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Abstract— Models are descriptions of real facts that serve us
to think and reason. In building models, a compromise always
exists between accuracy, that is, how precisely the model describes
reality, and simplicity, without which the model would be useless.
S0, a good model must he simple and intuitive while being
accurate enough. In this paper we propose a novel approach
based on visual techniques aiming to help the human in fine-
tuning fuzzy decision trees to enhance its interpretability and
insightfulness with a minimal loss of accuracy. By involving the
human in the design process, these techniques allow to include
prior knowledge in the selection of membership functions as well
as to assess the significance of rules in the model to help in the
pruning stage.

I. INTRODUCTION

Today problems in many research areas such as bioinfor-
matics, social sciences or industrial engineering involve the
analysis of complex processes or phenomena for which we
lack accurate models. Commonly, information js present in
quite heterogeneous ways, while classical models, in general,
are only able to deal with only one type of substrate for
knowledge. :

Particularly, in factory automation we often face increasing
market requirements- both in terms of product guality and
productivity that demand a continuous improvement in the
production process.

In complex processes such as, for instance, industrial pro-
cesses, we lack precise models which describe the influence of
all factors and process optimization has to be done on the basis
of —lots of— historical data, coming from dozens of sensors and
typically some non-structured prior knowledge, available in
terms of more or less precise rules, correlations, cases, etc. We
do have prior knowledge, but this knowledge is only available
in non-structured, subtle ways [1].

Visual exploration of complex and heterogeneous informa-
tion resources has become recently a major tapic of research
[2}, [3), t4], [5). The idea of the so called visual data mining
paradigm [6] is to exploit the human's mind visual exploration
and reasoning abilities. In using a visual representation for
knowledge, data visualization techniques are specially helpful
to the human for making decisions or understanding a given
problem by combining in a visual manner quite different
sources of knowledge he/she may have at hand, such as
precess data, rules ~that may be vague, fuzzy- simple models
explaining parts of the process, etc.

Another major substrate of knowledge is the linguistic one.
The human being also thinks using wards, and many of the
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models he makes to explain things are linguistic. Particularly,
in a factory one can find that most technicians deal with
linguistic models to describe process, such as

- High armature voltage and low field current lead to very

high speed

The theory of fuzzy sets, developed by Zadeh [7] allows o
formalize linguistic entities in a mathematical way suitable
for use with computers. A vast amount of research has
been done since then in methods for control, modeling and
knowledge discovery using these ideas and particularly for
building linguistic models from available data as, for example,
decision trees (DT} {8], [9]. [10].

However, these methods are common-sense blind, 2., they
provide us with a model which may be accurate, but com-
plicated or with no sense for us. As long as a model aims to
serve as a vehicle of knowledge that we will handle to operate
with or to devise new knowledge, it must be essentially simple
~but not trivial- in order to be useful.

This idea has suggested to place some constraints —pruning
techmiques— in the final model 1o reach a compromise between
simplicity and accuracy. However, automatic algorithms to
prune decision trees are not always provided with a measure
of insightfulness of the final model and they still work blindly.

In this paper, we propose the use of the visual paradigm
to improve the fuzzy rule induction process by integrating the
human in this process, allowing him/her to interact on the basis
of a visual representation of data, rules and knowledge.

This paper is organized as follows. In section II, a brief
review of decision trees and fuzzy decision trees is given.
Section IIT introduces some visual techniques aiming to help
the human in fine-tuning the fuzzy decision tree to enhance
its interpretability and insightfulness with a minimal loss
of accuracy. Finally, in section 1V, we apply the proposed
ideas to analyze vibration and cumrent data’ from rotating
machinery under different fault conditions in order to illustrate
the effectiveness of using this approach. Finally, section V
concludes the paper.

I1. DECISIQON TREES

A. Classic decision trees

Decision trees (DT) are tree structures geared to solving
classification problems. DT define a bank of rules using a set
of input attributes of the sample data set in the antecedent and
a class label —output or decision attribute— in the consequent.
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A DT is composed of nodes, which contain subsets of the
initial data set, and grrows connecting the nodes. Each node
—parent node— can be further split into several child nodes
each of which fulfill an additional condition imposed on a
given attribute. These conditions are represented by arrows
connecting the parent node to each of its children. Thus, the
leaves of the tree are associated to finite collections of the
original data set fulfilling all the conditions defined by the
path that connects them t¢ the root.

A DT is grown starting from the most meaningful attribute
and proceeding with other attributes at lower nodes of the tree.
The objective is to produce nodes of the highest homogene-
ity. To achieve that, a recursive partitioning routine selects
one attribute at a time, usually the one which maximizes
some information measure. This attribute is used to split the
node, using demain values of the attribute to form additional
conditions leading to subtrees. Then, the same procedure is
recursively repeated for each child node. A node is further split
unless all attributes are exhausted or when all examples at the
node have the same classification. Alternatively, other criteria
can be imposed —for instance, requiring 2 minimum number
of elements in a leaf— to stop the growth. This approach to
decision tree construction corresponds to a top-down greedy
algorithm that makes a locally optimal decision in each node.

Quinlan’s 1D3 [9), {8], and its extension to deal with
continuous domains, C4.5 [10], are two of the most popular
of such algorithms. ID3 aims at knowledge comprehensibility
and it is based on symbolic domains. On the other hand, C4.5
does not require prior partitioning. The conditions in the tree
are based on thresholds (for continuous domain), which are
dynamically computed. Because of that, the conditions on
a path can use a given attribute a number of times (with
different thresholds), and the thresholds used on different paths
are very likely to differ. Moreover, the number of possible
thresholds equals the number of training examples. These ideas
often increase the accuracy of the tree but they reduce its
comprehensibility.

In the ID3 algorithm, the recursive tree building can be
described as follows:

1) Compute the information content in a node N,

1C|
In==7 pi log(el) (M
k=1
where C is the set of all possible output classes, and pf
is the probability —estimated from data- that an example
found present in the node has a given classification & €
[

2) For each remaining input attribute a; —previously unused
on the path to N-, compute the information gain, G,
based on using this attribute to split the node & as,

|D:

Gile_Z'wj'IN, @
i=1

where D); denotes the set of categories associated to a;,
Iy, is the information content within the 7t child of

Fig. 1. Node expansion during the tree growing

N, and w; is the proportion of examples in node N that
satisfies the condition leading to N;.

3) Expand the node using the attribute which maximizes

the gain.

The recursive partitioning method often leads to very com-
plex tree structures that ‘overfit the data’, often showing a
poor generalization (test) performance. One of the challenges
in decision tree induction is to develop algorithms that produce
decision trees of small size and depth, while being stil}
accurate. To achieve that, praning algorithms are used either
during the construction (prepruning) ~for instance establishing
a set of stopping rules to avoid the growth of worthless
branches with respect to prediction accuracy—, or after the tree
has been constructed (postpruning). In both cases the idea is
to remove branches with little statistical significance.

B. Fuzzy decision trees

Fuzzy decision trees (FDT) [11] aim at achieving high
comprehensibility, normally attributed to 1D3, with the ability
to manage imprecise and vague information attributed to fuzzy
SyStems.

While ID3 is based on classical crisp sets, so an example
satisfies exactly one of the possible conditions out of a
node, in FDT, in turn, an example can maich more than
one condition, for these conditions are now fuzzy restrictions
based on fuzzy sets. Because of that, a given example can
fall into many children nodes of a node and consequently
into more than one leaf (inconsistency) with some degree of
membership g € [0, 1]. Far from being a problem, this fact is
actually advantageous, especially when dealing with noisy or
incomplete information [12].

The tree-building routine follows that of ID3. In particular,
the difference lies in the way the probabilities p,’:' are esti-
mated.

Let's denote py(e) as the accumulated membership for
example e at the node N this accumulated membership is
computed by applying a defined r-norm, A, through ali the
fuzzy conditions leading to the node N. Let also p4(e) be
the membership of example e to a fuzzy set A.

Clearly, proot{€) = 1, as all the examples completely
belong to the root node, and uy, () = pn{e)Apa,(e), where
Nj is the 50 child of IV, and A; is the fuzzy term associated
with the fuzzy restriction leading to node N; - see fig 1.
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Then, at node N the cardinality of the fuzzy linguistic class
k can be computed as ¥ » v (€) A g, (€). Given that, the
probability pf’, which now is a fuzzy measure of the fraction
of examples in the whole data set, E, that simultaneously
beleng to Cy and node NV, can be estimated as

> un(e) Apc,(e)
P = o ®
35 unle) Auc,,(e)
k'=leck

In the inference routine, when a new example e; =
(e;,...e;-l)T is presented for classification, we have to find
leaves whose restrictions are satisfied by the example, and
combine their decision into a single crisp response §. Trying
to cope with inconsistency a defuzzification method based on

the Weighted-Fuzzy-Mean [13] is applied,
i)
> urle)-S;
F=t= (4)

1L

Z pL(e) s
t=]

where L denotes the set of all the leaves of the tree, and S;
and s; reflect the information contained in a leaf

1<
Sio= dopkton e )
k=1
1C]
5= > Pt ©®)
k=1
where ¢ = 1,--.,{L], oy denotes the area and ¢ the

centroid of the fuzzy set Ck.

Considering all that, fuzzy decision trees have some advan-

tages with respect to the crisp ones:

« the ability to deal with fuzziness, the same in the input
attributes as in the output classes, which provides a richer
information about the case of study.

« the possibility of including prior knowledge about the
data set when designing the fuzzy partitions of the
attribute’s domains.

+ the information is presented in a very easy way for human
understanding.

III. VISUAL TOOLS AND METHODS
In this section, we describe some procedures that allow the

interaction of a human expert in the generation of a meaningful
fuzzy rule set.

A. The Self-Organizing Maps

The Self-Organizing Map (SOM) methed is a powerful
algorithm for the visualization of high-dimensional data [14].
The SOM may be described as a nonlinear, ordered, and
smooth mapping of high-dimensional input data domains onto

Fig. 2.

Example of visual information

the elements of a regular, low-dimensiona! (typically 2D)
rectangular grid (also called viswalization space). The map is
defined by a set of points (codebook vectors), my, in the input
space and a corresponding set of nodes in a rectangular grid
g;. The SOM training algorithm arranges the codebook vectors
m; so that they acquire the same geometry of the input data in
a smooth and ordered fashion. The mapping tends to preserve
topoiogical relationships of the input data,

Particularly insightful are the so called component planes.
The i* component plane is a 2D image built on the grid
by ¢onsidering each node (neuron) as a pixel with a color
level proportional to the value of the " coordinate of the
corresponding codebook vector, m;. So, there are always
n component planes available, each one corresponding to a
component of the high dimensional input space. The visual
information displayed in each plane is consistent with that of
the rest of the planes. Thus, the simple visualization of each
plane, provides the user with a big picture of the input values
distribution.

B. Visual information

Another useful visualization technique is the so called
reorderable matrix [15]. It is a suitable method to show the
overall appearance of the data as a whole and not so much the
individual guantitative values.

Here, a variation of this technique is proposed for visualizing
the information utility of the attributes.

» First, an index vector is defined corresponding to the
permutation generated by sorting one of the attributes in
ascending order.

+ Then, this index is applied to the attribute of interest; the
one that is represented.

These two steps are repeated for each of the attributes. The
objective is to observe if order in one attribute induces order
in the atiribute of interest. That reveals the meaningfulness of
the attribute.

In the example of fig. 2, the structure of two variables X and
Y is displayed in a scatter plot. In this case, if Y is the variable
of interest, X carries useful information to describe Y and it
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Fig. 3. Example of visual 1agging: component plane and histogram (top) and
fuzzy maps (bottom). In the fuzzy maps, dark gray represents high fulfillment
of the fuzzy restriction

can be clearly seen in the bottom right image, where Y is
ordered by X {Y|X). ¥ can be described in a vague way like
« when X is low, V is low
« when X is intermediate, Y is high
e when X is Aigh, ¥ is low
By contrast, if the variable of interest is X, the upper image
shows that V' is not useful to describe it.

This is a simple and effective way to reveal relations in the
set of data that takes advantage of the human visual system.

C. Visua! ragging

For building FDT, continuous attributes need to be parti-
tioned into several fuzzy sets prior to the tree induction. It
is a very important stage since the future structure of the
tree depends on it. The use of the SOM is proposed as an
insightful way to find collections of data that can be associated
meaningfully. As explained before, the SOM preservation of
topological relationships allows the visualization of clusters
and relationships between the data. Thus, component planes
constitute a powerful tool for discovering categories in the
data and therefore they can be a useful backing to design the
attribute’s fuzzy pantition,

By visual tagging, prior knowledge is used to jabel just
the interesting clusters shown in the component planes in a
rather simple way. The procedure consists of picking single
elements (nodes of the map) that are representative of each
of the fuzzy sets that set up the frame of cognition. The
minimum and maximum values of the nodes labeled with a
number ¢ in the j** component plane, delimit the flat zone of
the i** trapezoidal membership function asseciated to the 7
attribute. The overlapping width between these membership
functions is the required for having a fuzzy partition’ of the
domain. The use of fuzzy sets helps to alleviate problems with

"Let Q = {A1,+--Ag} be a family of fuzzy sets on (. Q is a fuzzy
partition of & when 2:21 Ay(a) =1, Ya € §
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Fig. 4. Example of visual rule post-pruning: fuzzy maps of the rules (left)
and consequent area cavered by this subset of rules {right)

the classification of the elements in cluster’s boundaries. Here,
a balance between precision and simplicity has to be achieved
by adjusting the level of specificity of the sets. High specificity
usually yields accurate but meaningless set of rules.

To illustrate this, in fig. 3, a labeled component plane is
shown with the family of membership functions generated by
visual tagging and the histogram of the variable. The final
domain partition can also be seen in the fuzzy maps [16] as
a result of linguistic filtering [17]. The codebook vectors of
SOM are filtered by each of the fuzzy sets obtaining the values
of membership of each node of the SOM to the associated
fuzzy term. As a result, color maps showing up these values
are displayed in the same way as component planes.

D. Visual rule post-pruning

A decision tree can be rewritten to a collection of rules
and there would be one rule for every leaf. The conditions
leading to the leaf generate the comjunctive antecedent, and
the classification of the examples of the leaf generates the
consequent.

Once the fuzzy rule set is obtained, we must aitempt to find
irrelevant rules which can be deleted without affecting the rel-
evance of the model constructed. Because of the inconsistency
problem, rules has a disjunctive consequent so the set of all
ryles is divided into subsets that concern the same conseguent
category. Obviously, the same rule can belong to more than
one subset with different degrees of membership. For each of
these subsets, the related rules performance is summarized in
fuzzy maps.

Fig. 4, shows the fuzzy maps of the four rules that make
up the rule subset concerning one of the possible categories
(high) of a consequent attribute (output). In the fuzzy maps of
the rules, different gray intensities show different fulfillment
degrees of the nodes to each rule antecedent (constituted by
several fuzzy restrictions). The fuzzy map of the consequent
is computed filtering the nodes of the consequent component
plane by the fuzzy category covered by the rule subset under
study. The worth of each rule in the subset is assessed just
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Fig. 5. Experimental test rig

loeking into the maps:

» the covering of a rule, that is the number of cases (fuzzy
count) that satisfies the rule’s antecedent conditions. This
is shown in the fuzzy map of the rule by the size of the
colored zone.

e the accuracy of a rule is measured by the amount of
gray pixels in the fuzzy map that are also colored in the
consequent map filtered by the linguistic term covered by
the rule subset.

o the weight of a rule within the subset is indicated by
the intensity of the pixels. The more intensity, the more
fulfillment of the colored nodes values to the rule. Then,
the rule 3 in fig. 4 has a very little weight in the subset
and does not make any new contribution to the subset as
a whole so it can be removed.

All this makes up a powerful visual approach for fuzzy rule
post-pruning.

[V. RESULTS

The proposed approaches were tested through an experiment
carried out on a 4 kW, 2 pole-pair asynchronous motor -
see fig 5. Two kind of faults were induced to the motor:
an electrical fault consisting of a power supply unbalance,
provoked by the inclusion of a variable resistance on the phase
R and a mechanical fault provoked by the presence of an
asymmetric mass on the axis, Both types of faults produce
different vibration patterns. Five sensors were instalied in the
_ motor: three vibration accelerometers and one current sensor

ac(t), aa:(t): ay(t): iﬂ(t)'

Feature extraction was performed obtaining the harmonic
content of these variables at 25Hz and 100Hz in the vibration
accelerometers and at 50Hz in the current. A training set was
composed of data from the four possible situations combining
the electrical fault (R = 0Q, R = oof}) and the mechanical
fault (with and without the asymmetric mass). The objective
is the identification of the seven different states shown in table
I using the signals provided by sensors.

TABLE [

N@ || State label || Resistance(f2) || Mass
i M-faule 0 Yes
2 ME-fault oo Yes
3 No-fault ¢ No
4 E-faults 5 No
5 E-fault10 10 No
6 E-faultls 15 No
7 E-fault20 20 No

State | acg@25Hz 1

State | ac@100Hz

giE
.
State | ax@®100Hz
State [ By@25Hz
Stats | ay@160Hz

State | Is@50Hz

Fig. 6. Visual information about stare provided by the attributes

1) Visual information: Fig. 6, represents the visual

information about the attribute of interest, srate, provided by
the rest of the atwibutes, Thus, the srate values have been
ordered by each of the other attributes and displayed by rows
in a gray scaled color matrix.
The attribute that best describes the state is ax@100Hz. It
is clearly seen how the ordination of this attribute induces
ordination in the atiribute of interest. Therefore, ax@/00Hz
is the most meaningful auribute in the data set and it will be
the one seiected by the recursive tree-building algorithm to
split the first node.

2) Visual tagging: Discretization in terms of fuzzy sets is
casily done with the insightful data representation provided
by the component planes shown in fig. 7.

3} Visual rule post-pruning: After training, we obtain a tree
of 33 nodes. Then, we apply the C4.5 enhanced pessimistic

ac@25Hz ac@100Hz ax@25Hz . ax@100Hz

1
t

ay@100Hz

. _is@50Hz
et i

1
B
6§
4
2

Fig. 7. Labeled component pianes
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RULE 2 IF ax@100Hz is medium THEN state is E-fault10

RULE 3: {F ax@100Hz is very high THEN state is ME-fault

RULE 4: IF ax@100Hz is very-low AND ax@25Hz is low THEN state is No-fault
RULE &. IF ax@100Hz is very-low AND ax@25Hz is high THEN state is M-fault
RULE §: |IF ax@100Hz is high AND ac@25Hz is low THEN state is £-fauit20
RULE 7:
RULE 8:

i c@ j25Hz
high]  very high

is@|50Hz a
lo hig
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high
16 |
Lo

‘ ay@ 25Hz

1F ax@100Hz is medium-high AND is@50Hz is high AND ac@100Hz is medium THEN state is Efault10 or E4aut1s
IF ax@100Hz is medium-high AND is@50Hz is very high AND ac@25Hz is fow THEN siate is E-fauit15

RULE 9 iF ax@100Hz is high AND ac@25Hz is high AND ac@100Hz is high AND ay@25Hz is high THEN state is ME-fault

Fig. 8.

post-pruning process [10] to obtain a pruned tree of 17 nodes
without any reduction of the predicted error rate,

The final results are presented in fig. 8, A tree structure
using fuzzy maps to represent the nodes shows the evolution
of the partitioning of the original data set in terms of fuzzy
regions through the branches of the tree. The decision-making
inference procedure matches the new data values with the
conditions associated to these regions and classifies the new
data element. The result of this process is shown in the inferred
map of the variable of interest where it is seen how the
objective of identifying the different working states is achieved
by the induced tree. We also show the set of fuzzy rules
extracted from the tree in a textual form.

Despite its good inference performance, this tree structure
has several nedes in which the covered area describes bound-
aries between the clusters and it has very little specific weight,
shown by their low gray intensity. Using this visualization we
can easily prune these nodes that have little significance for
process understanding. As it can be seen in fig. 9, the result
is a smaller tree describing just the interesting zones with an
acceptable level of accuracy, as shown by the inferred map. All
this leads to a simpler, more understandable and meaningful

Before visnal post-pruning

set of rules that describe the process.

V. CONCLUSION

In this paper we have proposed a novel approach to devise
linguistic models of process from data using visual techniques
to achieve a good compromise between accuracy and insight-
fulness. The key idea here is to involve the human in the
design process of the linguistic model in two main fronts.
First, through an interactive selection of the fuzzy sets, which
are the “bricks” for building the model; and later, using SOM
fuzzy maps to visualize the rules previously obtained in an
automated way (FDT) helps in the postpruning process in
order to simplify the model with a minimal loss of accuracy.

We have also shown the effectiveness of the proposed ideas
through a real problem involving the analysis of vibration
and current data from rotating machinery under different fault
conditions.

In sum, we believe that visual approaches like that proposed
in this paper reveal themselves as powerful ways to stress
the role of prior knowledge as well as subjective aspects like
common sense, simplicity, insightfulness or comprehensibility
in the design process of a model.
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Fig. 9. After visual post-pruning
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