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Abstract

The multi-objective identification of nonlinear dynamic models consisting of local linear models is considered. The tradeoff

between global model accuracy and local model interpretability is explicitly considered by introducing weights on the criteria for

local model accuracy. A strategy is proposed to tune the local weights in order to achieve similar tradeoff for each local model. In

this way, better generalization is achieved. The multi-objective identification algorithm has been applied to predict the engine load of

an off-road vehicle operating under varying working load conditions. The analysis tools have proven useful for the construction of

an accurate and robust engine load prediction model. The resulting model can directly be used in model-based control algorithms in

automatic tuning systems that explicitly deal with constraints on the working region.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

This articles addresses the tradeoff between the
interpretability of the local models as linearizations of
the nonlinear system and the prediction performance of
the global nonlinear model. The objective is to identify
smooth Takagi–Sugeno fuzzy models with local models
that have valid interpretations while minimizing the
model’s global prediction performance. This problem is
relevant in many nonlinear control applications (Rou-
bos, Mollov, Babu$ska, & Verbruggen, 1999; Fisher &
Nelles, 1998; Shorten, Murray-Smith, Bj^rgan, & Gollee,
1999; Johansen, Shorten, & Murray-Smith, 2000) and in
many prediction problems (Yen, Wang, & Gillespie,
1998). A multi-objective identification algorithm,
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minimizing a weighted sum of global and local predic-
tion error criteria, was suggested by Yen et al. (1998) for
Takagi–Sugeno fuzzy models. Tools for the analysis of
conflicts among the objectives and thus methods for
selecting the weights or priorities among conflicting
objectives were provided in Johansen and Babu$ska
(2002). The present work extends this method in the
sense that it provides means for selecting weights and
priorities to automatically balance the conflicts between
objectives.
This multi-objective identification algorithm has been

used to identify a dynamic, multiple input Takagi–
Sugeno fuzzy model for engine load prediction of
combine harvesters. These types of off-road vehicles
are typically operating in a wide range of conditions in
which the engine occasionally acts as a limiting factor
and, therefore, the engine load should be restricted when
applying automatic control schemes to tune the machine
speed or other harvester settings. A prediction model
makes it possible to take this constraint explicitly into
account (Maciejowski, 2002). The same methodology
can be used to predict other machine parameters and
can be applied to other types of off-road vehicles.
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Section 2 gives an overview of the standard least-
squares criteria for estimating the consequent para-
meters of the Takagi–Sugeno models. A multi-objective
criterion is presented that makes a tradeoff between the
transparency of the local models and the global
accuracy of the fuzzy model. It also allows one to
interpret the resulting parameter vectors in terms of
conflict between local and global accuracy. Section 3
illustrates how this algorithm can be used to model
engine load responses of off-road vehicles with physi-
cally interpretable local parameter vectors and without
loss of global accuracy. The same strategy can directly
be applied to other nonlinear dynamic systems.
Section 4 contains a discussion of the results and
conclusions are drawn in Section 5.
2. Methods

2.1. Takagi–Sugeno fuzzy model

The identification of dynamic Takagi–Sugeno fuzzy
input/output models of the following form is considered:

yðkÞ ¼
XN

i¼1

½ð1� Aiðq�1ÞÞyðkÞ þ Biðq�1ÞuðkÞÞ

þ di�wiðzðkÞÞ þ eðkÞ; ð1Þ

where uðkÞARr denotes the input, yðkÞARm is the
output, eðkÞARm accounts for unmodeled phenomena,
N defines the number of rules/local models and
functions wi : Rp-½0; 1� define the degree of fulfilment
for a given set of premise variables zðkÞARp: The
individual models are determined by the polynomials
Aiðq�1Þ ¼ 1þ a1;iq

�1 þ?þ any;iq
�ny and Biðq�1Þ ¼

b0;i þ?þ bnu;iq
�nu : The vector zðkÞ; which contains

the premise variables, is a subset of the information
vector

*cðkÞ ¼ ð�yðk � 1Þ;y;�yðk � nyÞ;

uðkÞ;y; uðk � nuÞÞ
T: ð2Þ

Fuzzy models of form (1) result from fuzzy inference on
a set of fuzzy rules

IF zðkÞAZi THEN

yðkÞ ¼ ð1� Aiðq�1ÞÞyðkÞ þ Biðq�1ÞuðkÞ þ di; ð3Þ

where the premise is defined by a fuzzy set Zi defined by
the membership functions mi : Rp-½0; 1� and the con-
sequent is a local linear dynamic model. The function wi

is given by

wiðzÞ ¼
miðzÞPN
j¼1mjðzÞ

; ð4Þ
thus fulfilling the condition

XN

i¼1

wiðzÞ ¼ 1; ð5Þ

see Takagi and Sugeno (1985) for details. The only
assumption we make on the set of fuzzy rules is that it is
complete in the sense that mjðzÞ > 0 for some j for all z;
such that (4) is well defined. Eq. (1) can be reformulated
into a form that is more convenient for system
identification by introducing the definitions

cðkÞ ¼
*cðkÞ

1

 !
; ð6Þ

yi ¼ ða1;i;y; any;i; b0;i;y; bnu;i; diÞ
T; ð7Þ

where cðkÞ is the information vector (2) augmented with
a constant element, and yi are the possibly unknown
parameters associated with the local linear model of the
ith rule. As a consequence, the general input/output
relation for the full model can be written as function of
the local model parameters

yðkÞ ¼
XN

i¼1

cTðkÞyiwiðzðkÞÞ þ eðkÞ: ð8Þ

Furthermore, defining

jðkÞ ¼

cðkÞw1ðzðkÞÞ

^

cðkÞwN ðzðkÞÞ

0
B@

1
CA; y ¼

y1
^

yN

0
B@

1
CA; ð9Þ

the linear regression can be written as

yðkÞ ¼ jTðkÞyþ eðkÞ: ð10Þ

For the purpose of system identification, assume that an
input–output data set with n samples is available. The
fuzzy partition of the antecedent space, which is defined
by the membership functions mi; is obtained in a
previous identification step. An overview of possible
strategies to construct this antecedent partition is given
in Babu$ska (1998).
In the remainder of this section, we briefly review the

well-known global and locally weighted identification
methods to calculate consequent parameter vector y and
present an alternative algorithm to make an explicit
tradeoff between global and local optimization.

2.2. Global identification criterion

The objective of this algorithm is to identify the local
model parameters y1;y; yN that give a global model
with the best prediction performance Takagi and
Sugeno (1985):

V ðyÞ ¼
1

n

Xn

k¼1

ðyðkÞ � jTðkÞyÞ2: ð11Þ
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This problem can be solved by using a standard least-
squares approach.

2.3. Locally weighted identification criterion

The objective of this algorithm is to identify the local
model parameters y1;y; yN that give local models
which are close local approximations to the underlying
nonlinear system (Johansen & Foss, 1993). A weighted
least-squares prediction error criterion is associated with
each local model

ViðyiÞ ¼
1

n

Xn

k¼1

ðyðkÞ � cTðkÞyiÞ
2wiðzðkÞÞ: ð12Þ

The weighting factor wiðzðkÞÞ ensures that the para-
meters yi are influenced only by the data points within
the fuzzy set Zi that defines the region of validity of the
ith local model.

2.4. Multi-objective identification criterion

2.4.1. Algorithm

It was suggested in Yen et al. (1998) to minimize the
weighted sum of the global and local identification
criteria (11) and (12).

min
y

V ðyÞ þ
XN

i¼1

biViðyiÞ

 !
: ð13Þ

The solution can be found by using a least-squares
approach. The weighting parameters biX0 parameterize
the set of Pareto-optimal solutions of the underlying
multi-objective optimization problem, and essentially
determine the tradeoff between the possibly conflicting
objectives of global model accuracy and local model
interpretability.

2.4.2. Conflict analysis

The selection bi ¼ 1 8i in multi-objective criterion
(13) will in general give a fairly balanced tradeoff. It is
still of interest to study in detail how the choice of b
influences the tradeoff. In particular, it is of interest to
analyze the degree of conflict between the different
objectives in (13) for a given data sequence and different
values of b: This will provide the user with information
that can be used to validate the model and data, as well
as to improve the model, not only by selecting a better
values of bi; but possibly also by modifying the model
structure or membership functions, or by adding/
removing constraints.
Let the minimum of (13) be denoted #yðbÞ for a given

data sequence and a given vector of weights b: The
minimum of (13) satisfies the Karush–Kuhn–Tucker
(KKT) conditions

@V

@y
ð#yðbÞÞ þ

XN

i¼1

bi

@Vi

@y
ð#yðbÞÞ ¼ 0: ð14Þ

If there are no conflicts among the objectives and
constraints, i.e., #yðbÞ minimizes all of the individual
objectives simultaneously then each of the terms in (14)
will be zero. If there are conflicts, however, the
directions and lengths of each of the (vector) terms of
(14) will indicate the degree of conflict and which
objectives are actually in conflict with each other.
Considering the parameter vector yi of the ith local

model, Eq. (14) leads to

@V

@yi

ð#yðbÞÞ þ bi

@Vi

@yi

ð#yðbÞÞ ¼ 0: ð15Þ

Next, define the following sensitivity measures asso-
ciated with each parameter yi; j ; which is the jth
parameter in the ith local model:

pg
i; jðbÞ ¼ �

@V

@yi; j

ð#yðbÞÞ; ð16Þ

pl
i; jðbÞ ¼ �

@Vi

@yi; j
ð#yðbÞÞ ¼

1

bi

@V

@yi; j

ð#yðbÞÞ; ð17Þ

which can easily be computed from the regressor
matrices. The quantity pg

i; jðbÞ can be interpreted as the
decrease in the global identification criterion V that can
be achieved by a small increase in #yi; jðbÞ: Likewise, the
quantity pl

i; jðbÞ can be interpreted as the decrease in the
local identification criterion Vi that can be achieved by a
small increase in #yi; jðbÞ: Hence, large values of pg

i; jðbÞ
and pl

i; jðbÞ indicate conflicts between global and local
performance.
Notice that due to (15)

pg
i; jðbÞ þ bip

l
i; jðbÞ ¼ 0: ð18Þ

A larger local model weight bi will bring about a smaller
local sensitivity parameter pl

i; jðbÞ; but will result in a
higher global sensitivity pg

i; jðbÞ: The influence of bi on
both sensitivity measures of one particular consequent
parameter is illustrated in Fig. 1. This consequent
parameter is quasi-optimal in global least-squares sense
as defined by Eq. (11) when a bi value of less than 10

�2 is
chosen, while a bi value of more than 10 approximates
the local least-squares solution of Eq. (12).
The analysis of pg

i; jðbÞ and pl
i; jðbÞ can provide the user

with significant information about the model and data,
as illustrated in Section 3.4.

2.4.3. Choice of weighting parameters bi

The bi parameters, which define the weights on the
local model accuracy in criterion (13), have to be
determined before the sensitivity measures pg

i; jðbÞ and
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pl
i; jðbÞ can be calculated. Different strategies are possible

to design the weighting vector b:

* The same value is chosen for each bi; resulting in a
consequent parameter set that makes a global trade-
off between local and global accuracy. The resulting
sensitivity measures are directly related to the
partition of the antecedent space.

* Each individual bi parameter is determined according
to the local need for accuracy. The sensitivity
parameters are determined by both the membership
functions and the distribution of the local model
weights.

* The following quadratic measure Pl
i can been used to

quantify the local sensitivity of one particular local
model:

Pl
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nyi

Xnyi

j¼1
ðpl

i;jÞ
2

s
; ð19Þ

where nyi
denotes the number of parameters of the ith

local model. The set of N model sensitivity measures
Pl

i can be balanced by tuning the N model weights bi

iteratively under the constraint of a fixed mean local
weight value b�;

1

N

XN

i¼1

bi 	 b�: ð20Þ

This average model weight b� determines the tradeoff

between model transparency and accuracy of the total
Takagi–Sugeno model. The optimized vector b reveals
the local conflict between transparency and global
accuracy and is determined by the partition of the
antecedent space. The balanced Pl
i measures guarantee

physically interpretable consequent parameters yi with
sufficient global accuracy. As a consequence, a better
generalization of the global system can be expected,
making the fuzzy model more reliable for new data that
have not been used for training.
The appropriate choice of the weights bi depends on

the objective of the fuzzy model, the specific application
and the available process knowledge. A constant bi

vector can be used to evaluate the antecedent partition,
a user-defined local weighting is of particular interest in
case of good a priori process knowledge and a specific
problem definition, while the strategy of balanced local
sensitivity parameters can be used to generate a robust
and accurate model performance across the entire
premise space without the need for a priori process
knowledge.
3. Engine load prediction for off-road vehicles

Engines of large off-road vehicles such as dozers,
harvesters or mobile equipment for road construc-
tion, have to provide power for moving this heavy
equipment, but are also loaded with some additional,
time-varying tasks that depend on the particular type of
equipment. A combine harvester, for example, has to
move through the field, but has also the task of cutting,
processing and storing the crop. The latter set of tasks
can consume more than 70% of the total engine power.
As a consequence, the engine load can approach its
maximum allowable limit in some operating regimes
and, therefore, precautions must be taken to avoid
engine overload, especially under automatic ground
speed control of the vehicle. An accurate model to
predict the engine load as a function of the machine
load signals and the ground speed input is essential to
design a constrained model-based control algorithm
(Maciejowski, 2002). Commercial combine harvesters
are commonly equipped with a controller area network
(CAN) and an embedded software platform that
makes the integration of control algorithms easy and
reliable.
The multi-objective identification criterion of Section

2.4 will be applied to predict the engine load of a
combine harvester on the basis of the feedrate, machine
slope and the ground speed input signals. A tradeoff will
be made between global accuracy and local transparency
to guarantee robust prediction performance. The local
linear representations of the global nonlinear system will
make it possible to analyze the control problem locally
with standard tools for linear systems and in addition,
the interpretable local models can directly be imple-
mented into an expert system for fault detection
purposes.



Table 1

Selected model inputs for engine load prediction of the combine

harvester

Signal Symbol Units

Engine load yðkÞ %

Feedrate uF ðk � 4Þ V

Slope uSðk � 1Þ deg

Handle position uH ðk � 1Þ %

Fig. 2. The data set projected on the antecedent space together with

resulting clusters. The contour lines correspond to membership degrees

of 1, 0.95, 0.9, 0.8 and 0.65, respectively.
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3.1. Model structure

Table 1 gives an overview of the signals that are
closely related with the engine load of the harvester:

* The feedrate signal uF ðk � 4Þ is obtained by register-
ing the torque on the driving belt of the combine
header that cuts and transports the crop toward the
internal part of the harvester. This signal is an
indication of the crop throughput, about 0:6 s before
this biomass is actually processed by the internal
separation elements (Maertens, De Baerdemaeker,
Ramon, & De Keyser, 2001).

* The backward/forward machine slope uSðk � 1Þ
immediately determines the engine load via the
weight of the harvester and the collected crop.

* The ground speed of mobile agricultural machinery is
manually varied by means of a handle. The position
of this handle uH ðk � 1Þ is the most important input
variable to predict the engine load and is also the
main control parameter that can be varied by
automatic grain loss control systems.

* The engine load yðkÞ itself is estimated indirectly by
measuring the instantaneous fuel consumption of the
diesel engine and is characterized by high-frequency
noise terms.

These four input signals have been selected from a larger
set of measured machine parameters on the basis of
physical insight and by applying an iterative selection
scheme that makes use of a genetic algorithm to
calculate the significance of each input signal.
All these measurements were carried out via the

standard, commercial CAN at a sample rate of 5 Hz:
Appropriate hardware filters are installed to prevent
aliasing.
Based on physical process knowledge and results from

correlation analysis, the following dynamic multiple
input single output (MISO) structure has been chosen
for the fuzzy rules

IF ðuF ðk � 4ÞAZF ;iÞ AND ðuSðk � 1ÞAZS;iÞ;

THEN

yðkÞ ¼ a1;iyðk � 1Þ þ a2;iyðk � 2Þ þ bF ;iuF ðk � 4Þ

þ bS;iuSðk � 1Þ þ bH ;iuH ðk � 1Þ þ di: ð21Þ
The premise variables are the feedrate uF ðk � 4Þ and the
machine slope uSðk � 1Þ; while two lagged outputs and
the handle position uH ðk � 1Þ are also added to the
inputs of the consequent rules. The AND operation has
been realized as the product of both membership
degrees. This structure has been chosen on the basis of
physical insights and some iterative manual tuning. For
instance, the two lagged outputs yðk � 1Þ and yðk � 2Þ
are necessary to capture the system’s dynamics, but
appear to be redundant with respect to the partition of
the premise space.

3.2. Construction of membership functions

A training set of 5185 data samples has been used to
partition the antecedent feedrate-slope space into
regimes that provide a locally linear engine load
response. The Gustafson–Kessel fuzzy clustering algo-
rithm (Gustafson & Kessel, 1979) has been applied for
different numbers of clusters according to the metho-
dology described in Babu$ska (1998). As a result, three
clusters were found which after projection provide the
partition of the antecedent space. They are depicted in
Fig. 2 together with the cluster centers and the projected
samples of the training data set. These clusters were
found in an automatic manner, but at the same time, a
good a posteriori interpretation can be given to the
obtained partition. The first cluster characterizes a low
feedrate and corresponds to the machine regime at
which the vehicle is only moving through the field
without actually harvesting any crop. The second and
third cluster correspond to engine load responses
registered for downhill and uphill harvesting, respec-
tively.
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Table 2

Consequent parameters obtained by multi-objective identification with

main emphasis on global least-squares accuracy (bi ¼ 10�3; validation
set RMSE ¼ 4:805%)

i a1;i a2;i bF ;i bS;i bH;i di

1 1.57 �0:686 2.86 �0.011 0.070 �5:05
2 0.93 �0:203 8.50 0.853 0.128 �15:3
3 0.93 �0:164 8.18 0.946 0.237 �23:7

Table 3

Consequent parameters obtained by weighted multi-objective identi-

fication (bi ¼ 1; validation set RMSE ¼ 4:802%)

i a1;i a2;i bF ;i bS;i bH;i di

1 1.53 �0:640 1.57 0.057 0.066 �1:75
2 0.94 �0:201 7.47 0.733 0.122 �13:1
3 0.94 �0:157 7.62 0.810 0.210 �20:8

Table 4

Consequent parameters obtained by multi-objective identification with

emphasis on local least-squares accuracy (bi ¼ 103; validation set

RMSE ¼ 4:833%)

i a1;i a2;i bF ;i bS;i bH;i di

1 1.42 �0:540 1.31 0.082 0.068 �1.09
2 0.95 �0:197 6.94 0.678 0.122 �12.1
3 0.94 �0:154 7.16 0.767 0.191 �18.5

Table 5

Prediction accuracy of different Takagi–Sugeno models for training

and validation data, for both the initial and ANFIS optimized

antecedent partitions

Unbalanced pl
j;i Balanced pl

j;i

Training

(%)

Validation

(%)

Training

(%)

Validation

(%)

Linear 3.489 5.509 3.489 5.509

ba ¼ 10�3 2.990 4.805 2.981 4.728

ba ¼ 10�1 2.993 4.789 2.993 4.715

ba ¼ 1 3.038 4.802 3.032 4.727

ba ¼ 101 3.075 4.828 3.062 4.749

ba ¼ 103 3.083 4.833 3.068 4.755

ANFISa 2.923 4.864 2.923 4.864

ba ¼ 10�3 2.924 4.855 2.925 4.845

ba ¼ 10�1 2.949 4.727 2.952 4.727

ba ¼ 1 3.015 4.737 2.983 4.701

ba ¼ 101 3.085 4.794 3.089 4.794

ba ¼ 103 3.105 4.806 3.105 4.806

aStandard ANFIS algorithm according to Jang (1993).
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Fig. 3 shows the Cartesian product space intersection
of the membership functions that approximate the fuzzy
partition of Fig. 2. Piecewise exponential membership
functions with the following structure are used:

mðz; cl ; cr;wl ;wrÞ ¼

exp �
z � cl

2wl

 � �
if zocl ;

exp �
z � cr

2wr

 � �
if z > cr;

1 otherwise;

8>>>>><
>>>>>:

ð22Þ

where cl and cr are the left and right shoulder,
respectively, and wl ; wr are the left and right width.
The membership functions were manually extended

toward the boundaries of the premise space in order to
guarantee a sufficient coverage for the application of the
model in new situations that are not fully covered by the
training set of Fig. 2.

3.3. Multi-objective consequent parameter estimation

Once the membership functions miðzÞ are constructed,
local weights wiðzÞ can be calculated by Eq. (4) and the
consequent parameter vectors yi can be estimated by
choosing one of the criteria of Section 2.
The consequent parameters found by solving the

quadratic program resulting from criterion (13) are
given in Tables 2–4 for a constant set of local weights of
bi ¼ 10�3; 1 and 103; respectively.
An overview of the prediction accuracy for the

different choices of bi is given in Table 5 for both the
training data set and a different validation set. The root
mean squared error (RMSE) has been used to evaluate
the prediction accuracy of the different parameter sets

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

k¼1
ðyðkÞ � ypðkÞÞ

2

r
; ð23Þ

where ypðkÞ and yðkÞ denote the predicted and measured
output, respectively.
The different sets of consequent parameters and the
resulting model accuracies illustrate the tradeoff be-
tween model transparency and global accuracy:

* The consequent parameters of Table 2 result
from multi-objective optimization with only a
small emphasis on the local model performance



Table 6

Consequent parameters obtained by the global ðbi ¼ þNÞ ANFIS

optimization algorithm corresponding to the ANFIS optimized

membership functions of Fig. 4 (Validation set RMSE ¼ 4:864%)

i a1;i a2;i bF ;i bS;i bH;i di

1 1.57 �0:679 3.61 0.011 0.068 �6.89
2 0.91 �0:185 9.88 0.899 0.111 �18.1
3 0.89 �0:139 12.9 1.37 0.464 �51.1

0.6

Balanced π
j,i
l  (β*=1)

a
1,i

a
2,i

b
F,i

b
S,i

b
H,i

0.6

Unbalanced π
j,i
l  (β

i
=1)
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ViðyiÞ ðbi ¼ 10�3Þ: The static gain parameter
bS;1 ð�0:011Þ is clearly not physically interpretable,
since an increasing machine slope results in a higher
engine load (a positive parameter value). The same
set of consequent parameters #yðbÞ provides the lowest
training error. This is a typical example of the conflict
between global accuracy and local interpretability in
Takagi–Sugeno models (see also the validation results
in Table 5).

* The opposite holds for the parameter set of Table 4,
which corresponds to bi ¼ 103: The resulting para-
meters are physically interpretable, but a relatively
large training error is obtained.

Although the relation between the local model weights
bi and the accompanying training error is monotonously
increasing for the training data, a minimum is found
when applying the same model to a validation set. This
minimum illustrates the usefulness of the general trade-
off between global and local accuracy to achieve a better
generalization of the system description. The consis-
tently lower validation error after balancing the local
sensitivity parameters reveals the importance of tuning
the individual local model weights bi to achieve a
balanced tradeoff for every local model i (Table 5).
This tradeoff between local transparency and global

accuracy as a function of the weights bi; is mainly
determined by the partition of the antecedent space. To
show the influence of a different partition, the adaptive-
network-based fuzzy inference system (ANFIS) method
(Jang, 1993) has been used to optimize the initial
membership functions of Fig. 3.
The resulting membership functions of the ANFIS

algorithm are shown in Fig. 4 and the corresponding
prediction accuracies for the different bi values are
included in Table 5. Again, an optimal bi value is found
that makes a tradeoff between training accuracy and
generalization. The consequent parameters for the
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Fig. 4. Membership functions obtained by ANFIS optimization (using

the partition of Fig. 3 as the initial partition).
standard ANFIS configuration ðbi ¼ þNÞ are pre-
sented in Table 6 and the prediction accuracy is also
provided in Table 5.

3.4. Conflict analysis

The consequent parameters that are globally ðbi ¼
þNÞ optimized with the standard ANFIS method have
shown a relatively poor generalization performance
when applied to a different set, illustrated by a relatively
large difference between training and validation error.
However, no strong contradictions can be found
between the consequent parameter values and physical
process knowledge. Therefore, an objective quantitative
measure that indicates strong conflicts between global
and local model performance without the need for an
additional data set is of particular interest during the
design of the model structure and the evaluation of the
consequent parameters.
Fig. 5 shows the local sensitivity measures pl

i; j (17) of
the initial partition, related to the estimated consequent
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parameters of Table 3 ðbi ¼ 1Þ: The conflicts between
local and global accuracy are mainly present at
consequent parameters a1;i and a2;i of the lagged output
sequence yðkÞ and the static gain parameter bH;i of the
handle input uH ðk � 1Þ:
The local sensitivity measures for the ANFIS opti-

mized antecedent partition of Fig. 4 are presented in the
left part of Fig. 7. Again, important local sensitivity
measures are found for the consequent parameters a1;i;
a2;i and bH;i:

3.5. Balanced local sensitivity measures

The previous section has illustrated the role of the
local sensitivity parameters pl

i; j as indicators for conflicts
between local and global accuracy. Important conflicts
between transparency and accuracy indicate poor
generalization and, consequently, may result in poor
prediction performance for new data.
The right part of Fig. 5 shows the result after

balancing the local sensitivity measure Pl
i (19) of the

antecedent partition of Fig. 3. The accompanying
consequent parameters given in Table 7 were estimated
with b ¼ ð0:29; 0:74; 1:97ÞT: This new weight vector has
lowered the highest pl

j;i values by putting a higher weight
b3 on the local accuracy of the third model. The main
conflicts remain still at the consequent parameters
a1;i; a2;i and bH;i; which characterize the engine load
response to DuHðk � 1Þ variations. The step responses of
the three models before and after balancing the local
sensitivity parameters are plotted in Fig. 6. The largest
difference is visible in the static gain of model 2,
calculated as bH;2=ð1� a1;2 � a2;2Þ: The model accuracies
after balancing and for different b� choices are
compared in Table 5.
The same balancing algorithm has been applied for

the ANFIS optimized membership functions of Fig. 4
and the sensitivity parameters are compared in Fig. 7.
A b vector of ð1:48; 1:31; 0:28ÞT has been obtained to
achieve the balanced local conflicts and the correspond-
ing consequent parameters are shown in Table 8. The
prediction results of the balanced models are included in
Table 5.
Table 7

Consequent parameters obtained by multi-objective optimization that

correspond to the antecedent partition of Fig. 3 and result from the

balanced local sensitivity parameters shown in the right part of Fig. 5

(Validation set RMSE ¼ 4:727%)

i a1;i a2;i bF ;i bS;i bH;i di

1 1.52 �0:642 2.14 0.062 0.069 �3.05
2 0.93 �0:191 7.80 0.750 0.115 �13.6
3 0.93 �0:155 7.61 0.792 0.211 �20.9

Table 8

Consequent parameters for the ANFIS-optimized membership func-

tions of Fig. 4, resulting from the balanced sensitivity parameters

shown in the right part of Fig. 7, under the constraint b� ¼ 1

(validation set RMSE ¼ 4:701%)

i a1;i a2;i bF ;i bS;i bH;i di

1 1.51 �0:625 2.07 0.109 0.065 �2.84
2 0.94 �0:186 7.36 0.676 0.125 �13.5
3 0.92 �0:139 7.79 0.814 0.264 �24.7
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4. Discussion of results

4.1. Local sensitivity measures

Two different strategies for designing the weight
vector b have been applied to the design of the engine
load prediction model.

4.1.1. Equally distributed bi weights

The local accuracy of all local models is weighted with
the same bi value and the resulting sensitivity para-
meters are used to evaluate the partition of the
antecedent space as illustrated in Fig. 5 for the original
membership functions and in Fig. 7 for the ANFIS-
optimized partition. No particular local conflicts are
found for any of the local models and both partitions
are expected to give good prediction results with
interpretable consequent parameters.

4.1.2. Balanced local sensitivity measures

The local sensitivity measures Pl
i have been balanced

for both antecedent partition of Figs. 3 and 4. The
validation of the resulting models on a different data set
has illustrated the improved generalization for both
partitions (Table 5). A consistently lower validation
RMSE is found for every choice of the mean local
weight b� and for both antecedent partitions.

4.2. Model interpretation

The membership functions of both the original
partition of Fig. 3 and the ANFIS optimized partition
of Fig. 4 are revealing a similar regime decomposition.
The physical interpretation of these three models makes
it possible to analyze the corresponding consequent
models that are presented by their step responses in
Fig. 6. The numerical values of the static gains are given
in Table 9.

Local model 1: It approximates the engine load
responses when the machine is not harvesting any crop
or only small amounts. The recorded feedrate variations
are mainly induced by noise disturbances and unwanted
correlation with other varying signals (e.g., the machine
slope) and are therefore less reliable for predicting the
engine load. The engine is only slightly loaded in this
Table 9

Static gains of the different input variables, corresponding to the

balanced consequent parameters of Table 7

i Kstat
F (%/V) Kstat

S (%/deg) Kstat
H

1 17.54 0.50 0.57

2 29.89 2.87 0.44

3 33.82 3.52 0.94
regime, which results in faster and less damped
dynamics.

Local model 2: It characterizes the system response
during downhill harvesting. The extra harvesting task
introduces a higher engine load and, therefore, slower
dynamics. The negative machine slope makes it easier
for the engine to respond to variations of the ground
speed input signal uH ðk � 1Þ:

Local model 3: It describes the highest engine load
signal because of the high feedrate values and positive
machine slopes. This combination makes the engine
load more sensitive for handle variations. The dynamics
of the engine load response are similar to those of local
model 2.

4.3. Prediction accuracy

Fig. 8 shows the prediction performance of the
balanced consequent parameters of Table 8 on a data
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set that is different from the training set. The Takagi–
Sugeno fuzzy model is based on the ANFIS optimized
membership functions of Fig. 4 and are balanced for an
average model weight b� ¼ 1:
The high-frequency noise distortions on the engine

load measurement are obvious and are responsible for a
significant part of the residual terms of the calculated
training and validation RMSE values of Table 5. The
influence of the measurement noise is also visible in
Fig. 9, visualizing the simulated versus the measured
engine load values of the same validation set of Fig. 8.
The largest uncertainty occurs for low engine load
values and is caused by variations of other machine
parameters that are not included in the input space of
the model. The nonlinear characteristics, indicated
by the low performance of one global linear model
(Table 5) and the step responses of Fig. 6, are captured
by the fuzzy model since no bias terms arise on
the prediction error in the validated engine load range
(25–90%).
The achieved prediction accuracy in combination with

the interpretability of the local model parameters are
promising for the purpose of model-based constraint
handling, although closed-loop experiments are neces-
sary to confirm the results.
5. Conclusions

A multi-objective optimization formulation of the
identification problem for local model networks arises
naturally due to the two conflicting objectives between
local and global performance. In this paper, the multi-
objective formulation proposed in Johansen and
Babu$ska (2002) is extended by introducing a methodol-
ogy to select the local model weights in order to balance
the local sensitivity measures. As a result, the same
local–global tradeoff is achieved for every local model,
implying a better generalization performance of the final
Takagi–Sugeno fuzzy model without losing global
accuracy. Better prediction performance, in combina-
tion with a better physical interpretability of the local
model parameters, makes the resulting fuzzy model
promising as the system description in model-based
control schemes.
This multi-objective identification algorithm has been

applied to predict the engine load responses of an off-
road vehicle based on the past values of an indirect
machine load measurement, the backward/forward
machine slope and the ground speed input measure-
ment. The final Takagi–Sugeno fuzzy model has a good
prediction performance with an interpretable antecedent
partition and physically relevant consequent para-
meters. This mathematical representation can directly
be implemented in model-based control algorithms, to
attain a higher closed-loop performance.
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