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Abstract-Fuzzy modeling of complex systems is a challenging
topic. This paper proposes an effective approach to data-based
fuzzy optimizing fuzzy system structure and parameters. For this
purpose, we cope with fuzzy clustering based on inclusion concept
where the rule-base has to be simplified. This simplification occurs
in the sense that similar Membership Functions (MF) pertaining
to the premise of fuzzy rule-base are merged and replaced by ene
common MF, capturing the meaning of the former. Reduction of
the total number of fuzzy sets improves semantic interpretation
and reduces the demand on memory in implementation context.
So, we propose an extended algorithm based on the class of fuzzy
clustering method and on an inclusion concept proposed by Nefti
and al {11], which is characterized by an inclusion index. During
the optimization, the redundant rules are deleted. Finally,
interpretability of the fuzzy system is improved. Te show the
effectiveness of the proposed algorithm, a comparative study of
the obtained simulation results with a conventional algorithm
based on the class of fuzzy C-means method introduced by Bezdek
FCM is presented by a numerical example, which computes a
MISO architecture. )

Keywords: Fuzzy systems, Clustering, Inclusion index, Complexity
reduction.

I. INTRODUCTION

The number of parameters is one of the main concerns for
fuzzy systems control, especially when it is desired to increase
the number of inputs and rules, since for standard fuzzy system
the number of parameters increases when the number of inputs
or rules is increased, and computational complexity increases
accordingly. Thus, the rule-base will suffer from redundancy
and conflicts of data, most of which are less useful. This
redundancy is often present in the form of similar membership
functions MF in the premise of the resulting rule-base. Such
similarity within fuzzy sets rtender difficult to attach
qualitatively meaningful linguistic labels to the different MF.
The high number of MF makes difficult to obtain the meaning
of the model, and thus the working of system at hand. A
semantically unclear model is not easily verified after design
phase for the model. Consequently, a simplification phase
allowing the elimination of redundancy is required. Different
approaches using fuzzy clustering algorithms have been
proposed to solve the rule explosion problem. In the earlier
works, rule reduction in fuzzy systems have been, mainly,
attempted via a variety of clustering techniques [1][7], in an
effort to select only those rules that contribute the most to the
inference outcome. For this purpose, we cope with fuzzy
clustering [14] based on inclusion concept [11] where the rule-
base has to be simplified. This simplification occurs in the
sense that similar MF pertaining to the premise of fuzzy rule-
base are merged and replaced by one common MF, capturing
the meaning of the former. Reduction of the total number of
fuzzy sets improves semantic interpretation and reduces the
demand on memory in implementation context. So, we propose
an algorithm based on the class of fuzzy clustering method
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introduced by Bezdek (3] and on inclusion concept introduced
by Nefti [11], which is characterized by an inclusion index Ed
[2]{4][6]. In what follows, a Multi-Inputs/Single-Output
(MISO) fuzzy system (FS) architecture is presented and the
influence of the parameters number is discussed in Section 2
and 3, followed by presentation of the proposed fuzzy c-means
algorithm for the optimization in Section 4. In Section 5, a
comparative study of the preposed algorithm and the
conventional FCM [3] is presented to show the effectiveness of
the approach. Finally, the conclusion is presented in Section 6.

II. Fuzzy SYSTEM ARCHITECTURE AND PARAMETERS SIZE

In this section, the architecture of a FS is presented to
illustrate the effects of the parameters number. The architecture
illustrated on Fig.1 represents a single MISO module, which is
considered as a FS built from four-layer feed-forward network.
Each fuzzy module takes the antecedents X, at its inputs and
produces a new action y,, where k = 1..., n, with n, number of
inputs.

2° fayer A™ layer

3% layer

Fig. 1. MISO architecture of the fuzzy system.

As in ANFIS model, this architecture implements rules of the
following form [15] :

R IFX is Ay and .. and X, is Ay then yi = X, ., Xo)

Where X; and y, represent respectively the input and the output
variables, and A the fuzzy sets.

The FS design passes by the partitioning of each input/output
variable space in several fuzzy sub-sets (grid or free partition).
Firstly, the Gaussian MF are chosen and a free partition is
applied to the universe of discourse. From some observations of
X, the fuzzy inference consequence y; obtained by simplified
fuzzy reasoning method. The membership functions for each
input variable, X, can be written as follows:

; 1
A,-(f‘) = S{-(f)(Xi) = exp[— E((X:' *"'fj)/ffy')Z]

The inputs/output relationships are given by [14]:

M
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where AF; is the input variable, m; and o the i mean and
standard deviation respectively of the 7 rule.

When defining a FS, one can either use some of the input MF
or all possible combinations of the input MF to construct the
rule base. In this case, the number of parameters M grows
exponentizlly by the growth in the number of inputs or number
of rules. From (2) and Fig.1, the number of parameters, which
can be, tuned is:

M;=({n+1}R 3)
Where [ is the number of MF parameters, n is the number of
inputs, R is the number of MF for each input variable, which is
equal, to the number of consequent parts. In this case and
according to Fig. 1, the rules number R can be represented as:

—
=1

Where A, is the number of MF in the 7" universe of discourse.
Clearly, for either large # or R, My can be very large and there is
an exponential increase in the number of parameters for
additional inputs leading to the curse of dimensionality. This is
usual the case in fuzzy control applications [12]. In the next
section, we will focus on how to reduce the number of
parameters needed to define the FS.

[II. BACKGROUND

1S

Let Py = [my, ;] be the MF parameters associated to input
variable x; obtained afier the parameter learning phase. The aim
of the fuzzy clustering algorithm is to determine an optimal
clusters set {v;}, where v, = [m;, 1], in order to replace the old
fuzzy partition {Py} by the new one {v} according to the
minimization of the following objective function {3]:

M c
JEm =3 () Py

)
i=lk=1
With respect to constraints (6) and (7) :
Z Ha=1,Y =1, ., n 6)
k=1
> >0Vl . c (N

fm]

Where M, ¢ and m are respectively the number of data i=(l,..,
Af), the number of clusters initialized randomly and a weighting
exponent which determines the fuzziness of the clusters
(me[l,+oo]). d(Pyv) represents the distance measure between
P, and the prototype v;, defined as:

APy = (Py— v A; { Py—vi) (8

Where 4; is a positive defined symmetric matrix. The choice of
the matrix 4; induces a proper kind of distance interpretation,
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and consequently generates its own meaning of cluster shape.
For instance, if 4; is the identity matrix, d(Py,vy) corresponds to
Euclidean distance and, roughly, it induces spherical clusters.
The variants of objective-based fuzzy clustering are numerous.
These generalizations deal with various shapes of clusters.
Gustafson and Kessel [6] have focused on the case where the
matrix 4; is fixed for each cluster j, while the determinant of
cach matrix A;, which stands for the volume of the cluster, is
globally preserved. This allows to detect more sophisticated
shape clusters. Bezdek [2] has investigated the case where one
of the eigenvectors of the matrix 4, are maximized. This allows
the detection of linear clusters like lines or hyper-plans. Dave
[4] has investigated special formulation of the objective
function J¥™ that yields a better description of circular shape.
Also, Krishnapuram and Keller [10] investigated another
formulation of J¥™ such that the membership matrix is seen as
the distance from ideal prototype instead of being a degree of
share of the unit value between all existing clusters, as the
initial formulation does. This means that both the formulation
of the matrix 4; and the objective function are not completely
fixed and some flexibility is allowed. Kaymak [9] has studied
the influence of the clusters number in the data and the problem
of initialization, which must be appropriately for convergence
to acceptable solutions and for finding all interesting clusters
including the one small in size. For this purpose, he proposed
an extended approach of fuzzy c-means to determinate an
appropriate number of clusters by considering a volume
prototype. In the present study, we are interested in a particular
probler where some data are collapsed into others. The aim is
to solve this collapse problem under another aspect as inclusion
concept. The idea developed in this paper is somewhat similar
to search for an inclusion concept hidden in the distance one.
This allows for taking account for the inclusion only in global
sense. A rational criteria that take account for an inclusion
concept is used. In the second part, is to model how the
distributions are included each other.

IV.EXTENDED Fuzzy CLUSTERING ALGORITHM
A Inclusion Index Construction
Let us denote by G the Gaussian distribution characterized by

_[m,ol. In general, 97% of the information supplied by the

distribution is concentrated into the interval (m-3o , m+30].
IAGy,Gy) stands for the degree of inclusion of the Gaussian

-(mj, o) in (my, o), and characterized by the surface formed by

the intersection of G, and Gy, (G;Gy) (Fig. 2).

Clearly, asserting that Id should depend on the following
parameters, (m;-m,) and 3.(oyt o).

a A X:)

GG

milop mprli kY

Fig. 2. Fuzzy set overlapping.

One can show that the inclusion index is given by [11][14]:
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It’s easily checked that [{G;,Gy) is non-increasing with respect
to {my — my) (Fig.3 a) and to 3.(g+oy) (Fig.3 b), one may
determine its derivative with respect to (m, —my) :

ar,

6lmk —m,_-,-l

—exp(—3(0',-j +oy )) £0 Voyand Yoy

On the other hand, the factor 1 in 1—|m,-j- —mkl-exp(—}(o;-j +oy ))

" allows to preserve the positive ness of the value of f{G;;,Gy).
The second term of fy (I{G;,G) = 0) is used to avoid the
inverse inclusion of the fuzzy sets.

Fig. 3. Inclusion index evolution.

B.  Formulation of the extended Fuzzy Clustering Algorithm

The new clustering algorithm is an extension of the proposed
algorithm [11] where the distance concept defined by (10) can
be considered as an inclusion concept [11]{14]. It can be
formulated as follows:

£ (4

> [P =Y [1dGGIT

k=1 k=l
¥ ie[1,n] and je[1,M], from (9) and (10), we have ;

(10)

C c
D @ 4@ =Y, (U m & DY)
k=1 k=1
Consider a new representation of the Gaussian parameters, so
that, Pij(1) = mij , P{i(2) = oij , vk(1) = mij and vk (2) = aij,
and a new quadrati¢ formulation of (11). Let us denote by Bl
.. 1
and B2 two matrix, where Bl:[o g] and Bf[g ?J Then,

(11) can be formulated as follows:

D (P AP -
k=1

c
D -2 D). (3. P+ )8y -
<1
(4
1P v 8 1P e xe(—6.4P, PPy B = 0 (12)
k=1
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Leading to an equality constraint to the optimization problem,
so the non-linear optimization problem (P,) can be written as:

{Minimize T G 4;,v),under constraint:

: 13
' &y, A5, ) =0,Vrel =(i,.,n) (13
In our case, two constraints are considered (=1,2):
C . ’
gl Y, mu—1=0,Vi=12, n (14)

k=1

g Ay Y, (P A (Pivi) -
k=1

[4

3 0-20P 3PP P).By) -

k=1

[

> PO BUP ~u ) e 6P Pn ). BY=0 (15)

k=]
The second constraint g, can be considered as a bridge between
the inclusion concept and the distance concept, which is
necessary for the fuzzy clustenng formulation. Using a dual
methods, the (P;) is transformed into a min-max problem by
introducing the Lagrange parameter vector A, so that:

2

LG Avind) = ™ v + > AT g bty (16)
r=1

The optimal parameters are obtained by setting the derivative of

Lagrangian according to each of its parameters Py = [, Ay, vio

A1, A7] to zero, so that:

aL(‘uk‘-,Aj,Vk,ﬂ.l,iz) _
o,

For details on calcuiation refer to [5].

o an

1} Extended fuzzy C-means algorithm steps: The proposed
fuzzy clustering algorithm can be summarized by the following
steps

Given a data P,, choose the initial number of clusters 1<¢™<M,
the fuzziness parameter m (m=2) and the termination criterion
£>0, Initialize U"=[14{"] (eg. Random), and let ay=1.05 and
(12=0,95.

Loop _
1. Compute a new clusters centers vy:

i(}ukr‘ y By

=l

i (ﬂki )m

2. Compute the matrix 4, so that:

c 2
) 31208 -wlp® —u,,“)[B}|P,j‘”—v;,“’|.cxp(—6.(3j' )_Vk(l))]'gz
= k=1

c

Z("b‘ (7 —n)

=

Vi ,Vk=1,.,¢c

The IEEE International Conference on Fuzzy Systems



3. Update the partition mafrix'
)ula_
WFZ}—————

( "k}A
=G fo)A( Vi)

4. Compute the criteria J¥™, so that :

Jem = ZZ (ad" Py 4Py
i=1 k=1
If ™ <& go 1o step 5.
else go to step 1.
5. Verify the rule-base property.

C
i) ) <a,vi=l, . M
T

c=c—1, and go to step 1.

c
elseif D () > @, Y i=l, ., M
I=|

c=c¢+1,
else STOP
End of Loop (STOP)

The algorithm proposed above is an extension of the fuzzy
inclusion algorithm proposed by Nefti [11] and based on
classical FCM, where the relationship between the cluster
prototype and each datum is rather described in terms of
inclusion relation instead of reasoning in terms of distance. The
key issue in the proposal is to let the matrix 4; be fixed only for
a given cluster. While its determination assumes that, for a
given cluster, the amount of distances from the prototype to
each datum is the same as the amount of inclusions of each
datum into that cluster prototype according to the elaborated
inclusion index. This method, as it is the case for all other fuzzy
clustering algorithins, is an optimization-based approach.

and go to step 1.

V. NUMERICAL EXAMPLE

In order to illustrate the validity of the proposed algorithm,
we consider a2 MISO FS architecture presented in Fig.1, with
two inputs {X;, X) and one output y;. The set of MF associated
to each input variable includes 8 MF, randomly initialized, and
four initial clusters number. By ensuring a parameters learning
algorithm, an optimal structure of the FS is generated. The
contribution of each input variable in the overall fuzzy rules is
represented by 8 fuzzy sets, Due to the MF overlapping, the
proposed fuzzy c-means algorithm is used to reduce the MF
number and optimize the fuzzy rule base. Fig.4 and Fig.5 give
the optimal clusters within initial MF obtained after the
application of the proposed algorithm (E-FCM) and the
conventional one (C-FCM).

MF associared to Input X, MF associated o Input X;

770 N P 08 [LE DV
0.8 /’/\/ \ 4 0.8 / Sﬁ%{\"’
AL S

0.2 ///'\J\ \\‘X 0.2 Z \"
OZ:"‘ ] 0‘/ RN

Universe of discours X, Universe of disconrs X,

Fig. 4. Generated clusters with E-FCM algorithm.
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MF associated to input X, MF associared o input X3
=

o1a o 013 7
s RN o8 RN
' VAN NELANS

SN A
0 1 2 3 o 1 2 3

Universe of discourse X, Universe of discourse X;

Fig. 5. Generated clusters with C-FCM algorithm.

According to the form of the rule presented above, the
generated rules R’ are given by:

! M X, is( 1.1387,0.5490) and X; is ( 0.0027 , 0.0009)
then y; s 0.1585 ’

R IfX;is( 06365, 1.0305 ) and X; is { 0.0014 , 0.0022)
then y; is 0.0074

F: o If X;is (05021,
then y, is 0.09%7

R IfX is( 03214 116I2)andles(00008 0.0032)
then y; is 0.4907

5L If X, is ( 25.7626 ,3117.1 ) and X; is ( 3.1084 , 0.0033)
then y; is 0.1926

¢ 1 X, is (450.5010 , 0.9603 ) and X, is ( 0.0009 , 0.0018)
thenyk is 0.5173

M X;is( 0.7556,0.6791 ) and X, is ( 0.0007 , 0.0005)
then i 18 0.1436

‘M X is( 4.4532,0.7902 ) and X; is ( 0.3501 , 0.0009)
then i is 0.8432

As an illustrations, Fig.6 and Fig.7 respectively show a plane
distribution of the optimizing datum using the proposed
clustering algorithm E-FCM and the conventional one C-FCM,
where (s) represents the cluster center and (+) represents the
optimized damm.

1.1745 ) and X; is { 0.0002 , 0.0157)

MF associgted to Input X,
30 means M{,

MF associated to Input X
.4 means my

25

20 Reddndant Pdinfs /
15

10

5,/ tooo 2000 3000, 4000

radius @

Fig. 6. MF plane distribution wnh E-FCM algorithm.

MF assaciated to {nput X; MF associated to Input X
mears m, means m;

30 141,
L ’

20 / g ] }
Redundamfg/ T N
. ) T .

-] 8

o N
%] 1000 2000 3000, 4000 o . 5 10 15
radius o,

20
rodius ay

Fig. 7. MF plane distribution with C-FCM algorithm.

10 15 20
radius oy

This representation gives a better idea about the clusters
number to optimize. As we can we see, on Fig.6 and Fig.7,
there exit two redundant points in the numerous optimizing
data, which can be regarded as an inconsistency with the trends
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of the FS (Fig.1). These points are removed from the original
data, because there does not exist a cluster center around any
redundant datum. The circles define the clusters. They include
fuzzy sub-sets, which have the highest membership degrees to
the considered clusters centers. Thus, we see that the
application of the inclusion based clustering algorithm and the
conventional FCM give, for each input variable, four classes of
MF that ensure the initial optimization problem. Such classes
are given by: “

Clusters generated with E-FCM algorithm

For X, :Cly = [0.502,0.225] and C2y, = [1.149,2.895]
For X, : Clgs=[1.096,2.911] and C2x, = [0.690,1.052]
Clusters generated with C-FCM algorithm _

ForX; :Clx =[0.72,0.54] and C2yx, =[1.15 , 2.95]
For X; :Cly, =[1.163.01] and C2y =[0.72,1.10)]

The learning error during clustering for E-FCM and C-FCM
algorithms, associated for each input variable of the FS, is
shown in Fig.8 and Fig.9.

T for Inpur variable X;

JY™ for Input variabie X,
40 1.5

30}

10
\ .

L] a
o 20 40 80 0 50 100 150

Epachs Epochg

Fig. 8. Clustering error with E-FCM algorithm.

S for Input variahle X, S for Input variabie X:

45 I 45
Al a
13 ER]

\ \
3 3

AY AY
23 25
z AY 2 3\
ik} - T4
1 \ 1 \\
5 5

§o 20 EEELIEL] &b 70 80 %8 20 30 40 30 &0
achy

Fig. 9. Clustering error with C-FCM algorithm

As shown on Fig.8, using E-FCM algorithm, 02 clusters are
generated after 5 iterations for the input variable X; and 10
iterations for the second one X, with convergence error
respectively 0.0024 and 0.0040. In the case of the conventional
FCM algorithm, starting with four initial clusters, 02 classes are
created after 50 iterations for each input variable X, and X. The
convergence error is (.85 for the input variable X; and 0.911 for
the second one (Fig.9).

9 g0
Epochy

Tab.l and Tab.2 illustrate respectively the generated matrix
U={44,], for each input variable, using the proposed algorithm
E-FCM and the C-FCM algorithm. As we can see, only six
fuzzy sub-sets are represented for the input variable X, because
two redundant points are removed from the optimizing datum.
These tables, ensure the inclusion of the initial MF set in the
clusters set. For example, in Tab.1, the fuzzy sub-set SF,* is
closer to the first cluster, which is given by the highest degree
(0.9992), than to the second_one. For the second input variable
X, the fuzzy sub-set SFY®, which is closer to the second
cluster with the highest degree (0.9498), than the first one.
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Using the conventional clustering algorithm (Tab.2), the fuzzy
sub-set SF,/ is closer to the second cluster, which 1s given by
the highest degree (0.9681), than to the first one. For second
input variable X2, the fuzzy sub-set SF,*®, which is closer to the
second cluster with the highest degree (0.9999), than the first
one. As we can see in Tab.2, the fuzzy rule-base consistency
and completude property are not respected using the
conventional FCM algorithm. As a matter of fact, the
constraints defined in (6) and (7) are not assured and the
obtained results, for example in the fuzzy sub-set SF,®,
corresponding to the first input X, approve it.

TABLEI
GENERATED PARTITIONS WITH E-FCM ALGORITHM
fnput variable X, fngusvariable X,
1 lXr) anl o) HidXs) PR
5F,M 10000 ©.0000 sF;™ 0.9539 00461
SF, 09996 9.0004 SF,W 0.444) 05558
SF ™ 09994 9.0005 Had 2.0167 69833
. Tr SF, ™ 00376 0.9624
el ey
SF, 0.9996 I ounm“ SFy™ 0.7043 02957
sF, ™ 0.9904 00036
sF,® 09937 "'"“‘3’_‘
TABLE I
GENERATED PARTITIONS WITH C-FCM ALGORITHM
Inputvariable X, Input variable X,
Ak 1) 2K} Anik ) Al )
SF 0.9188 0.0025 L 0.0128 0.9852
SF, @ 0.9982 .0841 F0 0.0027 0.9969
. ERY T gaggy F e %07y sE 0.0.65 | 09734
SF M 0.0158 0.8312 SF 0.9883 0.00462
SF 0.0001 0.9951 SF: 0.3378 0.5070
LSRR paeiy. | 89681 || L. ar RN
sF: 0.0260
sF 0.9584

C. Interpretability and Fuzzy Labeling

In this section, we consider only the obtained results with E-
FCM algorithm. Once the clusters are generated, the semantic
interpretation and reducing the demand on memory in
implementation is improved. In this case, labeling is an
important phase. It consists of attributing for each generated
cluster a linguistic label. Consider S and B, respectively the
symbolic values designing Small and Big. If we attribute a label
§ to the clusters C1,, and Cly, and label B to the clusters C2,,
and C2y;, we obtain, for each input variable:

- 02 clusters for variable X Clyn—>S and €2y, — B
- 02 clusters for variable X;: C1,,—> S and C2,,— B

We note that the same labels attributed to each input variable X;
and X, are not especially identical. For example, the label S
associated to X, is not the same to the label S associated to X,
Fig.10 illustrates the fuzzy labels attribution for each generated
cluster. As an example, for a set of three fuzzy rules, the new
rule Base will be written as follow:

R' IfX, is Band X, is S
R’ IfX, is Sand X, is B
R . UX is Band X, is B

then y, is 0.1585
then y, is 0.0074
then y, is 0.0997

The IEEE Intemational Conference on Fuzzy Systems
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Fig. 10. Fuzzy labels attribution.

Tab.3 shows the performances between the proposed FCM
algorithm (E-FCM) and the conventicnal algorithm (C-FCM)
before and after clustering.

TABLE 111
CLUSTERING COMPARATIVE RESULTS
E-FCM C-FCM
algorithm algarithe
Before clustering 16 16
Fuzzy sets nember
After clustering 04 04
Before clustering 40 40
Paramelers number
After clustering 10 10
Before clustering 08 08
Nuomber of rules
After clustermg 02 02
X, 0.0024 0.85
Convergence behavior
X> 0.0040 0.911
Convergence Errar in term Xy 5 50
of number of epochs X, 0 50
Initial knowledge Not required Required
Parameters initialization (clusters number, Randomly Minimum
centers. ..} knowledge
Rule:base completude property and Respected Not
consistency respected

We can see that the proposed fuzzy clustering algorithm gives
better performances than the conventional one. Using E-FCM
algorithm with random initialization of classes number, 02
clusters are generated after 5 iterations for the input variable X;
and 10 iterations for the second one X,, with a convergence
error respectively 0.0024 and 0.0040. In the case of the
conventional FCM algorithm, starting with four initial clusters
number, 02 clusters are created after 50 iterations for each input
variable X, and X,. The convergence error is 0.85 for the input
variable X; and 0,911 for the second on. Thus, the gains values
on convergence speed obtained by E-FCM algorithm compared
to classical one C-FCM are 10 for input variable X; and 5 for
the second variable X;. The convergence error results show,
also, the accuracy of E-FCM algorithm compared to C-FCM
algorithm. Opposite to conventional fuzzy clustering algorithm,
the proposed algorithm doesn’t require any initial knowledge
on clusters number to be identified and on the distribution of alt
the optimizing datum only, but also the fuzzy rule-base
consistency and completude property are respected.

VI. CONCLUSION

In this .paper an extended fuzzy c-means algorithm is
proposed. The extension consists of the use of spherical cluster
prototypes and considering a new clustering aspect based
inclusion concept. An inclusion index, then, has been proposed
to model the degree of inclusion between the different fuzzy
distributions. The optimization problem is based on some
relationship between the inclusion and the distance paradigms
that takes account for the inclusion only in global sense. In this
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way, a compact and interpretable FS can be obtained for
complex systems. Through structure optimization, the
relationship between the inputs and the output can also be
revealed, which is very important for understanding an
unknown system. The effectiveness of the proposed algorithm
is shown by & numerical example.
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