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Abstract

The interest in data driven approaches to the acquisition of fuzzy systems is increasing. Most of the approaches in the

literature emphasize the global quantitative accuracy and not the transparency and interpretability of the resulting model. This

paper discusses methods based on similarity analysis that, without performing additional knowledge or data acquisition, allow

for the generation of fuzzy models of varying complexity. While models for simulation emphasize numerical accuracy, models

for understanding the system and for operator interface are required to be transparent and interpretable. An application of the

presented fuzzy modeling techniques to an air-conditioning system is described. # 1998 IMACS/Elsevier Science B.V.

1. Introduction

Computational Intelligence techniques, such as fuzzy and neural systems, have proven to be useful in
the modeling of complex nonlinear systems. Both fuzzy and neural systems are recognized as universal
approximators. Traditionally, a fuzzy model is built by using expert knowledge in the form of linguistic
rules. Recently, there is an increasing interest in obtaining fuzzy models from measured numerical data.
Different approaches have been proposed for this purpose, like fuzzy relations [13], neural network
training techniques [8], and product-space clustering [2]. However, most of these approaches
emphasize the global quantitative accuracy of the resulting model, and little attention is paid to
linguistic and qualitative aspects, see, e.g., [10] for an example.

In this paper, we discuss methods based on similarity analysis that can be applied to fuzzy models in
order to obtain models of varying complexity and qualitative properties depending on the purpose of the
modeling exercise. Three approaches are considered: (1) iterative compatibility analysis [1,11], (2)
similarity relations, and (3) linguistic approximation. These approaches do not require additional
knowledge or data acquisition. The user can fine-tune the numerical accuracy and transparency in order
to obtain a suitable model.
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The presented techniques are generally applicable to fuzzy rule-based models, and are illustrated on a
fuzzy model of an air-conditioning system obtained from numerical data by means of product-space
clustering. In the following sections, the used model structure and modeling method are first shortly
described. Then the three approaches to model simplification are presented. Finally, the approaches are
applied to the fuzzy model of the air-conditioning system, and the results are discussed with respect to
accuracy, interpretability and computational load.

2. The Takagi±Sugeno fuzzy model

A rule-based model of the Takagi±Sugeno (TS) type [12] is considered. It consists of a set of fuzzy
implications, or rules, which each describe a local input±output relation, typically in a linear form:

Ri : wi�If x1 is Ai1 and:::and xn is Ain then yi � aix� bi�; i � 1; 2; :::;K (1)

Here Ri is the ith rule, x�[x1..., xn]T is the input (antecedent) variable, Ai1..., Ain are fuzzy sets defined in
the antecedent space, yi is the rule output variable, and wi is the rule weight. Typically, wi�1, 8i, but
these weights can be adjusted during the model reduction. K denotes the number of rules in the rule
base, and the aggregated output of the model, yÃ, is calculated by taking the weighted average of the rule
consequents:

ŷ �
PK

i�1 wi�iyiPK
i�1 wi�i

(2)

where �i is the degree of activation of the ith rule:

�i �
Yn

j�1

�Aij
�xj�; i � 1; 2; :::;K (3)

and �Aij
�xj� : R! �0; 1� is the membership function of the fuzzy set Aij in the antecedent of Ri.

To identify the TS fuzzy model, the input and the output variables must first be determined. The
regression matrix X and an output vector y are constructed from data measurements:

XT � �x1; :::; xN �; yT � �y1; :::; yN � (4)

Here N�n is the number of samples used for identification. The objective of identification is to
construct the unknown nonlinear function y�f(X) from the data, where f is the TS model (1).

The number of rules, K, the antecedent fuzzy sets, Aij, and the consequent parameters, ai, bi are
determined by means of fuzzy clustering in the product space of X�Y [2]. Hence, the data set Z to be
clustered is composed from X and y:

ZT � �X; y� (5)

Given Z and an estimated number of clusters K, a fuzzy clustering algorithm [6] is applied to compute
the fuzzy partition matrix U. This provides a description of the system in terms of its local characteristic
behavior in regions of the data identified by the clustering algorithm, and each cluster defines a rule.
Cluster validity measures can be applied to select K and a suitable fuzzy partition of Z [5].
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The fuzzy sets in the antecedent of the rules are obtained from the partition matrix U, whose ikth
element �ik2[0,1] is the membership degree of the data object zk in cluster i. One-dimensional fuzzy
sets Aij are obtained from the multidimensional fuzzy sets defined point-wise in the ith row of the
partition matrix by projections onto the space of the input variables xj:

�Aij
�xjk� � proj

Nn�1

j ��ik� (6)

where proj is the point-wise projection operator [9]. The point-wise defined fuzzy sets Aij are
approximated by suitable parametric functions in order to compute �Aij

�xj� for any value of xj.
The consequent parameters for each rule are obtained as a weighted ordinary least-square

estimate. Let hT
i � �aT

i ; bi�, let Xe denote the matrix [X; 1] and let Wi denote a diagonal matrix in RN�N

having the weighted degree of activation, wi�i(xk), as its kth diagonal element. If the columns of Xe are
linearly independent and wi�i(xk)>0 for 1�k�N, then the weighted least-squares solution of y�Xe���
becomes

hi � �XT
e WiXe�ÿ1

XT
e Wiy (7)

3. Simplification and reduction

The transparency of fuzzy rule-based models obtained from data is often hampered by redundancy
present in the form of many overlapping (compatible) fuzzy sets. In [1,11] we proposed to use a
similarity measure to asses the compatibility (pair-wise similarity) of fuzzy sets in the rule base, in
order to identify fuzzy sets that can be merged. Fuzzy sets estimated from data can also be similar to the
universal set, adding no information to the model. Such sets can be removed from the antecedent of a
rule. These operations reduce the number of fuzzy sets in the model. Reduction of the rule base follows
when the antecedents of some rules become equal. Such rules are combined into one rule. In the
following, we describe three approaches to model simplification and reduction. To assess the
compatibility of fuzzy sets we apply the fuzzy analog to the Jaccard index [3]:

cjlm � jAlj \ Amjj
jAlj [ Amjj (8)

where l, m�1, 2,..., K, and cjlm2[0,1]. The \ and [ operators are the intersection and the union,
respectively, and | � | denotes the cardinality of a fuzzy set [3,7]. The measure cjlm is computed for
discritized domains and quantifies the compatibility between the fuzzy sets Alj and Amj in the rules Rl

and Rm, respectively.

Iterative compatibility analysis. This approach is based on iterative merging of compatible fuzzy sets
[1,11]. It requires two thresholds from the user, �, 2(0,1) for merging compatible fuzzy sets, and
removing fuzzy sets compatible with the universal set, respectively. In each iteration, the compatibility
between all fuzzy sets in each antecedent dimension j is analyzed. The pair of fuzzy sets having the
highest compatibility c>� are merged. A new fuzzy set is created by merging, and the rule base is
updated by substituting this fuzzy set for the ones merged. The algorithm again evaluates the updated
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rule base, until there are no more fuzzy sets for which c>�. Fuzzy sets compatible with the universal set
(c>) are removed from the rules in which they occur. The algorithm is given in Table 1(a).

Similarity relations. Also this approach requires two thresholds � and . For each antecedent
dimension, j�1,...n, a similarity relation between the fuzzy sets is obtained in two steps: First, a K�K

binary fuzzy compatibility relation Cj�[cjlm] is calculated, whose elements are obtained by (8). Cj is
reflexive and symmetric. Second, a similarity relation, Sj, is calculated as the max±min transitive
closure, CTj, of Cj [7]:

1. C0j � max�Cj; �Cj � Cj��
2. If C0j 6� Cj; set Cj � C0j and go to 1
3. Stop : CTj � C0j; set Sj � CTj

Here � is the max±min composition. The lmth element of Sj, [sjlm], gives the similarity between Ajl and
Ajm. For each antecedent dimension, the fuzzy sets having similarity sjlm>� are merged. Fuzzy sets
compatible with the universal set are removed. This algorithm is given in Table 1(b).

The first approach merges only one pair of fuzzy sets per iteration and the rule base is updated
between the iterations. The second approach merges all similar fuzzy sets per dimension
simultaneously. Hence, the use of the transitive similarity relation may give different results than the

Table 1

Two algorithms for fuzzy rule base simplification

Given a rule base R� {Ri | i�1,..., K}, where Ri is given by (1). Select the thresholds �,  2 (0,1):

Repeat for j�1, 2,..., n: Repeat for j�1, 2,..., n:

Step 1: Select most compatible fuzzy sets: Step 1: Calculate similarity relation:

ALj � Alj j cjlm � max
i6�p

i;p�1;:::;K

�cjip�
8<:

9=; Cj � �cjlm�; l;m � 1; 2; :::;K

Sj � �sjlm� � CTj

Step 2: Merge selected fuzzy sets: Step 2: Merge similar fuzzy sets:

If cjlm>�:

Acj � Merge�ALj� ALj � fAlj j sjlm > �; l 6� mg
8Alj 2 ALj; set Alj � Acj Acj � Merge�ALj�

Until: cjlm<� 8Alj 2 ALj; set Alj � Acj

Step 3: Remove fuzzy sets similar to universal set: Step 3: Remove fuzzy sets similar to universal set:

cij � jAij \ Ujj
jAij [ Ujj ; i � 1; 2; :::;K cij � jAij \ Ujj

jAij [ Ujj ; i � 1; 2; :::;K

where �uj � 1; 8xj where �uj � 1; 8xj

If cij > , remove Aij from the antecedent of Ri. If cij > , remove Aij from the antecedent of Ri.

(a) Iterative compatibility analysis. (b) Similarity relations.
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iterative approach. Merging of fuzzy sets is accomplished by letting the support of the union of the sets
in ALj be the support of the new fuzzy set Acj. This guarantees preservation of the coverage of the
antecedent space. The kernel of Acj is given by averaging the kernels of the sets in ALj.

If the antecedents of p�2 rules become equal, the p rules can be replaced by one common rule Rc.
The consequent parameters of the reduced rule base can be re-estimated from training data (7), or one
can calculate the parameters of Rc from the parameters of the p removed rules. The latter method does
not depend on the availability of data. This approach is now described: Let Q�{1, 2,..., K} be a subset
of rule indices such that Alj�Amj, 8j 2�{1, 2,..., n}, 8l, m2Q. RQ then denotes the set of rules with
equal antecedents. The rule Rc replaces the rules in RQ, and its antecedent part equals that of the rules
RQ, i.e., Acj�Alj, j�1, 2,..., n, l2Q. The one common rule Rc is made to account for all the rules RQ by
weighting it with the total weight of the rules RQ, wc��i2Q wi, and by letting its consequent yc be an
average of the consequents of RQ. Thus, the set of rules RQ is represented by a single rule Rc with
weight wc and consequent parameters

hc � 1

wc

X
i2Q

wihi (9)

Let �Q � f1; . . . ;Kg ÿ Q, the model output (2) now becomes

ŷ �
P

i2�Q wi�iyi � wc�cycP
i2�Q wi�i � wc�c

(10)

This substitution of RQ by Rc does not alter the input±output mapping of the TS-model (1).

Linguistic approximation. A fuzzy model can be interpreted by means of linguistic approximation [4].
Using (8), the fuzzy sets in the model are compared to some reference fuzzy sets and their
modifications by selected linguistic hedges. The model is described in terms of the labels of the
reference fuzzy sets. By substituting the reference fuzzy sets for the original fuzzy sets, the model can
be directly interpreted linguistically as well as verified in simulation. Three reference fuzzy sets are
used in our example, `Small', `Medium' and `Big', shown in Fig. 1(a), together with the linguistic
hedges in Table 2.

4. Application to a model of an air-conditioning system

We consider a model of an air-conditioning system consisting of a fan-coil unit. Hot or cold water is
supplied to the coil through a valve. In the unit, outside (primary) air is mixed with return air from the
room, see Fig. 1(b). From systems measurements, a TS fuzzy model has been obtained by clustering in
10 clusters. The model predicts the supply air temperature Ts based on its present and previous value,
the mixed air temperature Tm, and the heating valve position u, thus:

x�k� � �Ts�k�;Ts�k ÿ 1�; u�k ÿ 1�; Tm�k��T ; y�k� � Ts�k � 1� (11)

The model consist of ten rules, each with four antecedent fuzzy sets, of the form:

Ri : IF Ts�k� is Ai1 and Ts�k ÿ 1� is Ai2 and u�k ÿ 1� is Ai3 and Tm�k� is Ai4

THEN Ts�k � 1� � yi
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where yi � hT
i �x�k�T ; 1�T . The total of 40 antecedent fuzzy sets used by the model are shown in Fig. 2.

Applying the similarity relation approach of Table 1(b) with ��0.8 and �0.9 gives an interesting
result for the two antecedent variables Ts(k) and Ts(kÿ1). The partitionings of their domains are equal.
This result is supported by knowledge about sampling time and the system's dynamics. This suggests
that one of the two variables could be removed from the model in further analysis. The simplified and
reduced model consist of only four rules, given in Table 3, and nine fuzzy sets, shown in Fig. 3. The
consequents of the rules in the new model has been reestimated using the original training data. The
result is a much more transparent and less computational intensive model with comparable numeric

Fig. 1. Reference fuzzy sets (a) and the system considered in the application (b).

Table 2

Linguistic hedges

Linguistic hedge Operation Linguistic hedge Operation

Very A �2
A More than A

�A�x�; if x < minfx j�A�x� � 1g
1; otherwise:

�

More or less A
������
�A
p

Less than A
�A�x�; if x > maxfx j�A�x� � 1g

1; otherwise:

�
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accuracy. In a recursive simulation consisting of 397 predictions of unseen data, the original model uses
1.4 Mflops, while the simplified model uses 0.4 Mflops. In this simulation, the root mean square (RMS)
error of the original model is 1.89, while the RMS error of the new model is 1.91.

The application of linguistic approximation to the original model also gives a highly reduced rule
base with 10 qualitative linguistic terms in 5 rules with the following antecedent parts:

Fig. 2. Original model: fuzzy sets (a), recursive simulation (b).
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Table 3

Simplified model

IF Ts(k) is, Ts(kÿ1) is, u(kÿ1) is, Tm(k) is, THEN Ts(k�1)�
R01: ± ± C1 ± y1

R02: A1 B1 C2 ± y2

R03: A2 B2 C3 D1 y3

R04: ± ± C4 ± y4

Fig. 3. Original model: fuzzy sets (a), recursive simulation (b).
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If Ts(k) is More than Low, Ts(kÿ1) is More than Low, u(kÿ1) is More than Low, Tm(k) is Less than High
If Ts(k) is More than Low, Ts(kÿ1) is Less than High, u(kÿ1) is More than Low, Tm(k) is Less than High
If Ts(k) is Less than High, Ts(kÿ1) is Less than High, u(kÿ1) is Less than High, Tm(k) is More than Low
If Ts(k) is Less than High, Ts(kÿ1) is Less than High, u(kÿ1) is Medium, Tm(k) is Less than High
If Ts(k) is Less than High, Ts(kÿ1) is Less than High, u(kÿ1) is More or less Med., Tm(k) is Less than High

This linguistic description matches the simplified model in Fig. 3 quite well. For both variables Ts(k)
and Ts(kÿ1), a partition into two fuzzy regions is found, and for variable u(kÿ1), a partitioning into
four fuzzy regions is found. For the input Tm(k), both methods recognize the region `Less than High',
but the linguistic models also uses the region `More than Low'. This region is removed from the
simplified model due to its similarity with the universal set, and is thus implicitly present with a
membership 1 in the rules R1

0, R2
0 and R4

0 in Table 3 where Tm(k) is not used in the premise. The
accuracy of the linguistic model is verified in a recursive simulation giving an RMS error of 2.17.

5. Conclusions

Methods for complexity reduction in fuzzy models acquired from numerical data have been
presented. The methods are based on similarity analysis of the fuzzy sets used in the antecedent space
of the model. Distinction is made between iterative rule base reduction, reduction based on transitive
similarity relations, and on linguistic approximation.

The consequent parameters of the reduced fuzzy models can be re-estimated by least-squares
techniques or recomputed from the parameters of the original model. The presented techniques have
been applied to the fuzzy modeling of a real-world air-conditioning system. It is shown that the
originally obtained model can be strongly reduced, allowing for qualitative interpretation, and faster
computations, without deteriorating the prediction accuracy.
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