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Abshocr-Fuzzy modeling of complex systems is a challenging 
topic. This paper proposes an effective approach to data-based 
fuzzy optimizing fuzzy system structure and parameters. For this 
purpose, we cope with fuzzy clustering based on inclusion concept 
where the rule-base bas to be simplified. This simplification occurs 
in the sense that similar Membership Functions (MF) pertaining 
to the premise of fuzzy rule-base are merged and replaced by one 
common MF, capturing the meaning of the former. Reduction of 
the total number of fuzzy sets improves semantic interpretation 
and reduces the demand on memory in implementation context. 
So, we propose an extended algorithm based on the class of furZj. 
clustering method and on an inclusion concept proposed by Nefti 
and al 1111, which is characterized by an inclusion index. During 
the optimization, the redundant rules are deleted. Finally, 
interpretability of the fuzzy system is improved. To show the 
effectiveness of the proposed algorithm, a Comparative study of 
the obtained simulation results with a conventional algorithm 
based on the class of f u n v  C-means method introduced bv Bezdek 
FCM is presented by a numerical example, which computes a 
MISO architecture. 
Keywords: Fuzzy systems, Clustering, Inclusion index, Complexity 
reduction. 

1. INTRODUCTION 
The number of parameters is one of the main concerns for 

fuzzy systems control, especially when it is desired to increase 
the number of inputs and rules, since for standard fuzzy system 
the number of parameters increases when the number of inputs 
or rules is increased, and computational complexity increases 
accordingly. Thus, the rule-base will suffer from redundancy 
and conflicts of data, most of which are less useful. This 
redundancy is often present in the form of similar membership 
functions MF in the premise of the resulting rule-base. Such 
similarity within fuzzy sets render difficult to attach 
qualitatively meaningful linguistic labels to the different MF. 
The high number of MF makes difficult to obtain the meaning 
of the model, and thus the working of system at hand. A 
semantically unclear model is not easily verified after design 
phase for the model. Consequently, a simplification phase 
allowing the elimination of redundancy is required. Different 
approaches using fuzzy clustering algorithms have been 
proposed to solve the rule explosion problem. In the earlier 
works, rule reduction in fuzzy systems have been, mainly, 
attempted via a variety of clustering techniques [1][7], in an 
effort to select only those rules that contribute the most to the 
inference outcome. For this purpose, we cope with fuzzy 
clustering [I41 based on inclusion concept [ I  I ]  where the rule- 
base has to be simplified. This simplification occurs in the 
sense that similar MF pertaining to the premise of fuzzy rule- 
base are merged and replaced by one common MF, capturing 
the meaning of the former. Reduction of the total number of 
fuzzy sets improves semantic interpretation and reduces the 
demand on memory in implementation context. So, we propose 
an algorithm based on the class of fuzzy clustering method 

introduced by Bezdek [3] and on inclusion concept introduced 
by Nefti [ I  I] ,  which is characterized by an inclusion index Id 
[2][4][6]. In what follows, a Multi-Inputs/Single-Output 
(MISO) fuzzy system (FS) architechre is presented and the 
influence of the parameters number is discussed in Section 2 
and 3, followed by presentation of the proposed fuzzy c-means 
algorithm for the optimization in Section 4. In Section 5, a 
comparative study of the proposed algorithm and the 
conventional FCM [3] is presented to show the effectiveness of 
the approach. Finally, the conclusion is presented in Section 6. 

11. FUZZY SYSTEM ARCHITECTURE AND PARAMETERS SEE 

In this section, the architecture of a FS is presented to 
illustrate the effects of the parameters number. The architecture 
illustrated on Fig.1 represents a single MISO module, which is 
considered as a FS built from four-layer feed-forward network. 
Each fuzzy module takes the antecedents XI, at its inputs and 
produces a new action yk, where k = I, . . ,  n, with n, number of 
inputs. 

I., 2.1 ,.yr. A *  taycr  I '  

Fig. 1. MISO architecture ofthe fuzzy system. 

As in ANFlS model, this architecture implements rules of the 
following form [15] : 

Rj : IfX,  is AI/') and .. andX, is Any1 theny, = A X l ,  .., X,,) 
Where &. and yt represent respectively the input and the output 
variables, and At'g the fuzzy sets. 
The FS design passes by the partitioning of each inpuwoutput 
variable space in several fuzzy suh-sets (grid or kee partition). 
Firstly, the Gaussian MF are chosen and a free partition is 
applied to the universe of discourse. From some ohsewations of 
X,, the fuzzy inference consequence yk obtained by simplified 
fuzzy reasoning method. The membership functions for each 
input variable, Xj,  can be written as follows: 

The inputsloutput relationships are given by [14]: 
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and consequently generates its own meaning of cluster shape. 
For instance, ifA, is the identity matrix, d(P,,vt) corresponds to 
Euclidean distance and, roughly, it induces spherical clusters. 
The variants of objective-based fuzzy clustering are numerous. 
These generalizations deal with various shapes of clusters. 
Gustafson and Kessel [6 ]  have focused on the case where the 
matrix A, is fixed for each cluster j ,  while the determinant of 

( 2 )  

where , j ~  is the innut variable. mi( and a; the i'h mean and 
~ 

standard deviation revpectively ofthejCh tule.' 
When defining a FS, one can either use some of the input MF 
or all possible combinations of the input MF to construct the 
rule base. In this case, the number of parameters M f  grows 
exponentially by the growth in the number of inputs or number 
of rules. From (2 )  and Fig.1, the number of parameters, which 
-""La &."-,I iC. 

each matrix Ai, which stands for the volume of the cluster, is 
globally preserved. This allows to detect more sophisticated 
shape clusters. Bezdek [ 2 ]  has investigated the case where one 
of the eigenvectors of the matrix Ai, are maximized. This allows 
the detection of linear clusters like lines or hyper-plans. Dave 
[4] has investigated special formulation of the objective 
function J,**' that yields a better description of circular shape. 
Also. Krishnanuram and Keller 1101 investigated another La. "C,  L Y L l L Y  B.,. 

M f =  (I .n + I).R ( 3 )  

Where I is the number of MF parameters, n is the number of 
inputs, R is the number of MF for each input variable, which is 
equal, to the number of consequent parts. In this case and 
according to Fig. I ,  the tules number R can he represented as: 

R =  n N ,  (4) 
j= l  

Where N, is the number of MF in t h e j h  universe of discourse. 
Clearly, for either large n or R, M,can he very large and there is 
an exponential increase in the number of parameters for 
additional inputs leading to the curse of dimensionality. This is 
usual the case in fuzzy control applications [12 ] .  In the next 
section, we will focus on how to reduce the number of 
parameters needed to define the FS. 

111. BACKGROLIND 

Let Pg = [mu, q,] be the MF parameters associated to input 
variable xi obtained after the parameter Ieaming phase. The aim 
of the fuzzy clustering algorithm is to determine an optimal 
clusters set { v k ] ,  where vk = [mk, v k ] ,  in order to replace the old 
fuzzy partition {PJ by the new one ( vk ]  according to the 
minimization of the following objective function [3 ] :  

M c  
J,o"' = Oy,)"'. d(Pq,vk)* 

i = l k = l  
With respect to constraints (6) and (7) : 

(7) 

Where M, c and m are respectively the number of data i = ( L  
M), the number of clusters initialized randomly and a weighting 
exponent which determines the fuzziness of the clusters 
( m ~  [l,+m[). d(Pg,vk) represents the distance measure hetween 
Pu and the prototype vi, defined as: 

4 P , , v S Z  = (pg - d . A j  .( pg ~ vk) 
Where Ai is a positive defined symmetric matrix. The choice of 
the matrix Aj induces a proper kind of distance interpretation, 

(8) 

~~. 
formulation of such that the mlmgership m&ix is seen as 
the distance from ideal prototype instead of being a degree of 
share of the unit value hetween all existing clusters, as the 
initial formulation does. This means that both the Formulation 
of the matrix Ai and the objective function are not completely 
fixed and some flexibility is allowed. Kaymak [9] has studied 
the influence of the clusters number in the data and the problem 
of initialization, which must he appropriately for convergence 
to acceptable solutions and for finding all interesting clusters 
including the one small in size. For this purpose, he proposed 
an extended approach of fuzzy c-means to determinate an 
appropriate number of clusters by considering a volume 
prototype. In the present study, we are interested in a particular 
problem where some data are collapsed into others. The aim is 
to solve this collapse problem under another aspect as inclusion 
concept. The idea developed in this paper is somewhat similar 
to search for an inclusion concept hidden in the distance one. 
This allows for taking account for the inclusion only in global 
sense. A rational criteria that take account for an inclusion 
concept is used. In the second part, is to model how the 

IV. EXTENDED FUZZY CLUSTERING ALGORITHM 

distributions are included each other. 

A. Inchion I& Conspvction 

Let us denote by G the Gaussian distribution characterized by 
[m,uj. In general, 97% of the information supplied by the 
distribution is concentrated into the interval [ m - 3 u ,  m + 3 4 .  
IAG,,Gk) stands for the degree of inclusion of the Gaussian 
(m,,q,) in (mk,uk), and characterized by the surface formed by 
the intersection of Gu and Gt, (GpGk) (Fig. 2). 
Clearly, asserting that Id should depend on the following 
parameters, (mrmk) and 3.(nj+cr& 

A I A , , (  X . )  GPO, 

m r 1 0 ,  mz+l q X ,  

Fig. 2. Fuzzy set overlapping 

One can show that the inclusion index is given by [ I  1][14]: 
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Leading to an equality constraint to the optimization problem, 
SO the non-linear optimization problem (PJ can be written as: 

p':{* I ( pki, A j , v k )  = 0,Vr c I =(1,.., n) 

In our case, two constraints are considered (1=1,2): 

Minimize Ji(/cm'(pki, A j , v k ) ,  under constraint: 
(13) It's easily checked that IdG,,Gk) is non-increasing with respect 

to (mk - m,) (Fig.3 a) and to 3.(n+qj) (Fig.3 b), one may 
determine its derivative with respect to (mk - mu) : 

On the other hand, the factor 1 in l-lmv -mkl exd-3 (fly +ck)) 

allows to preserve the positive ness of the value of IdGy,Gk). 
The second term of I,+ (Id(Gv,Gk) = 0)  is used to avoid the 
inverse inclusion of the fizzy sets. 

k=l 
The second constraint g2 can he considered as a bridge between 
the inclusion concept and the distance concept, which is 
necessary for the fizzy clustering formulation. Using a dual 
methods, the (PJ is transformed into a min-max problem by 
introducing the Lagrange parameter vector kr, so that: 

E. Formulation of the extended Fuzq  Clustering Algorithm 
The new clustering algorithm is an extension of the proposed 

algorithm [ l l ]  where the distance concept defined by (10) can 
he considered as an inclusion concept [111[14]. It can be 
formulated as follows: - 0  - (17) 

The optimal parameters are obtained by setting the derivative of 
Lagrangian according to each of its parameters PI = [pe, AI. vk, 
'I, h21 to zero, so that: 

ap, 

Consider a new representation of the Gaussian parameters, so 
that, Pij(1) = mij , Pij(2) = oij , vk(1) = mij and vk (2) = oij, 
and a new quadratic formulation of (1 1). Let us denote by BI 

and B2 two matrix, where E,= [i :] and El2=[: y ] .  Then, 

( I  1) can be formulated as follows: 

For details on calculation refer to [SI 
1) Extended f w z y  C-means algorithm steps: The proposed 
fuzzy clustering algorithm can he summarized by the following 
steps : 
Given a data Pv, choose the initial number ofclusters l<c("<M, 
the fuzziness parameter m (m=2) and the termination criterion 
c>O. Initialize Lfo'=[i4,@'] (eg. Random), and let ai=l .05 and 
a2=0.95. 

Loop 
1. Compute a new clusters centers vh: 

i =1 

2. Compute the matrix A ,  so that: 

871 The IEEE International Conference on Fuzzy Systems 



3. Update the partition matrix: 

4. compute the criteria J?', so that : 

If J?' < 5 go IO step 5. 
else go to step 1. 

5. Veri& the rule-base property: 

kl 
c = c -  1 , andgo tostep I .  

c 

else f'j&) > a,, v i=l ,  .., M 
kl 

1 

0 .8  

0.6 

0.4 

0 .2  
n 

I 2 3 "0 I 2 3 
l in i v r r s r  O / d ~ , l r O " , * l  x ,  "ni".rsr o/di, io"rlr Y, 

"0 

Fig. 5. Generated clusters with C-FCM algorithm. 

According to the form of the rule presented above, the 
generated rules R' are given by: 

R' : If Xi is ( 1.1387 , 0.5490 ) and X, is ( 0.0027,0.0009) 
thenyk is 0.1585 

k : If Xi  is ( 0.6365 , 1.0305 ) and XI is ( 0.0014 ,0.0022) 
then yk is 0.0074 

d : l f X i  is ( 0.5021 , 1.1745 ) and& is (0.0002,0.0157) 
thenyk is 0.0997 

R' : I f X ,  is ( 0.3214, 1.1612) a n d &  is ( 0.0008.0.0032) 
then w1 is 0.4907 ,- 

R5 : I f  Xi is ( 25.7626, 31 17.1 ) and& is (3.1084.0.0033) 
thenyk is 0.1926 

R6 : If X I  is (450.5010, 0.9603 ) and X, is ( 0.0009,0.0018) 
thenykis0,5173 

R' : If Xi is ( 0.7556 , 0.6791 ) and XI is ( 0.0007 , 0.0005) 
thenykis0.1436 

R8 : If Xi is ( 4.4532 ,0.7902 ) and XZ is ( 0.3501 I 0.0009) 
thenyk is 03432 
As an illustrations, Fig.6 and Fig.7 respectively show a plane 
distribution of the optimizing using the proposed 
clustering &orithm E-FCM and the conventional one C-FCM, 
where (9 represents the cluster center and (+) represents the 
optimiied datum. 

c = c + I , andgo to step 1. 
else STOP 

End of Loop (STOP) 
The algorithm proposed above is an extension of the fuzzy 
inclusion algorithm proposed by Nefti [ l l ]  and based on 
classical FCM, where the relationship between the cluster 
prototype and each datum is rather described in terms of 
inclusion relation instead of reasoning in t e rm of distance. The 
key issue in the proposal is to let the matrix A, be fixed only for 
a given cluster. While its determination assumes that, for a 
given cluster, the amount of distances from tbe prototype to 
each datum is the same as the amount of inclusions of each 
datum into that cluster prototype according to the elaborated 
inclusion index. This method, as it is the case for all other fuzzy 
clustering algorithm, is an optimization-based approach. 

V. NUMERICAL EMPLE M F a ~ s o ~ c ~ ~ d Z o  I n p u f X ,  MF.'.or,.r.d I O  bpvrx, 
In order to illustrate the validity of the proposed algorithm, 

we consider a MIS0 FS architecture presented in Fig.1, with 
two inputs (XI ,  X,) and one output yk. The set of MF associated 
to each input variable includes 8 MF, randomly initialized, and 
four initial clusters number. By ensuring a parameters learning 
algorithm, an optimal sttucture o f  the FS is generated. The 
contribution of each input variable in the overall fuzzy rules is 
represented by 8 fuzzy sets. Due to the MF overlapping, the 
proposed fuzzy c-means algorithm is used to reduce the MF 
number and optimize the fuzzy rule base. Fig.4 and Fig.5 give 
the optimal clusters within initial MF obtained after the 
application of the proposed algorithm (E-FCM) and the 
conventional one (C-FCM). 

0 8  

0 6  

0 4  

0 1  

0 
2 3 

a,d,rra,,rl x ,  
Fig. 4. Generated clusters 

u"i.rrra ollllrrvllr' XI 

with E-FCM algorithm. 

ig. 6. MF plane distribution with E-FCM algorithm. 

,O I"' ", 
Fig. 7. MF plane distribution with C-FCM algorithm. 

This representation gives a better idea about the clusters 
number to optimize. As we can we see, on Fig.6 and Fig.7, 
there exit two redundant points in the numerous optimizing 
data, which can be regarded as an inconsistency with the trends 
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Using the conventional clustering algorithm (Tah.2), the fuzzy 
sub-set SF,@' is closer to the second cluster, which is given by 
the highest degree (0.9681), than to the first one. For second 
input variable X,, the fuzzy sub-set SFJ6', which is closer to the 
second cluster with the highest degree (0.9999), than the first 
one. As we can see in Tab.2, the fuzzy rule-base consistency 
and completude property are not respected using the 
conventional FCM algorithm. As a matter of fact, the 
constraints defined in (6) and (7) are not assured and the 
obtained results, for example in the fuzzy sub-set SF,"', 
corresponding to the first input X I ,  approve it. 

TABLE I 
GENERATED PARTITIONS WITH E-FCM ALGORITHM 

TABLE I1 
GENERATED PARTITIONS WTH C-FCM A L G O ~ H M  

C Interpretability and Fuzzy Labeling 
In this section, we consider only the obtained results with E- 

FCM algorithm. Once the clusters are generated, the semantic 
interpretation and reducing the demand on memory in 
implementation is improved. In this case, labeling is an 
important phase. It consists of attributing for each generated 
cluster a linguistic label. Consider S and B, respectively the 
symbolic values designing Small and Big. If we attribute a label 
S to the clusters Cl,, and Cl,, and label B to the clusters CZ,, 
and CZx2, we obtain, for each input variable: 

- 02 clusters for variable X I  : C l x l  + S and CZXi  + B 

- 02 clusters for variable X,: C l X z  + S and CZX2 + B 
We note that the same labels attributed to each input variable XI 
and X ,  are not especially identical. For example, the label S 
associated to XI is not the same to the label S associated to X,. 
Fig.10 illustrates the fuzzy labels attribution for each generated 
cluster. As an example, for a set of three fuzzy rules, the new 
rule Base will be written as follow: 

R' : I fXl  is B a n d  X, is S then yk is 0.1585 
(0.9992), than to the second one. For the sicond ilput variable 
X,, the fuzzy sub-set SF>", which is closer to the second 
cluster with the highest degree (0.9498), than the first one. 

~2 : Ifx, is s and ,y2 is B 

R' : Ifxl is B and xz is B 
then yr i s  0.0074 

then ?'n is 0.0997 
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Fig. 10. Fuzzy labels attribution. 

Tab.3 shows the performances between the proposed FCM 
algorithm (E-FCM) and the conventional algorithm (C-FCM) 
before and after clustering. 

TABLE 111 
CLUSTERMC COMPARATIVE RESULTS 

XI I 0.0024 I 0 .85  
I nnn*n  I n 0 1  I 

Con"rr$roce brhDvior 

cOn,i.lmrY 

We can see that the proposed fuzzy clustering algorithm gives 
better performances than the conventional one. Using E-FCM 
algorithm with random initialization of classes number, 02 
clusters are generated aRer 5 iterations for the input variable X, 
and 10 iterations for the second one X,, with a convergence 
e m x  respectively 0.0024 and 0.0040. In the case of the 
conventional FCM algorithm, starting with four initial clusters 
number, 02 clusters are created after 50 iterations for each input 
variable X ,  and A',. The convergence error is 0.85 for the input 
variable XI and 0.91 1 for the second on. Thus, the gains values 
on convergence speed obtained by E-FCM algorithm compared 
to classical one C-FCM are 10 for input variable XI and 5 for 
the second variable XI.  The convergence error results show, 
also, the accuracy of E-FCM algorithm compared to C-FCM 
algorithm. Opposite to conventional fuzzy clustering algorithm, 
the proposed algorithm doesn't require any initial knowledge 
on clusters number to be identified and on the distribution of all 
the optimizing datum only, but also the fuzzy mle-base 
consistency and completude property are respected. 

VI. CONCLUSION 

In this paper an extended fuzzy c-means algorithm is 
proposed. The extension consists of the use of spherical cluster 
prototypes and considering a new clustering aspect based 
inclusion concept. An inclusion index, then, has been proposed 
to model the degree of inclusion between the different fuzzy 
distributions. The optimization problem is based on some 
relationship between the inclusion and the distance paradigms 
that takes account for the inclusion only in global sense. In this 

way, a compact and interpretable FS can be obtained for 
complex systems. Through structure optimization, the 
relationship between the inputs and the output can also be 
revealed, which is very important for understanding an 
unknown system. The effectiveness of the proposed algorithm 
is shown by a numerical example. 
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