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Abstract-In this paper we present a new Tagaki-Sugeno
(TS) type model whose membership functions {MFs) are
characterized by linguistic modifiers. As a result, during
adaptation, the trained local models tend to become the
tangents of the global model, leading to good model
interpretability. In order to prevent the global
approximation ability from being degraded, an index of
fuzziness is proposed to evaluate linguistic modification
for MFs with adjustable crossover points. A new
learning scheme is also developed, which uses the
combination of global approximation error and the
fuzziness index as its objective function. By minimizing
the muitiple objective performance measure, a tradeoff
between the global approximation and local model
interpretation can be achieved. Experimental results
show that by the proposed method good interpretation
of local models and transparency of input space
partitioning can be obtained for the TS model while at
the same time the global approximation ability is still
preserved.

1. INTRODUCTION

In data-driven fuzzy modeling, interpretation
preservation during adaptation can be regarded as one of
the most important issues [1] [2] [3] [4] [5]. The first aspect
of interpretability of fuzzy models is about the transparency
of partitioning of input space, or generation of interpretable
fuzzy sets. Although there exists no unified standard for
selecting MFs during adaptation, in the interests of
preserving or enhancing the interpretability, some
rescarchers have suggested some semantic criteria or
heuristic criteria to guide the generation of MFs. de
Oliveira proposed several semantic criteria for designing
MFs, such as distinguishability of MFs, normalization of
MFs, moderate number of linguistic terms per variable,
natural zero positicning, and coverage of the universe of
discourse etc. [6], which have been proved to be
reasonable [4] [7]. On the other hand, in fuzzy cluster
analysis, one of the main schemes to partition input space,
as the criterion for “optimal partition” of & data set, the
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basic heuristic that “good” clusters are actually not very
fuzzy could be acceptable [8]. Although fuzzy algorithms
are used in data clustering, the aim of the clustering is to
generate a “harder” partitioning of the data set [9]. In other
words, the produced partitioning should achieve better
interpretation. A requirement directly related to this
interpretability is that MFs should be less overlapped
among adjacent fuzzy sets and have large core regions, ie.,
large support seis with membership degree of 1. However
classical rule induction algorithms, such as neuro-fuzzy
algorithms [10], generate fuzzy sets with “too much” or
“absolutely no” overlap due to their accuracy-oriented
nature,

Currently, most of the efforts to improve the
interpretability of fuzzy medel are focused on the
interpretation of partitioning of input space. As a matter of
fact, for some special fuzzy models, such as Takagi-Sugeno
(TS) fuzzy model [11], in addition to the interpretation of
partitioning of input space, there exists another type of
interpretation that needs to be further decrypted, ie., the
interaction between the global model and local models.
These local models often exhibit some eccentric behaviors
that are hard to be interpreted as shown in Fig.1, thus such a
model could not be interpreted in terms of individual rules
in case there is no priori knowledge available.
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Fig.1 TS mode! with uninterpretable local models '

In case there is no priori knowledge available for local
models in a TS system, one may accept the basic heuristic
that if the local models match the global model well, then
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the local models are considered to possess good
interpretability, and the best interpretation for the local
models could be that they become the tangents of the global
maodel. In such a way, these local linear models possess the
abilities to reflect the local properties of the sysiem to be
modeled, which is crucial for the success of local linear
models’ applications to nonlinear state estimation, fusion
and predictive control[12]{13][14]. Unfortunately, most of
the MFs currently used in fuzzy models, such as Gaussian
functions, could not achieve this aim, which has received a
few researchers’ attention [3][15][16].

In this paper, a linguistic modifier proposed in [17] is
used to update the shape of MFs during the adaptation. As
the MFs become less overiapped and possess larger core
regions aleng with updating, the desired situation would
emerge more possibly: there is only one rule applicable or
dominate at a time, and the consequents are forced to
represent the local behaviors of the system. Thus the
eccentric behaviors of local models would be remedied
greatly, and the final trained local models could become the
tangents of the global model. In this paper, in order to
measure the degree of linguistic modification, as an
extension of the fuzziness measure proposed by Yager [18],
we propose an index of fuzziness to evaluate the
performance of linguistic modification for MFs with
adjustable crossover points. A tradeoff between global
approximation and local model interpretation can be
achieved by minimizing a performance measure that
combines the global error measure and the proposed index
of fuzziness.

11, THE TS MODEL USING LINGUISTIC MODIFIERS AS FUZZY
MFS
In this paper, TS model with the following rules will be
addressed:
R, :if xis A;"and ... and x, is 4"

then y, =a, +a,x, +---+a,x, m

where X ; are input variables, y; is the output variable of

the ith iocal model, A,.(_j ) are fuzzy sets about X, a; are
4

the consequent parameters that have to be identified in

terms of given data sets, R, is the ith rule of the TS system,

and 1<j, <L, ..., 1<i, <L, lgingnLj , with
=

L ; being the number of fuzzy sets about x e The global

output of the system is calculated by

L
y=2 wy, @
i=l

where w; is the normalized firing strength of rule K; :

w,=1,/3 1, 3)

and 7; is called the firing strength of rule R;, which is

i

computed as 7, = [ 4(x,)-
£l
J=

It can be seen that in this TS model, given the fuzzy sets
about every variable on its domain of discourse, the rule
base includes all the possible combinations of these fuzzy
sets to cover the whole input space. For the sake of
representing the rules clearly, we sort the rules as follows:
corresponding to a combination of premise fuzzy sets

A,.(]U 2 e A,.("), the ruie is indexed as i in the rule base,
n—1i L]
where ; = Z[(,‘j -1)- HL«;}"'""'
= g=j+l
In this paper, the linguistic modifiers preposed in [17] are

used as the MFs for the above TS model. The initial fuzzy
sets of these linguistic modifiers are chosen to be triangular

functions, so the MFs of fuzzy sets A,.(_j) are obtained as
7

follows:

N . 1 {2)
Ai; (xj’ﬂii—].j’CEI,;’ﬂij.j’Cij.j’ﬁijfl_j’pj)

Py
1 Xy— ﬁ.'j-l,;'
Pl ’
ﬂq.’.._ ﬂf,,j - ﬂr‘j—l,j
f-F

Bi—%

1-— ! {
pl_l . . — o .
(1-;@. J R

ij.d

< )
ﬂ;,—l,j X< Cl_,,j

l:‘l <x,< ‘B
? iyt 4 it

x,—p i
1— 1 i g ,6 <x <C(z)
P ﬂ \ ’_ﬂ‘ ] 2 LY iped
i+, iy
(l_ﬂqtll] [ "

Py
1 /Bi,-ﬂ.j_xj
Pl _ ’
#C{z} ﬁ-‘ju‘j ﬁ.-j,j
LT S

{2)
Ci,-.j < X, < ﬂ;ﬂl.j

)
where c and c?) are the left and right crossover points
kR i

€2 :
of A"}' respectively, He, and K are evaluated as

follows:
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It can be proved [19] that as the linguistic modifier
parameters p . increase, the £ -insensitive cores of fuzzy

sets will become bigger and bigger, and at the same time
the overlapping among adjacent fuzzy sets will become
smaller and smaller. In such a way, the local models will be
forced to dominate the local behaviors of the system, and
tend to become the tangents of the global model. As a result,
improvements could be made in not only the interpretation
of local models but also the transparency of partitioning of
input space. However, based on MFs with less overlapping
and larger core regions, the global approximation ability of
the TS model could be degraded. In the following section
we propose a scheme to make the linguistic modifiers
optimally adjusted so that the accuracy and interpretability
of the model can be balanced in terms of a multiple
objective performance measure.

If]. A LEARNING ALGORITHM BASED ON A MULTIPLE
OBJECTIVE FUNCTION

A. Fuzziness measure of a fuzzy set

The proposed fuzziness measure is based on the distance
between a fuzzy set 4 and an ordinary (crisp) set 4 near to

A. A4 is defined as follows:

1 if'c(]) stcﬂ)

0 otherwise

4(x)={ ©

M and ¢ are the left and right crossover points

where ¢
of fuzzy set A respectively. Given a data set {x(:’c)}f:t on
domain x, the index of fuzziness, F(A4), is defined based

on the distance between 4 and 4 as follows:

2
F(4) =Wdr(/1,4) )
where N is the length of the data set, and r is the order of
the distance o, between A and 4 . Obviously, in case

eV = =¢ and A(c)=0.5, F(A) becomes the classic
fuzziness measure proposed by Yager [18]. Particularly, in

case r=2 (Euclidean distance is used), (8) defines a
quadratic index of fuzziness,

N
F,(4) = WJ%JZ (AGx(h) - Ak @

k=1

In this paper, the quadratic index of fuzziness is used in the
proposed learning algorithm.

B. A multiple objective function and the learning algorithm
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For a given data set{(x(k),d(k)) }.

k=1’
scheme is employed to update the consequent parameters

a; and the premise parameters p ;- In the first pass of the

a hybrid leatning

algorithm, the premise parameters P ; are fixed (starting

with fixed value 1), and the consequent parameters a; are

identified by least squares estimates in terms of the global
accuracy measure. In the second pass, the newly obtained

consequent parameters 4 are fixed, and the premise

parameters p . are updated by a gradient descent algorithm

in terms of a multiple objective performance measure as
defined below:

J=@-E+0-F ©)

where @ and & are two positive constants satisfying the
condition: ¢ + @ =1, £ is the global accuracy measure:

E= %gﬂd(k) -y (10}

and F is the index of fuzziness of the TS model defined as

L,

F =i"'ZiF(Af(jﬁ)

h=l gt j=l

(1

F(AYYY is the quadratic index of fuzziness defined by (8).
i
1) Least-squares estimates for consequent paramefers

In order to identify the consequent parameters in the TS
model, we reformulate some expressions in (1)-(3).
Defining a base matrix M as follows:

MI() M)

e (12)

M (N) M[(N)

M=L{n+l)

where M] =(w, wx, -~ wx,) , and representing the

consequent  parameters by a  column  vector
T
a=(a, a, " @, Ay Ay "+~ Gy oo Qg @570 ay,)
, we reformulate the TS model as follows:
M-a=d (13

where d =(d(1)---d(N))’ . Because
parameters in a do not make any contribution to the index
of fuzziness of the TS model, they can be identified

practically based on the global approximation accuracy

the ceonsequent



measure £ defined in (10). Since the number of training
data pairs is usually greater than Lx(n+1), this is a
typical ill-posed problem and generally there does not exist
exact solution for vector g. The least-squares estimate of a
can be obtained by a” = M*d, where M* is the Moore-
Penrose inverse of matrix M [19][20].

2) Gradient descent algorithm for updating the premise
paramelers

The premise parameters are updated in terms of the
multiple objective function defined in (9), which aims at
striking a good trade-off between the global approximation
ability and the interpretability of local models. The equation

for updating the linguistic modifier parameters is as follows:

&y

p(t+1)=p,()-p— (14)
op,
where ¢ is the iteration step, p is the learning rate, and
o _ OE  pOF (15)
o, T, o,
N L aw k
e DICCRIOIORE ® e
i k=l i=] ;
61’ (k) L, 3z, (k)
)2 gy S
ag(k) - 2 #
. L
P [Zr,(k)]
FE
az,(k) @ 04,7 (x (k)
47(x (k))—*— (18)
apf g j
oF BF(Afjf))
P = (19
apj [y an
i a‘f”( (k)
i 7}
FA") 2 E("‘f,- @)~ 4 (x, )y~ —— >
N N
?, v JZ(%”(xj(k)) Llff)(x,-(f\f)))2
k=l
20

Furthermore, the partial derivatives of 4% (x;) with

respect to p ; can be calculated in terms of (4) [19].

C. Rule base refinement

Because all possible combinations of fuzzy sets about
one-dimensional input variables are considered in the rule
base for this TS model, a common problem in fuzzy
modeling, i.e., the curse of dimensionality, would emerge,
In this subsection we give a simple but efficient method to
refine the rule base during adaptation.

For a given training data set {(x(k),d(k)) }"

a1 the total

firing strength of the ith rule R, received from all input
samples is obtained by

IR =3 £ () 1)
k=l
if
IR, < firingLimit (22)

then rule R, will be removed, where firingLimit is a given

lower limit of firing strength.

IV. EXPERIMENTAL RESULTS

In this section two different examples are used to
evaluate the proposed method in terms of the local
interpretability and global accuracy. Specifically, the first
example pays attention to the transparency of local models
and the second example the interpretation of partitioning of
input space.

For the sake of visualizing experimental results on the
transparency of local models well, the first example
considers a system with one input variable and one output
variable, characterized as follows:

sin{2x)

y =50(1 — cos(mx/50))——= o (23)

200 input-output data pairs were collected for the purpose
of parameter identification for this system. The number of
local models can be determined by examining the local
properties of the data automatically or manually. In this
example, there are 14 local areas with distinctive
linearizations, so we set the number of fuzzy partitions on
input variable x as 14. By clustering the 200 input-output
data pairs using a Mercer kernel fuzzy c-means (MKFCM)
clustering algorithm [21], 13 data centers on input variable
x are obtained, which are then used as the crossover points
of the linguistic modifiers. The minimum and maximum
values of input variable x are used as the cores of 2
linguistic modifiers, and the cores of the remaining 12
linguistic modifiers are set by the midpoints of the
corresponding crossover points generated above. During
adaptation, the firing strength lower limit is set to be 0.0001.
After 12 iterations of updating the linguistic modifier
parameter, the global approximation error of the proposed
TS model arrives at a minimum, as shown in Fig.2, which
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indicates that if the modifier parameter is updated
furthermore, the global approximation performance could
be degraded. However, Fig. 3 shows that a trade-off
between the global accuracy and the fuzziness measure is
found at the 27th iteration by the multiple objective
function, and the optimal modifier parameter value is 1.428
in terms of this multiple objective measure. It is noted that
the training data fire all the 14 rules very well, and there is
no rule being cancelled. The finally generated MFs are
depicted in Fig.4. By using these 14 MFs in the TS model,
it can be seen from Fig.5 that the corresponding 14 local
models exhibit the desired good interpretability: they match
the system well and tend to be the tangents of the global
model, and at the same time the global prediction accuracy
is still preserved.

As a comparisen with the proposed method, the well-
known ANFIS model [10] is used to model the same
system (23), the 14 MFs generated by ANFIS method are
shown in Fig.6. Although the ANFIS method can
approximate the system very well, as depicted in Fig.7,
obviously the interpretability of its 14 local models is poor:
they exhibit erratic behaviours, and can not characterize the
local activities of the modelled system well.
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Fig.2 Model approximation error vs linguistic modifier parameter updating
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Fig.3 Multiplc objective performance measure

Fig.4 MFs with modifier parameters equal to lin dotted line (DOL)
and 1.428 in solid line (SL)

Fig.5 Good intcrpretability of local models obtained by the proposed

mcthod: SL -desired output, DOL -model output, dashed lines {DAL)-local
models

Fig.6 MFs generated by ANFIS method for the TS model
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Fig.7 Poor interpretability of 1ocal models produced by ANFIS method:
SL-desired output, DOL-model output, DAL-iocal models
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Fig.8 MFs gencrated for input variables y(k — 1) (top row), y{k ~2)
(middle row), and {k — 1) (lowest row): DOL-initial triangular MFs,
SL-final MFs

The second example is to model a dynamic system with
two feedback input variables, one external input variable
and one output variable, which is described as follows [22]:

WK)=03p(k—1) + 0.6k ~2)

(24)
+0.6sintru)+03sin@.37u) +0.1sinGrmi)

where u =sin{27(k ~1}/250) is the external input. We
select (y(k 1), y(k—2),u(k —1)} as the three input
variables of the TS model, and ¥(k) the output variable.

Initially, 2000 input-output data pairs were generated to
build the proposed TS model, where the first 1500 data
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pairs were used as training data and the latter 500 pairs as
test data. Four initial fuzzy sets were set up for ¢ach input
variable, whose cores can be obtained by cluster analysis
algorithms. In this paper, they were obtained by the
MKFCM algorithm. The firing strength lower limit is set as
0.0001. By the proposed multiple objective learning scheme,
the optimal modifier parameters for the three input
variables are 7.4032, 7.4020, and 7.4026 respectively. The
finally generated fuzzy sets for the three input variables are
depicted in Fig.8 with large core areas and small
overlapping, which shows good distinguishability of
partitioning of input space in terms of the criteria
introduced in [6] [8}[9]. As shown in Fig.9, on both training
data and test data, this dynamical system is well
approximated by the built TS model. Although 64 rules are
constructed in the initial rule base, 31 rules are preserved in
the final rule base after the refinement by the proposed
method.
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Fig.9 Approximation results of the proposed mode] for training data (tp}
and test data {bottom): SL-desired output and DOL-medel output.

V. CONCLUSION

In this paper, a new TS type fuzzy model, whose MFs are
characterized by linguistic modifiers, is proposed. In the
proposed model, the local models match the global model
well and tend to become the tangents of the global model,
and the erratic behaviors of local models are remedied
greatly. Furthermore, the transparency of partitioning of
input space has been improved during parameter adaptation.
In order to preserve the global approximation ability, a
tradeoff between global approximation and local model
interpretation has been achieved by minimizing a mulitiple
objective performance measure. Due to the promising
performance exhibited, the proposed method would have
potential applications to fuzzy system modeling,
particularly, to nonlinear state estimation and control
problems.
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