3 and �4 are the membership functions
which de2ne the level 1 partitioning.

• �21; �22; �23 and �24, are the membership func-
tions which de2ne the quadrant 2 subdivision. The
corresponding parameters “a” and “b”, as seen in
equations Eqs. (1) and (2) (Fig. 5a) are as follows:
parameter “a”, which de2nes the membership func-
tions inclination in this level, is twice the parameter
“a” of membership functions in the immediately
upper level (�2); parameter “b” is adjusted, so that
the average point of transition of the membership
functions stays in the middle of quadrant 2.

• �31; �32; �33 and �34, are the membership functions
which de2ne the subdivision of the quadrant 3. The
parameter “a”, which de2nes the membership func-
tions inclination in this level, is twice the parameter
“a” of the membership functions of the immediately
upper level (�3). Parameter “b” is also adjusted, so
that the average point of the membership functions
transition stays in the middle of quadrant 3.

From the above discussion, a generic form for the
output of a HNFQ system with four levels of hierarchy
can be written as

y =
4∑

i=1

�i × ki × di

+
4∑

i=1

4∑
j=1

�i × �ij × kij × dij

+
4∑

i=1

4∑
j=1

4∑
k=1

�i × �ij × �ijk × kijk × dijk

+
4∑

i=1

4∑
j=1

4∑
k=1

4∑
m=1

�i × �ij × �ijk × �ijkm

×kijkm × dijkm; (7)

where

• �i; �ij ; �ijk ; �ijkm, are the 2ring levels of the rules in
each quad-partition i, or ij, or ijk, or ijkm;

• ki (kij ; kijk ; kijkm), is equal to “1”, if the partition i,
(or ij, or ijk or ijkm) exists and is not subdivided,
and is equal to “0” otherwise.

• di; dij ; dijk ; dijkm, are the consequents of the existing
rules.

In this formula, the simpli2cation obtained from
the use of the complementary membership functions
(�low = 1−�high) in the defuzzi2cation method of each
NFS output has already been considered.

4. Learning algorithm

In the neuro-fuzzy literature, the learning process
is generally divided in two parts: the identi2cation
of the structure and the adjustments of parameters.
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Fig. 10. Learning algorithm of HNFQ model.

The HNFQ model follows the same process. However,
only one algorithm carries out both learning tasks.

The learning algorithm of HNFQ model is per-
formed in six steps, as described below and illustrated
in the Jowchart of Fig. 10.

Learning steps:

(1) An initial partitioning is created, dividing the in-
put space into four parts, through two fuzzy sets—
high and low, for each input variable. In this step,
the 2rst quadtree cell is created;

(2) The weights di (consequents of the 2rst four rules)
are initialised with the average of the target val-
ues of the output patterns that fall on the quad-
partitioning (Fig. 8b) of index i. For example, to
calculate the initial value of the weight d4, all tar-
get values that fall in quadrant 4 are summed and
then divided by the number of patterns that fall
in quadrant 4;

(3) The system total error is then calculated for all
the training set, according to the root mean square
error expression, given below:

Erms =

√√√√1
L

L∑
n=1

(yn − Yn)2; (8)

where L is the number of patterns in the train-
ing set and yn and Yn are, respectively, the output

value of HNFQ system and the desired output
value for the pattern of index “n”. When this error
is below the desired minimum, the learning pro-
cess stops; otherwise, the learning process con-
tinues with step 4;

(4) The gradient descent method (see Appendix A)
adjust the fuzzy weights di’s;

(5) Each quad-partitioning is evaluated regarding its
contribution to the total root mean square error
and regarding the acceptable minimum error.
Each quad-partitioning with unacceptable error
is separated. The evaluation of the error gener-
ated for the data set that fall on the partitioning
ij, for example, is calculated by the following
expression:

Eij
rms =

√√√√1
L

L∑
n=1

�ni × �nij × (yn − Yn)2; (9)

where �ni , and �nij are the rules’ 2ring levels for
pattern “n”, as mentioned at the end of Sec-
tion 3.2.

For each separated quad-partitioning, a new
node in the quadtree tree is allocated. In other
words, each separated partitioning is recursively
decomposed (divided in 4). In this case, a decom-
posing process with a 2xed partitioning was used.
Four new membership functions are then gener-
ated, which constitute the four partitions just cre-
ated. The motivation for including the rule’s 2ring
levels (�ni and �nij) in this formula de2nition is to
measure the contribution of each partition in the
total error.

(6) Back to step “3” to continue the learning process.

5. Cases study

The HNFQ system has been evaluated in three
benchmarks often found in neuro-fuzzy literature:
the sinc(x; y) [29] function approximation, which is
a two variable non-linear function, the Mackey Glass
chaotic series forecast [13] and the two spirals prob-
lem [19]. The next subsections discuss each particular
application, present the results obtained by the HNFQ
model and compare the performance with other NFS.
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Fig. 11. Sinc function (x; y).

5.1. sinc(x; y) function approximation

In this application, the non-linear sinc(x; y) func-
tion is approximated by a HNFQ model. Eq. (10) de-
scribes the sinc function; its shape, which resembles
a Mexican hat, is shown in Fig. 11

sinc(x; y) =
sin(x)
x

· sin(y)
y

: (10)

A data set of 225 samples was used for train-
ing. The inputs (x; y) vary in the interval [−10; 10]
and the output z= sinc(x; y) varies in the interval
[−0:21; 1]. In the beginning of the training pro-
cess, the HNFQ model started with a single cell and

Fig. 12. The evolution of the HNFQ structure during the training process.

its structure expanded to minimise the RMS total
error. The HNFQ structure evolved as depicted in
Figs. 12a–d.

As can be observed from Fig. 12, the HNFQ struc-
ture evolved according to the sinc(x; y) function com-
plexity, creating new partitions in regions where the
function variations are more accentuated. Fig. 12a il-
lustrates the initial input space partitioning, generated
by x and y variables using only a single HNFQ cell.
Fig. 12b shows the 2rst partitioning, after the 2rst de-
composition, using 5 cells. Figs. 12c and d show the
partitioning evolution through the decomposition with
17 and 21 cells, respectively. In total, 21 HNFQ cells
have been placed in four levels (1 cell in level 1 + 4
cells in level 2 + 12 cells in level 3 + 4 cells in level
4), with 64 free parameters as the singletons rules con-
sequents.

The 2nal structure of the HNFQ system, at the end
of the learning process, is illustrated in Fig. 13.

Following the training process, a set of 625 patterns
was used for testing. The total RMS error, for the
training and test sets, was 1.5%.

Vuorimaa has applied its FSOM system [29] in the
same benchmark application, with similar training
and test sets, obtaining errors values of 3.14% and
3.19%, respectively. In the FSOM system, the number
of free parameters was 100. This NFS makes use of
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Fig. 13. The HNFQ 2nal structure for the sinc(x; y) function approximation.

Table 2
Comparison of the results obtained by FSOM and HNFQ models in the sinc(x; y) function approximation

Neuro-fuzzy model RMS error (train. set) RMS error (tests set) # Free parameters
(%) (%)

FSOM 3.14 3.19 100
HNFQ 1.5 1.5 64

the fuzzy box partitioning (see Fig. 2c), adjust-
ing its antecedent parameters using the LVQ algo-
rithm [29] and the consequent ones using the least

square estimator (LSE) algorithm. Table 2 compares
the results obtained by the two models: FSOM and
HNFQ.
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Fig. 14. HNFQ 2nal structure model for the Mackey Glass chaotic series forecast.

5.2. Chaotic series of Mackey Glass

The Mackey Glass chaotic series is one of the most
traditional benchmarks in this area. Its expression is
given by

x′(t) =
0:2x(t − �)

1 + x10(t − �)
− 0:1x(t): (11)

In this application, the x(t−18); x(t−12); x(t−6)
and x(t) values have been used to forecast the x(t +
6) value. The training set was created by numerical
integration (Runge–Kutta) with 0.1 steps [13]; for the
generation of the time series, values of x(0) = 1:2 and
t = 17 have been used. One thousand points have been
generated, 500 for training and 500 for test.

Since this application has four input parame-
ters, the inputs (x1; x2) = (x(t − 18); x(t − 12)) and
(x3; x4) = (x(t − 6); x(t)) have been alternated in
each level of the HNFQ structure developed during

the training phase. Fig. 14 shows the 2nal struc-
ture obtained after training. The x3 and x4 inputs
are shown in boldface to point out the inputs al-
ternation in the architecture. This alternation was
carried out automatically at each new level of the
structure.

The HNFQ model created in this application
presents three levels with 21 (1+4+16) cells and uses
64 free parameters (singletons dijk). The RMS total
error was 0.65% for the test set. Table 3 compares
the results obtained by the HNFQ model with the
results presented in ANFIS [13] and NEFPROX [26]
for this time series.

The ANFIS [13] and NEFPROX [26] systems are
neuro-fuzzy models speci2c for function approxima-
tion. The ANFIS system establishes the parameters
of the antecedents using a gradient descent algorithm
and adjusts its consequent parameters by the LSE al-
gorithm. The NEFPROX [26], on the other hand, uses



200 F.J. de Souza et al. / Fuzzy Sets and Systems 130 (2002) 189–205

Table 3
Comparison between the Mackey–Glass chaotic series simulations
for ANFIS, NEFPROX and HNFQ models

Model [Ref.] RMS error (tests set) # Free parameters
(%)

ANFIS [13] 0.16 104
NEFPROX [26] 3.32 105
HNFQ 0.65 64

an incremental rule learning and adjusts its consequent
and antecedent parameters using a kind of modi2ed
gradient descent algorithm.

It is important to observe that, although the re-
sults obtained by the HNFQ model have been infe-
rior than the results obtained by Jang in its ANFIS
model, the number of adjustable parameters used by
HNFQ model are almost 60% of the number of ad-
justable parameters of the ANFIS model. An alterna-
tive test to be carried out would be to employ linear
combinations of inputs (x1; x2; x3; x4), instead of using
only singletons, for the rules consequences. With this
change, the HNFQ model is expected to attain better
accuracy with a lesser number of partitioning in this
application.

5.3. The two spirals problem

This benchmark deals with a classi2cation prob-
lem [19]. The problem can be speci2ed as follows:
given a certain point in one of the two spirals (Fig. 15),
the system must identify to which speci2c spiral the
point belongs to. The data set is composed of 194 pat-
terns, with two inputs and one output. The two inputs
correspond to the rectangular co-ordinates (x; y); an
output “0” indicates that the point belongs to spiral 1
and an output “1” indicates that the point belongs to
spiral 2.

A criteria of 40 : 20 : 40 are usually applied for all
reported experiments with this problem. These three
numbers indicate the correspondent percentage for the
limits of level “0” (spiral 1), an undetermined out-
put, and level “1” (spiral 2). In other words, values
between 0 and 0.4 (inclusive) speci2es spiral 1; val-
ues between 0.4 and 0.6 indicates unde2ned spiral;
and values between 0.6 (inclusive) and 1.0, designates
spiral 2.

Fig. 15. Two spirals problem.

Fig. 16. Final partitioning obtained after training the HNFQ model,
for the two spirals problem.

The HNFQ model was trained with 194 patterns.
After the training process was completed, the obtained
input space partitioning is as shown in Fig. 16. As
can be observed, the generated structure reached 2ve
levels of subdivisions, with a total of 238 adjustable
parameters.

Table 4 below summarises the results obtained with
this problem by many authors. Models RN1 and RN2
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Table 4
Comparison between the HNFQ and other methods for the two
spirals problem

Model # Epochs # Parameters Structure

RN1 20.000 138 2-5-5-5-1
RN2 13.900 281 2-20-10-1
RN3 1.700 — Cascade correlation
HNFQ 175 238 5 levels

Table 5
Computation performance of the HNFQ model for the three bench-
mark applications

Benchmark application Computational time
(approximate in s)

sinc(x; y) function 100
Mackey Glass chaotic series 200
Two spiral problem 60

[19] refer to two neural networks trained with back
propagation algorithm and with the speci2c structures
described in the last column. The RN3 model corre-
sponds to the results obtained with Falman’s cascade
correlation network [6]. Finally, the last line of Table 4
exhibits the results obtained with the HNFQ model.
All models in Table 4 provided 0% classi2cation er-
ror after a certain number of epochs. Therefore, the
number of epochs, necessary for the error convergence
of each model, was used as the performance criteria.
As can be observed, the HNFQ model presents better
performance in comparison to the other models. This
eVciency results from the automatic generation of the
model’s structure, in addition to the capability of ad-
justing its own parameters (a common feature among
the other models).

5.4. Computational performance

The evaluation of the three benchmarks described in
the previous sections has been carried out in an AMD
K6 266 MHz machine. The computational time to ac-
complish the training process is provided in Table 5,
for all three applications.

6. Conclusions and future perspectives

This article presented the main ideas about the new
hierarchical NFS with the recursive quadtree parti-
tioning. As it has been seen, the recursive partitioning
lead to an hierarchical base rule, which is inherent to
these types of NFS. In the benchmark applications, the
HNFQ has presented good convergence (accuracy),
generalisation, and has been able to generate its own
structure. There was no need for a random weight
initialisation. This leads to a constant replication of
the results obtained for the same training parameters
(there is nothing random or stochastic in the learning
process). Moreover, the knowledge extraction under
the format of fuzzy rules and the automatic generation
of its structure are the key aspects of this system.

Some parameters are, however, important for
achieving good generalisation performance. One of
the most important is the decomposition rate (�),
which is a constant parameter that prevents the sys-
tem’s structure from growing inde2nitely. It is an a
dimensional parameter and acts as a limiting factor
for the decomposition process. A very low value can
result in a very big structure, compromising the gen-
eralisation capability. On the other hand, if a large
value is chosen, the structure might be too small to
learn the patterns with the desired accuracy.

A kind of input=output hierarchy has also been
used in the fuzzy models described by Holve [10,11].
In these models, called Hierarchical Fuzzy Associa-
tive Memory (HIFAM), small fuzzy models (mini-
systems) are placed in a binary tree structure, where
its outputs are used as inputs for others fuzzy models,
creating an hierarchical structure.

The main diNerence between these two fuzzy hier-
archical models (HNFQ and HIFAM) is related to the
interpretability of the rules obtained in each system.
In the HNFQ model, which uses hierarchy through the
consequents, the rules are more interpretable, since
the inputs are used directly in the rule’s antecedent.
This is not the case of the HIFAM model, which can
use, in the antecedent, intermediate inputs (outputs of
previous mini-systems in the hierarchy), causing the
resultant rules to be non-interpretable.

This basic HNFQ is being extended, incorporat-
ing new features. A new two phase learning algo-
rithm has been implemented, where the consequents
are adjusted by the LSE and the rules’ antecedents are
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trained with the resilient back propagation (Rprop).
This new approach uses adaptive quadtree partition-
ing, since the rule’s antecedents are also adjusted.
This new learning algorithm has provided very good
results in various applications such as time series fore-
casting and classi2cation. Additionally, a new hierar-
chical model, based on the BSP partitioning, has also
been developed, providing good preliminary results.
Because the BSP partitioning method successively di-
vides the space in two regions (as opposed to four re-
gions in the quadtree partitioning), it usually creates a
smaller neuro-fuzzy structure, resulting in better gen-
eralisation performance. These new experiments will
be reported in a following paper.

Two other important issues that will be investigated
are the attribute selection methods used in the decision
tree induction algorithms, such as ID3 and C4.5 by
Quinlan [27,28], as well as performance comparison
with fuzzy decision tree algorithms—Marsala [1,23].

In the ID3 algorithm, for example, a simple tree
can be generated by suitable selection of attributes.
An information-based heuristic is used to select these
attributes. The heuristic selects the attribute providing
the highest information gain, i.e., the attribute which
minimises the information needed in the resulting sub-
trees to classify the elements (patterns). In the HNFQ
systems, on the other hand, an attribute pair which
minimises the total root mean square error of the sys-
tem was chosen.

Appendix A Gradient descent calculation

The output of a HNFQ cell is given by the following
equation:

y = �1d1 + �2d2 + �3d3 + �4d4; (A1.1)

where

�1(xh ; xv) = �1(xh)�3(xv)

= [1 − �2(xh)][1 − �4(xv)]; (A1:2)∗

�2(xh ; xv) = �1(xh)�4(xv)

= [1 − �2(xh)] �4(xv); (A1:3)∗

�3(xh ; xv) = �2(xh)�3(xv)

= �2(xh)[1 − �4(xv)]; (A1:4)∗

�4(xh ; xv) = �2(xh)�4(xv) = �2(xh)�4(xv); (A1:5)∗

�2(xh) = sig(ah(xh − bh))

= 1=[1 + exp(−ah(xh − bh))]; (A1.6)

�1(xh) = 1 − �2(xh); (A1.7)

�4(xv) = sig(av(xv − bv))

= 1=[1 + exp(−av(xv − bv))]; (A1.8)

�3(xv) = 1 − �4(xv); (A1.9)

d1; d2; d3; d4 are the values of the consequents single-
tons or the output of previous levels, xh ; xv are the in-
put variables (horizontal and vertical), �1; �2; �3, and
�4 are the 2ring level of the four rules, �1; �2; �3 and
�4 are the activation functions of the HNFQ cell, ah

and av are the parameters that de2ne the inclination of
the �1; �2; �3 and �4 membership functions, bh and
bv are the parameters that de2ne the inJexion point of
the �1; �2; �3 and �4 membership functions.

In the HNFQ model, the gradient descent method
is used to minimise the mean square error. There-
fore, it is necessary to calculate the error gradient re-
lated to the adjustable parameters of the HNFQ cell:
ah ; av; bh ; bv; d1; d2; d3 and d4.

De2ning the mean square error as

� = 1
2(y − yd)2; (A1.10)

where “y” represents the system’s output and yd the
target output value. The error (�) partial derivative
in relation to a generic parameter “w” (of which the
output y depends on) is given by

@�
@w

=
@�
@y

@y
@w

; (A1.11)

@�
@w

= (y − yd)
@y
@w

; (A1.12)

@�
@w

= E
@y
@w

; (A1.13)

where E = (y − yd).
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Eq. (A1:13) shows that it is necessary to calculate
the partial derivative of the output y in relation to each
adjustable parameter of each HNFQ cell (ah ; av; bh

and bv).
Let “ycel k” be the output of cell “k” in the HNFQ

structure, as shown in Fig. 17 below.
Therefore, ycel k is calculated as

ycel k = (�1k d1k + �2k d2k + �3k d3k + �4k d4k);

(A1.14)

where �jk is the 2ring level of rule j of cell “k”, d1k

is the consequent singleton 1 of cell “k”, d2k is the
output yr of cell “r”, d3k is the output ys of cell “s”
and d4k the consequent singleton 4 of cell “k”.

Then, the contribution of the output of cell “k”
(ycel k) to the system’s output y is given by

HK = ��k(ycel k) (A1.15)

By substituting Eq. (A1:14) in (A1:15), the equation
can be rewritten as follows

HK = ��k(�1kd1k + �2kd2k + �3kd3k + �4kd4k);

(A1.16)

where factor ��k corresponds to the product of all
2ring levels �i from the cells that link cell “k” to the
output y.

In the example of Fig. 17, this value is given by

��k = �1u�2t ; (A1.17)

where �1u is the 2ring level of rule 1 of cell “u” and
�2t is the 2ring level of rule 2 of cell “t”.

Therefore, the relation between the total output “y”
and the output of cell “k” ycel k is

y = HK + !; (A1.18)

where ! represents the sum of all other inJuences on
the output “y”, except from cell “k”. By substituting
Eqs. (A1:15) or (A1:16) in Eq. (A1:18), “y” can be
calculated as

y = ��k(ycel k) + !; (A1.19)

y =��k(�1kd1k + �2kd2k + �3kd3k + �4k d4k) + !:

(A1.20)

A.1. Partial derivatives of the antecedent
parameters

The partial derivatives of the output “y” in relation
to each parameter akh ; a

k
v ; b

k
h or bkv of cell “k” are then

given by the following equations:

@y=@akh = @(��kycel k + !)=@akh ; (A1.21)

@y=@akv = @(��kycel k + !)=@akv; (A1.22)

@y=@bkh = @(��kycel k + !)=@bkh ; (A1.23)

@y=@bkv = @(��kycel k + !)=@bkv: (A1.24)

Since ! and the factor ��k are independent from
akh , (and akv ; b

k
heb

k
v), Eq. (A:21) can be rewritten as

follows

@y=@akh = ��k@ycel k =@akh : (A1.25)

From Eq. (A1:13), the partial derivative of the square
error “�” in relation to akh parameter can then be written
as

@�=@akh = E��k@ycel k =@akh : (A1.26)

By using Eqs. (A1:2)–(A1:5), the following equations
apply:

�1k(xh ; xv) = �1k(ah ; bh ; xh)�3k(av; bv; xv)

= [1 − �2k(ah ; bh ; xh)][1 − �4k(av; bv; xv)];

(A1.27)

�2k(xh ; xv) = �1k(ah ; bh ; xh)�4k(av; bv; xv)

= [1 − �2k(ah ; bh ; xh)]�4k(av; bv; xv);

(A1.28)

�3k(xh ; xv) = �2k(ah ; bh ; xh)�3k(av; bv; xv)

= �2k(ah ; bh ; xh)[1 − �4k(av; bv; xv)];

(A1.29)

�4k(xh ; xv) = �2k(ah ; bh ; xh)�4k(av; bv; xv)

= �2k(ah ; bh ; xh)�4k(av; bv; xv): (A1.30)

As explained in Section 3.1, the membership func-
tions of HNFQ cell have been implemented as sigmoid
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Fig. 17. Detail of a HNFQ system, showing the output of a speci2c cell “k”.

functions (�2 and �4) and their complements (�1 and
�3). Since the sigmoid function is given by

sig(z) = 1=[1 + exp(−z)]: (A1.31)

Then

@ sig(z)=@z = sig(z)[1 − sig(z)]: (A1.32)

By Eqs. (A1.27)–(A1.30) the partial derivatives of
the rules’ 2ring levels of cell “k” in relation to the
parameters akh , are the following:

@�1k =@akh = @(�1k(ah ; bh ; xh)�3k(av; bv; xv)); (A1.33)

@�2k =@akh = @(�1k(ah ; bh ; xh)�4k(av; bv; xv)); (A1.34)

@�3k =@akh = @(�2k(ah ; bh ; xh)�3k(av; bv; xv)); (A1.35)

@�4k =@akh = @(�2k(ah ; bh ; xh)�4k(av; bv; xv)): (A1.36)

By substituting Eq. (A1.32) in the previous equa-
tions and in view of Eq. (A1.27)–(A1.30) the partial
derivatives of the 2ring levels �ik ’s in relation to the
parameter akh are given by

@�1k =@akh = �2k(ah ; bh ; xh)�1k(bkh − xh); (A1.37)

@�2k =@akh = �2k(ah ; bh ; xh)�2k(bkh − xh); (A1.38)

@�3k =@akh = −�1k(ah ; bh ; xh)�3k(bkh − xh); (A1.39)

@�4k =@akh = −�1k(ah ; bh ; xh)�4k(bkh − xh): (A1.40)

For the parameters akv ; b
k
h ; eb

k
v , the partial derivatives

are calculated in a similar way.

Finally, by using the four last equations and
Eq. (A1.26), the partial derivatives of the error value
“�” in relation to the akh parameter in the antecendent
of cell “k” are given by

@�=@akh = E��k [�2k�1kd1k + �2k�2kd2k − �1k�3kd3k

−�1k�4kd4k ](bkh − xh): (A1.41)

In analogy,

@�=@bkh = E��k [−�2k�1kd1k − �2k�2kd2k

+ �1k�3kd3k + �1k�4kd4k ](akh); (A1.42)

@�=@akv = E��k [�4k�1kd1k − �3k�2kd2k

+ �4k�3kd3k − �3k�4kd4k ](bkv − xv);

(A1.43)

@�=@bkv = E��k [−�4k�1kd1k + �3k�2kd2k

− �4k�3kd3k + �3k�4kd4k ](akv): (A1.44)

A.2. Partial derivatives of the consequent
parameters

From Eq. (A1.20), the partial derivatives of the out-
put “y” in relation to each parameter dj (j = 1; 2; 3
and 4), of the cell “k” are given by the following equa-
tions:

@y=@dk
j = ��k@ycel k =@dk

j : (A1.45)

From Eq. (A1.13), the partial derivative of the square
error “�” in relation to each of the previous parameters
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can then be written as

@�=@dk
j = E��k@ycel k =@dk

j (j = 1; 2; 3 and 4):

(A1.46)

By using Eq. (A1.1), it follows that

@ycel k =@dk
j = �jk (j = 1; 2; 3 and 4): (A1.47)

Finally, as can be seen from Eqs. (A1.27)–(A1.30)
and Eq. (A1.47), the partial derivatives of the error
value “�” in relation to the consequent parameters of
the cell “k” are given by

@�=@dk
1 = E��k(�1k�3k); (A1.48)

@�=@dk
2 = E��k(�1k�4k); (A1.49)

@�=@dk
3 = E��k(�2k�3k); (A1.50)

@�=@dk
4 = E��k(�2k�4k): (A1.51)
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