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Abstract

The automatic design of fuzzy rule-based classification systems based on labeled data

is considered. It is recognized that both classification performance and interpretability

are of major importance and effort is made to keep the resulting rule bases small and

comprehensible. For this purpose, an iterative approach for developing fuzzy classifiers

is proposed. The initial model is derived from the data and subsequently, feature se-

lection and rule-base simplification are applied to reduce the model, while a genetic

algorithm is used for parameter optimization. An application to the Wine data classi-

fication problem is shown.
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1. Introduction

Rule-based expert systems are often applied to classification problems in

various application fields, like fault detection, biology, and medicine. Fuzzy
logic can improve such classification and decision support systems by using

fuzzy sets to define overlapping class definitions. The application of fuzzy if-

then rules also improves the interpretability of the results and provides more

insight into the classifier structure and decision making process [1]. We focus

on the extraction of fuzzy rule-based classifiers from labeled data. Data-driven

identification of such classifiers has to deal with structural issues, like the se-

lection of the relevant features and finding an effective partitioning of the input

domain. Moreover, linguistic interpretability is also an important aspect of
rule-based classifiers.

The automated construction of fuzzy classification rules from data has been

approached by different techniques like, e.g., neuro-fuzzy methods [2,3], ge-

netic-algorithm based rule selection [4], and fuzzy clustering in combination

with other methods such as fuzzy relations [6] and genetic algorithm (GA)

optimization [5]. Traditionally, algorithms to obtain classifiers have focused

either on the accuracy or the interpretability aspects. Recently, some ap-

proaches to combining these properties have been reported; fuzzy clustering is
proposed to derive transparent models in [7], linguistic constraints are applied

to fuzzy modeling in [1] and rule extraction from neural networks is described

in [8].

In this paper, we describe an approach that addresses both the accuracy and

the interpretability. We show that compact, accurate and interpretable fuzzy

rule-based classifiers can be obtained from labeled observation data in an it-

erative approach. First, an initial model is derived from the observation data.

Secondly, feature selection and rule-base simplification methods [9] are applied
to reduce the initial model. Finally, a real-coded GA is applied to optimize the

models parameters in order to improve the classification accuracy [10,11]. The

GA can also be applied in a loop together with rule-base simplification. In this

case, the GA uses a multi-criterion objective to search not only for model

accuracy but also for model redundancy. This redundancy is then exploited to

reduce and simplify the rule base. Finally, the GA is applied with a multi-

criterion function where the redundancy is suppressed in order to make the

rules more distinguishable while preserving the accuracy. The result is a
compact fuzzy rule base of low complexity with high a classification accuracy.

In the following, we continue with Section 2 where the initial modeling step

is explained and transparency and accuracy issues are discussed. In Section 3,

feature selection and rule-base simplification are described and the GA opti-

mization is described in Section 4. Section 5 considers the Wine data classifi-

cation problem known from the literature. Finally, Section 6 concludes the

paper.
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2. Fuzzy models for classification

2.1. The model structure

We apply fuzzy classification rules that each describe one of the Nc classes in

the data set. The rule antecedent is a fuzzy description in the n-dimensional

feature space and the rule consequent is a crisp (non-fuzzy) class label from the

set f1; 2; . . . ;Ncg:

Ri : If x1 is Ai1 and . . . xn is Ain then gi ¼ pi; i ¼ 1; . . . ;M : ð1Þ

Here n denotes the number of features,~xx ¼ ½x1; x2; . . . ; xn�T is the input vector,

gi is the output of the ith rule and Ai1; . . . ;Ain are the antecedent fuzzy sets. The

and connective is modeled by the product operator, allowing for interaction

between the propositions in the antecedent. The degree of activation of the ith
rule is calculated as:

bið~xxÞ ¼
Yn

j¼1

lAij
ðxjÞ; i ¼ 1; 2; . . . ;M ; ð2Þ

where lAij
2 ½0; 1� is the membership degree of the jth feature of the data pair x

to Aij. The output of the classifier is then determined by the rule that has the

highest degree of activation:

ŷy ¼ gi	 ; i	 ¼ arg max
16 i6M

bi: ð3Þ

In the following we assume that the number of rules corresponds to the number

of classes, i.e., M ¼ Nc. The certainty degree of the decision is given by the

normalized degree of firing of the rule:

CF ¼ bi	

XM
i

bi

,
: ð4Þ

2.2. Data-driven initialization

From the K available input–output data pairs f~xxk; ykg we construct the n-
dimensional pattern matrix X T ¼ ½~xx1; . . . ;~xxK �, and the corresponding label

vector~yyT ¼ ½y1; . . . ; yK �. The fuzzy antecedents AijðxjÞ in the initial rule base are

now determined by a three-step algorithm. In the first step, M multivariable

membership functions are defined in the product space of the features. Each

describes a region where the system can be approximated by a single fuzzy rule.
This partitioning can be realized by iterative methods such as clustering [10].

Here, given the labeled data, a one-step approach, similar to the one in [12], is
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proposed. This assumes that each class is described by a single, compact

construct in the feature space. If this is not the case, other methods such as,

e.g., relational classification [6], can be applied. Similar to the fuzzy clustering

algorithm in [13], the approach proposed here also assumes that the shape of
the fuzzy sets can be approximated by ellipsoids. Hence, each class prototype

is represented by a center~vvi and its covariance matrix Qi:

~vvi ¼
1

Ki

X
kjyk¼i

~xxk; ð5Þ

Qi ¼
1

Ki

X
kjyk¼i

ð~xxk �~vviÞTð~xxk �~vviÞ: ð6Þ

Here i denotes the index of the classes, i ¼ 1; . . . ;Nc, and Ki represents the

number of samples that belong to the ith class. In the second step, the algo-

rithm computes the fuzzy partition matrix U whose ikth element uik 2 ½0; 1� is
the membership degree of the data object ~xxk in class i. This membership is
based on the distance between the observation and the class center:

D2
ik ¼ ð~xxk �~vviÞTQ�1

i ð~xxk �~vviÞ: ð7Þ

Using this distance, the membership becomes:

uik ¼ 1
XK

j¼1

Dik

Djk

� �2=ðm�1Þ
,

; ð8Þ

where m denotes a weighting exponent that determines the fuzziness of the

obtained partition (m ¼ 1:8 is applied in the example).

The rows of U now contain the pointwise representations of the multi-

dimensional fuzzy sets describing the classes in the feature space. In the third
step, the univariate fuzzy sets Aij in the classification rules (1) are obtained by

projecting the rows of U onto the input variables xj and subsequently ap-

proximate the projections by parametric functions [14]. In the example we

apply triangular fuzzy sets for simplicity:

lðx; a; b; cÞ ¼ max 0;min
x � a
b � a

;
c � x
c � b

� �� �
: ð9Þ

If more smooth membership function constructs are used, e.g., Gaussian or

exponential functions, the resulting model will in general have a higher accu-

racy in fitting the training data.
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3. Model reduction

3.1. Ensuring transparency and accuracy

Fixed membership functions are often used to partition the feature space [4].

Membership functions derived from the data, however, explain the data-pat-

terns in a better way. Typically less sets and fewer rules result than in a fixed

partition approach. The initial rule base constructed by the proposed method

fulfills many criteria for transparency and good semantic properties [1,11]:

moderate number of rules, distinguishability, normality and coverage. The

transparency and compactness of the rule base can be further improved by

model reduction methods. Two methods are presented here. The first method is
an open-loop feature selection algorithm that is based on Fisher�s interclass

separability criterion [15], calculated from the covariances of the clusters. The

other method is the similarity-driven rule-base simplification proposed by

Setnes et al. [9].

3.2. Feature selection based on interclass separability

Using too many features results in difficulties in the prediction and inter-
pretability capabilities of the model due to redundancy, non-informative fea-

tures and noise. Hence, feature selection is usually necessary. We apply the

Fischer interclass separability method that is based on statistical properties of

the labeled data. This criterion is based on the between-class and within-class

scatter or covariance matrices, called Qb and Qw, respectively, which sum up to

the total scatter matrix Qt which is the covariance of the whole training data

containing K data pairs.

Qt ¼
1

K

XK

k¼1

ð~xxk �~vvÞTð~xxk �~vvÞ; ð10Þ

where

~vv ¼ 1

K

XK

k¼1

~xxk ¼
1

K

XNc

i¼1

Ki~vvi; ð11Þ

with Ki the number of cases in each class. The total scatter matrix can be de-

composed as

Qt ¼ Qb þ Qw; ð12Þ
where

Qb ¼
XNc

i¼1

Kið~vvi �~vvÞTð~vvi �~vvÞ; ð13Þ
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Qw ¼
XNc

i¼1

Qi: ð14Þ

The feature interclass separability selection criterion is a trade-off between Qb

and Qw. A feature ranking is made iteratively by leaving out the worst feature

in each step and is exploited for the open-loop feature selection:

Jj ¼ detðQbÞ= detðQwÞ; ð15Þ

where det is the determinant and Jj is the criterion value including j features.

3.3. Similarity-driven rule-base simplification

The similarity-driven rule-base simplification method [9] uses a similarity

measure to quantify the redundancy among the fuzzy sets in the rule base. A

similarity measure based on the set-theoretic operations of intersection and

union is applied:

SðA;BÞ ¼ jA \ Bj
jA [ Bj ð16Þ

where j � j denotes the cardinality of a set, and the \ and [ operators represent

the intersection and union, respectively. If SðA;BÞ ¼ 1, then the two mem-

bership functions A and B are equal. SðA;BÞ becomes 0 when the membership

functions are non-overlapping. The complete rule-base simplification algo-

rithm is given in [9].

Similar fuzzy sets are merged when their similarity exceeds a user defined

threshold h 2 ½0; 1� (h ¼ 0:5 is applied). Merging reduces the number of different

fuzzy sets (linguistic terms) used in the model and thereby increases the trans-
parency. If all the fuzzy sets for a feature are similar to the universal set U ,

lU ðxÞ ¼ 1, 8x, or if merging led to only one membership function for a feature,

then this feature is eliminated from themodel. Themethod is illustrated in Fig. 1.

Fig. 1. Similarity-driven rule-base simplification.
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3.4. Genetic multi-objective optimization

Many steps in the modeling process are sub-optimal. For instance, the

projection of the clusters onto the input variables, and their approximation by
triangular fuzzy sets introduces a structural error since the resulting premise

partition differs from the cluster partition matrix. Another example is the

separated identification of the models antecedent and consequent parts. To

improve the classification capability of the rule base, we apply a GA-based

optimization method that was developed in [5,11]. Also other model properties

can be optimized by applying multi-objective functions, like, e.g., search for

redundancy [10].

When an initial fuzzy model has been obtained from data, it is simplified
and optimized in an iterative fashion. Combinations of the GA with the model

reduction tools described above can lead to various modeling schemes. Three

different approaches are shown in Fig. 2.

The model accuracy is measured in terms of the number of misclassifica-

tions. To further reduce the model complexity, the misclassification rate is

combined with a similarity measure in the GA objective function. Similarity is

rewarded during the iterative process, that is, the GA tries to emphasize the

redundancy in the model. This redundancy is then used to remove unnecessary
fuzzy sets in the next iteration. In the final step, the accuracy is optimized while

similarity among fuzzy sets is penalized as to obtain a distinguishable term set

suitable for inspection and linguistic interpretation.

The GAs is subject to minimizing the following multi-objective function:

J ¼ ð1þ kS	Þ �MCE; ð17Þ

Fig. 2. Modeling schemes resulting from a combination of tools.
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where MCE is the mean classification error:

MCE ¼ 1

K

XK

k¼1

ðyk

 
6¼ ŷykÞ

!
; ð18Þ

with c the class and ĉc the predicted class. S	 2 ½0; 1� is the average of the

maximum pair-wise similarity that is present in each input, i.e. S	 is an ag-

gregated similarity measure for the total model:

S	 ¼ 1

n

Xn

i¼1

maxðSðAij;AikÞÞ
gi � 1

 !
; j; k 2 f1; 2; . . . ; gig; j 6¼ k; ð19Þ

where n is the number of inputs and gi the number of sets for each input

variable. The weighting function k 2 ½�1; 1� determines whether similarity is
rewarded ðk < 0Þ or penalized ðk > 0Þ. In the example a fixed k of )0.2 and 0.2

is applied for the two cases.

4. Real-coded genetic algorithm

A real-coded GA [16] is used for the optimization of the parameters of the

antecedent membership functions. GAs are attractive for multi-objective op-

timization since they perform a parallel search for multiple solutions in parallel

and are able to handle problems with complex objectives and constraints. The
main aspects of the proposed GA-based optimization are discussed in the

subsections below and the implementation is then summarized in Section 4.5.

4.1. Fuzzy model representation

Chromosomes are used to describe the solutions. With a population size L,
we encode the parameters of each fuzzy model (solution) in a chromosome~ssl,

l ¼ 1; . . . ; L, as a sequence of elements describing the fuzzy sets in the rule

antecedents. A classifier with M fuzzy rules is encoded as:

~ssl ¼ ðant1; . . . ; antMÞ; ð20Þ

where anti ¼ ðai1; bi1; ci1; . . . ; ain; bin; cinÞ, contains the parameters of the ante-

cedent fuzzy sets Aij, j ¼ 1; . . . ; n, according to (9). In the initial population

S0 ¼ f~ss 0
1 ; . . . ;~ss

0
Lg,~ss 0

1 is the initial model, and~ss 0
2 ; . . . ;~ss

0
L are created by random

variation with a uniform distribution around~ss 0
1 .
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4.2. Selection function

The roulette wheel selection method [16] is used to select nC chromosomes

for operation. The chance on the roulette wheel is adaptive and is given as
Pl=
P

l0 Pl0 , where

Pl ¼
1

Jl

� �2

; l; l0 2 f1; . . . ; Lg; ð21Þ

and Jl is the performance of the model encoded in chromosome~ssl. The inverse

of the selection function ðP�1
l Þ is used to select chromosomes for deletion. The

best chromosome is always preserved in the population (Elitist selection). The
chance that a selected chromosome is used in a crossover operation is 90% and

the chance for mutation is 10% (in this paper). When a chromosome is selected

for crossover (or mutation), one of three crossover (or mutation) operators are

applied with equal probability.

4.3. Genetic operators

Two classical operators, simple arithmetic crossover and uniform mutation,
and four special real-coded operators are used in the GA. In the following,

r 2 ½0; 1� is a random number (uniform distribution), t ¼ 0; 1; . . . ; T is the

generation number, ~ssv and ~ssw are chromosomes selected for operation,

k 2 f1; 2; . . . ;Ng is the position of an element in the chromosome, and vmin
k and

vmax
k are the lower and upper bounds, respectively, on the parameter encoded

by element k: Single chromosomes ð~ssvÞ are selected for mutation and pairs of

chromosomes ð~ssv;~sswÞ are selected for crossover:

(1) Uniform mutation: a random selected element vk, k 2 f1; 2; . . . ;Ng is re-
placed by v0k which is a random number in the range ½vmin

k ; vmax
k �. The result-

ing chromosome is~sstþ1
v ¼ ðv1; . . . ; v0k; . . . ; vmÞ.

(2) Multiple uniform mutation: uniform mutation of n randomly selected ele-

ments, where n is also selected at random from f1; . . . ;Ng.
(3) Gaussian mutation: all elements of a chromosome are mutated such that

~sstþ1
v ¼ ðv01; . . . ; v0k; . . . ; v0mÞ where v0k ¼ vk þ fk, k ¼ 1; 2; . . . ;N . Here fk is a

random number drawn from a Gaussian distribution with zero mean and

an adaptive variance rk ¼ ððT � tÞ=T Þððvmax
k � vmin

k Þ=3Þ. The parameter tun-
ing performed by this operator becomes finer and finer as the generation

counter t increases.
(4) Simple arithmetic crossover:~sst

v and~ss
t
w are crossed over at the kth position.

The resulting offsprings are ~sstþ1
v ¼ ðv1; . . . ; vk;wkþ1; . . . ;wN Þ and

~sstþ1
w ¼ ðw1; . . . ;wk; vkþ1; . . . ; vN Þ, where k is selected at random from

f2; . . . ;N � 1g.
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(5) Whole arithmetic crossover: a linear combination of~sst
v and~sst

w resulting in
~sstþ1

v ¼ rð~sst
vÞ þ ð1� rÞ~sst

w and~sstþ1
w ¼ rð~sst

wÞ þ ð1� rÞ~sst
v.

(6) Heuristic crossover:~sst
v and~ss

t
w are combined such that~sstþ1

v ¼~sst
v þ rð~sst

w �~sst
vÞ

and~sstþ1
w ¼~sst

w þ rð~sst
v �~sst

wÞ.

4.4. Constraints

The optimization performed by the GA is subjected to two types of con-

straints: partition and search space. The partition constraint prohibits gaps in

the partitions of the input (antecedent) variables. The coding of a fuzzy set

must comply with (9), i.e., a6 b6 c. To avoid gaps in the partition, pairs of

neighboring fuzzy sets are constrained by aR 6 cL, where L and R denote left
and right set, respectively.

The GA search space is constrained by a user defined bound-parameter a1

that applies to the antecedent of the rules. This bound a1 is intended to

maintain the distinguishability of the models term set (the fuzzy sets) by al-

lowing the parameters describing the fuzzy sets Aij to vary only within a bound

of �a1jvjj around their initial values, where jvjj is the length (range) of the

domain on which the fuzzy sets Aij are defined. The search space constraints are

coded in the two vectors,~vvmax ¼ ½vmax
1 ; . . . ; vmax

N � and~vvmin ¼ ½vmin
1 ; . . . ; vmin

N �, giv-
ing the upper and lower bounds on each of the N elements in a chromosome.

During generation of the initial partition, and in the case of a uniform muta-

tion, elements are generated at random within these bounds.

4.5. Genetic algorithm

Given the pattern matrix Z and a fuzzy rule base, select the number

of generations T , the population size L, the number of operations nC and the
constraints a1 and a2. Let St be the current population of solutions ~sst

l, l ¼
1; . . . ; L, and let ~JJ t be the vector of corresponding values of the evaluation

function:

(1) Create initial chromosome~ss 0
1 from the initial fuzzy rule base.

(2) Calculate the constraint vectors~vvmin and~vvmax using~ss 0
1 and a1.

(3) Create the initial population S0 ¼ f~ss 0
1 ; . . . ;~ss

0
Lg where ~ss 0

l , l ¼ 2; . . . ; L are

created by constrained random variations around ~ss 0
1 , and the partition

constraints apply.
(4) Repeat genetic optimization for t ¼ 0; 1; 2; . . . ; T � 1:

(a) Evaluate St and obtain ~JJ t.

(b) Select nC chromosomes for operation.

(c) Select nC chromosomes for deletion.

(d) Operate on chromosomes acknowledging the search space constraints.

(e) Implement partition constraints.
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(f) Create new population Stþ1 by substituting the operated chromosomes

for those selected for deletion.

(5) Select best solution from St by evaluating ~JJ t.

5. Example: Wine data

The Wine data 1 contains the chemical analysis of 178 wines produced in the

same region in Italy but derived from three different cultivars. The problem is

to distinguish the three different types based on 13 continuous attributes de-

rived from chemical analysis: alcohol, malic acid, ash, alcalinity of ash, mag-

nesium, total phenols, flavanoids, nonflavanoids phenols, proanthocyaninsm

color intensity, hue, OD280/OD315 of diluted wines and proline (Fig. 3).
Corcoran and Sen [17] applied all the data for learning 60 non-fuzzy if-then

rules in a real-coded genetic based machine learning approach and Ishibuchi

et al. [4] applied all the data for designing a fuzzy classifier with 60 fuzzy rules

by means of an integer-coded GA and grid partitioning. In [18], they discuss

several GA-based methods for classifier design and show results for the Wine

data for a various number of rules between 3 and 100. The results of these

approaches are summarized in Table 1.

Corcoran and Sen used a population of 1500 individuals and applied 300
generations, with full replacement, to come up with the following result for 10

independent trials: best classification rate 100%, average classification rate

99.5% and worst classification rate 98.3% which is three misclassifications.

Ishibuchi et al. [19] applied all the 178 samples designing a fuzzy classifier with

60 fuzzy rules by means of an integer-coded GA and grid partitioning. Their

population contained 100 individuals and they applied 1000 generations, with

full replacement, to come up with the following result for 10 independent trials:

best classification rate 99.4% (1 misclassifications), average classification rate
98.5% and worst classification rate 97.8% (4 misclassifications). In both ap-

proaches the final rule base contains 60 rules. The main difference is the

number of model evaluations that was necessary to come to the final result. In

[17] the Pittsburgh approach of GA-based learning is used where each indi-

vidual in the population contains a complete fuzzy model, resulting in 150,000

model evaluations. In [19] the Michigan approach is followed were each in-

dividual contains one rule and the complete population consists of one fuzzy

model and thus only 1000 model evaluations were performed.
In Ishibuchi et al. [18], both the Michigan and the Pittsburgh approach are

extensively studied for fuzzy classifier design. A superior performance of the

1 The Wine data is available from the University of California, Irvine, via anonymous ftp.

ftp.ics.uci.edu/pub/machine-learning-databases/.
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Michigan approach was found, among others for the Wine data. Rules with on

average less than two inputs resulted, that are highly interpretable. However,

the rules were weighted with a certainty factor that degrades the transparency.

Such a weighting was necessary because fixed membership functions were

applied. The best results are also summarized in Table 1.

5.1. Proposed approach

An initial classifier with three rules was constructed with the proposed co-

variance-based model initialization by using all samples resulting in 90.5%

correct, 1.7% undecided and 7.9% misclassifications with the following average
certainty factors (CFs) [82.0, 99.6, 80.5] for the three wine classes. The resulting

Table 1

Classification results on the Wine data for 10 independent runs

Method Best result Average

result

Worst

result

Rules Model

evaluation

Corcoran and Sen [17] 100% 99.5% 98.3% 60 150000

Ishibuchi et al. [4] 99.4% 98.5% 97.8% 60 6000

Ishibuchi et al. [18] –% 98.5% –% 8.0 20000

Ishibuchi et al. [18] –% 95.5% –% 6.9 20000

This paper 99.4% Various

schemes

98.3% 3 4000–8000

10

12

14

16
1. Alcohol

0

2

4

6
2. Malic acid

1

2

3

4
3. Ash

10

20

30
4. Alcalinity ash

50

100

150

200
5. Magnesium

0

2

4
6. Tot. Phenols

0

2

4

6
7. Flavonoids

0

0.5

1
8. Non-flav.Phen.

0

2

4
9. Proanthoc.

0

5

10

15
10. Color intensity

0 178
0

1

2
11. Hue

0 178
1

2

3

4
12. OD280/OD315

0 178
0

1000

2000
13. Proline

0 178
1

2

3
Class

Fig. 3. Wine data: three classes and 13 attributes.
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fuzzy sets are shown in Fig. 4. Improved classifiers are developed based on the

three schemes given in Fig. 2.

Scheme 1. The Fisher interclass separability criterion gives the following fea-
ture ranking f13; 12; 1; 4; 7; 6; 10; 9; 3; 2; 11; 5; 8g. Classifiers were made by

adding features one by one and 400 iterations with the GA-optimization. The

two best classifiers were obtained by using the first 5 or 7 features (15 or 21

fuzzy sets). This gave 98.9% and 99.4% correct classification with CF for the

three classes ½0:95; 0:94; 0:84� and ½0:94; 0:99; 0:97�, respectively. The first three-
rule classifier is shown in Fig. 5 and rules are given in Table 2.

Scheme 2. The similarity-driven rule-base simplification removed the following
eight inputs in three steps: (i) f3; 5g, (ii) f2; 4; 8; 9g, (iii) f6; 12g. After each

reduction, 200 GA-iterations were done and 400 after the last reduction. The

final three-rule classifier given in Table 3 contains only 11 fuzzy sets as shown

in Fig. 6. The classification result was 99.4% correct and CF for the three wine

classes was ½0:96; 0:94; 0:94�.

Scheme 3. Five features were selected based on the feature ranking initially

resulting in 5% misclassification. Successively, five fuzzy sets were removed by
iterative similarity-driven rule-base simplification and GA optimization (200

iterations). After the final GA tuning (400 iterations) the classification rate was

98.3% with CFs ½0:93; 0:91; 0:91�. The final model contains five features

f1; 4; 7; 12; 13g. The three-rule classifier is shown in Fig. 7 and rules are given in
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Fig. 4. Wine data: Fuzzy sets by the initialization method for the three classes and all 13 attributes.
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Table 2

Three rule fuzzy classifier #1 (L ¼ low, M ¼ medium, H ¼ high, A ¼ any)

1

Alc

2

Mal

3

Ash

4

aAsh

5

Mag

6

Tot

7

Fla

8

nFlav

9

Pro

10

Col

11

Hue

12

OD2

13

Pro

Class

R1 H – – L – – H – – – – H H 1

R2 L – – A – – A – – – – A L 3

R3 M – – H – – L – – – – L L 2

Table 3

Three rule fuzzy classifier #2 (L ¼ low, M ¼ medium, H ¼ high)

1

Alc

2

Mal

3

Ash

4

aAsh

5

Mag

6

Tot

7

Fla

8

nFlav

9

Pro

10

Col

11

Hue

12

OD2

13

Pro

Class

R1 H – – – – – H – – M H – H 1

R2 L – – – – – – – – L H – L 2

R3 H – – – – – L – – H L – L 3

Table 4

Three rule fuzzy classifier #3 (L ¼ low, M ¼ medium, H ¼ high)
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Tot

7
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8

nFlav

9

Pro

10

Col

11

Hue

12

OD2

13

Pro

Class

R1 H – – M – – H – – – – H H 1

R2 L – – – – – H – – – – M L 2

R3 H – – – – – L – – – – L L 3
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Table 4. The fuzzy sets obtained for f1; 7; 13g are similar to those obtained

with Scheme 2 (Fig. 6). The �any� label for feature 4 seems not to be informative

and could be removed manually resulting in one feature less and the same

performance.

In this example, feature reduction was obtained by all three schemes. The

resulting three rule classifiers use only five of the initial 13 features. Differences

in the reduction methods are: (i) Similarity analysis results in a closed-loop

feature selection because it depends on the actual model while the applied

open-loop feature selection can be used beforehand as it is independent from

the model. (ii) In similarity analysis, a feature can be removed from individual

rules. In the interclass separability method the feature is omitted in all the rules.
(iii) Similarity analysis allows for single fuzzy sets for multiple classes, e.g., in

the Wine data, the combined class 1 and 2 are distinguishable from class 3 by

Fig. 6. The fuzzy sets of the optimized three rule wine-classifier (Scheme 2).
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Fig. 7. The fuzzy sets of the optimized three rule wine-classifier (Scheme 3).
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Fig. 5. The fuzzy sets of the optimized three rule wine-classifier (Scheme 1).
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feature 11, while this one ranks low in the interclass separability method. The

similarity based-rule reduction is important for transparency as can be seen by

comparing the sets and rules for the three schemes, e.g., an additional �any�
label is necessary for the result of Scheme 1. Overall, the Wine data is still
relative low in dimension. It is expected that in higher dimensional problems,

the two reduction method should be combined, i.e., some of the features should

be removed beforehand by the interclass separability method.

Comparing the fuzzy sets in Figs. 5–7 with the data in Fig. 3 shows that the

obtained rules are highly interpretable. For example in Fig. 6, the flavonoids

are divided in low, medium and high, which is clearly visible in the data. Visual

inspection of the data also shows that �don�t care� elements (fuzzy sets similar to

a universal set) were obtained for features that contain little variation over the
three classes, e.g., Ash, Mag, nFlav, Hue, etc.

Concluding, the obtained result is comparable to those in [17] and [4], but

our classifiers use far less rules (3 compared to 60) and less features. The rule-

bases in [18] are comparable in accuracy and number of rules. However, these

models are less interpretable due to the application of fixed fuzzy sets that are

applied in combination with a rule-weighting. Thus the rule-interpolation

determines the final output in contrast to our approach where only one-rule

determines the output due to the winner takes all strategy. Results for other
data-sets with similar modeling schemes are studied in [20,21].

6. Conclusion

The design of fuzzy rule-based classifiers based on labeled data is ap-

proached by combining tools for feature selection, model initialization, model

reduction and model tuning. It is shown that these can be applied in an iter-

ative way. A covariance-based model initialization method is applied to obtain

an initial fuzzy classifier. Successive application of feature selection, rule-base

simplification and GA-based tuning then results in compact, interpretable and

accurate fuzzy rule-based classifiers. The proposed approach was successfully
applied to the Wine data. The resulting classifier is very compact in comparison

with other studies, while the accuracy is very similar.
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