Accountable:
Francisco José Berlanga Rivera ()
|
|
|
|
Journal Contributions: Published
Jump to Year: 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1998 1997 1994
2009 |
|
|
|
|
bib |
|
|
Y. Nojima, H. Ishibuchi, I. Kuwajima. Parallel distributed genetic fuzzy rule selection. Soft Computing 13:5 (2009) 511-519 |
|
|
bib |
|
2008 |
|
J.-N. Choi, S.-K. Oh, W. Pedrycz. Structural and parametric design of fuzzy inference systems using hierarchical fair competition-based parallel genetic algorithms and information granulation. International Journal of Approximate Reasoning 49:3 (2008) 631-648 |
|
|
bib |
|
|
E.G. Mansoori, M.J. Zolghadri, S.D. Katebi. SGERD: A steady-state genetic algorithm for extracting fuzzy classification rules from data. IEEE Transactions on Fuzzy Systems 16:4 (2008) 1061-1071 |
|
|
bib |
|
2007 |
|
|
|
|
bib |
|
|
C.-H. Tsang, J.H. Tsai, H. Wang. Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection. Pattern Recognition 40:9 (2007) 2373-2391 |
|
|
bib |
|
2006 |
|
|
|
|
bib |
|
|
N. Xiong, P. Funk. Construction of fuzzy knowledge bases incorporating feature selection. Soft Computing 10:9 (2006) 796-804 |
|
|
bib |
|
2005 |
|
J. Abonyi, B. Feil, A. Abraham. Computational intelligence in data mining. Informatica 29:1 (2005) 3-12 |
|
|
bib |
|
|
|
|
|
bib |
|
|
H. Wang, S. Kwong, Y. Jin, W. Wei, K.F. Man. Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction. Fuzzy Sets and Systems 149:1 (2005) 149-186 |
|
|
bib |
|
2004 |
|
H. Ishibuchi, T. Yamamoto. Comparison of heuristic criteria for fuzzy rule selection in classification problems. Fuzzy Optimization and Decision Making 3:2 (2004) 119-139 |
|
|
bib |
|
|
W. Pedrycz. Logic-driven fuzzy modeling with fuzzy multiplexers. Engineering Applications of Artificial Intelligence 17:4 (2004) 383-391 |
|
|
bib |
|
2003 |
|
J. Abonyi, J.A. Roubos, F. Szeifert. Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization. International Journal of Approximate Reasoning 32:1 (2003) 1-21 |
|
|
bib |
|
|
|
|
|
bib |
|
2002 |
|
|
|
|
bib |
|
|
S. Yu, S. Backer, P. Scheunders. Genetic feature selection combined with composite fuzzy nearest neighbor classifiers for hyperspectral satellite imagery. Pattern Recognition Letters 23:1-3 (2002) 183-190 |
|
|
bib |
|
2001 |
|
|
|
|
bib |
|
|
|
|
|
bib |
|
|
H. Ishibuchi, T. Nakashima, T. Murata. Three-objective genetics-based machine learning for linguistic rule extraction. Information Sciences 136:1-4 (2001) 109-133 |
|
|
bib |
|
|
F. Kojima, N. Kubota, S. Hashimoto. Identification of crack profiles using genetic programming and fuzzy inference. Journal of Materials Processing Technology 108:2 (2001) 263-267 |
|
|
bib |
|
2000 |
|
|
|
|
bib |
|
1998 |
|
|
|
|
bib |
|
|
|
|
|
bib |
|
|
H. Ishibuchi, T. Murata, M. Gen. Performance evaluation of fuzzy rule-based classification systems obtained by multi-objective genetic algorithms. Computers and Industrial Engineering 35:3-4 (1998) 575-578 |
|
|
bib |
|
1997 |
|
H. Ishibuchi, T. Nakashima, T. Murata. Comparison of the Michigan and Pittsburgh approaches to the design of fuzzy classification systems. Electronics and Communications in Japan, Part III: Fundamental Electronic Science 80:12 (1997) 10-18 |
|
|
bib |
|
1994 |
|
H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka. Construction of fuzzy classification systems with rectangular fuzzy rules using genetic algorithms. Fuzzy Sets and Systems 65:2-3 (1994) 237-253 |
|
|
bib |
|
Contributions to Books Chapters
Jump to Year: 2008 2007 2006
2008 |
|
|
|
|
bib |
|
2007 |
|
|
|
|
bib |
|
2006 |
|
H. Ishibuchi, Y. Nojima. Fuzzy ensemble design through multi-objective fuzzy rule selection. In:
Y. Jin (Eds.) Multi-Objective Machine Learning. Studies in Computational Intelligence 16, Springer-Verlag, 2006, 507-530 |
|
|
bib |
|
Conference Contributions
Jump to Year: 2008 2007 2006 2005 2004 2003 2001 2000 1999 1998 1997 1994
2008 |
|
F.J. Berlanga, M.J. del Jesus, F. Herrera. A novel genetic cooperative-competitive fuzzy rule based learning method using genetic programming for high dimensional problems. 3rd International Workshop on Genetic and Evolving Fuzzy Systems (GEFS08). WittenBommerholz (Germany, 2008) 101-106 |
|
|
bib |
|
|
|
|
|
bib |
|
|
|
|
|
bib |
|
|
H. Ishibuchi, Y. Kaisho, Y. Nojima. Designing fuzzy rule-based classifiers that can visually explain their classification results to human users. 3rd International Workshop on Genetic and Evolving Fuzzy Systems (GEFS08). WittenBommerholz (Germany, 2008) 5-10 |
|
|
bib |
|
|
I. Kuwajima, H. Ishibuchi, Y. Nojima. Effectiveness of designing fuzzy rule-based classifiers from Pareto-optimal rules. 2008 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE08). Hong Kong (China, 2008) 1185-1192 |
|
|
bib |
|
2007 |
|
M.S. Abadeh, J. Habibi. Computer intrusion detection using an iterative fuzzy rule learning approach. 2007 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE07). London (UK, 2007) 1-6 |
|
|
bib |
|
|
J.J. Aguilera, M. Chica, M.J. del Jesus, F. Herrera. Niching genetic feature selection algorithms applied to the design of fuzzy rule-based classification systems. 2007 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE07). London (UK, 2007) 1794-1799 |
|
|
bib |
|
|
|
|
|
bib |
|
|
K. Almejalli, K. Dahal, A. Hossain. GA-based learning algorithms to identify fuzzy rules for fuzzy neural networks. 7th International Conference on Intelligent Systems Design and Applications (ISDA07). Rio de Janeiro (Brazil, 2007) 289-294 |
|
|
bib |
|
|
H. Ishibuchi, I. Kuwajima, Y. Nojima. Relation between pareto-optimal fuzzy rules and pareto-optimal fuzzy rule sets. The 2007 IEEE Symposium on Computational Intelligence in Multicriteria Decision Making (MCDM07). Honolulu (USA, 2007) 42-49 |
|
|
bib |
|
|
Y. Nojima, I. Kuwajima, H. Ishibuchi. Data set subdivision for parallel distributed implementation of genetic fuzzy rule selection. 2007 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE07). London (UK, 2007) 1-6 |
|
|
bib |
|
|
A. Yang, L. Jiang, Y. Zhou. A KFCM-based fuzzy classifier. Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD07). Haikou (China, 2007) 80-84 |
|
|
bib |
|
|
A.-M. Yang, X.-G. Li, L.-M. Jiang, Y.-M. Zhou, Q.-Q. Li. A method of generating rules for a kernel fuzzy classifier. Sixth International Conference on Machine Learning and Cybernetics (ICMLC07). Hong Kong (China, 2007) 2695-2700 |
|
|
bib |
|
2006 |
|
M. Bereta, T. Burczynski. MAICS: Multilevel artificial immune classification system. The Eighth International Conference on Artificial Intelligence and Soft Computing (ICAISC06). Lecture Notes in Computer Science 4029, Springer 2006, Zakopane (Poland, 2006) 563-572 |
|
|
bib |
|
|
F.J. Berlanga, M.J. del Jesus, M.J. Gacto, F. Herrera. A genetic-programming-based approach for the learning of compact fuzzy rule-based classification systems. The Eighth International Conference on Artificial Intelligence and Soft Computing (ICAISC06). Lecture Notes in Computer Science 4029, Springer 2006, Zakopane (Poland, 2006) 182-191 |
|
|
bib |
|
|
J.-M. Gil, S.-H. Lee. Genetic-fuzzy modeling on high dimensional spaces. 10th International Conference on Knowledge-Based & Intelligent Information & Engineering Systems (KES 2006). Lecture Notes in Computer Science 4251, Springer 2006, Bournemouth (UK, 2006) 1147-1154 |
|
|
bib |
|
|
H. Ishibuchi, Y. Nojima, I. Kuwajim. Finding simple fuzzy classification systems with high interpretability through multiobjective rule selection. 10th International Conference on Knowledge-Based & Intelligent Information & Engineering Systems (KES 2006). Lecture Notes in Computer Science 4252, Springer 2006, Bournemouth (UK, 2006) 86-93 |
|
|
bib |
|
|
H. Ishibuchi, Y. Nojima, I. Kuwajima. Comparison of search ability between genetic fuzzy rule selection and fuzzy genetics-based machine learning. 2006 International Symposium on Evolving Fuzzy Systems (EFS06). Lake District (UK, 2006) 125-130 |
|
|
bib |
|
|
H. Ishibuchi, Y. Nojima, I. Kuwajima. Fuzzy data mining by heuristic rule extraction and multiobjective genetic rule selection. 2006 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE06). Vancouver (Canada, 2006) 1633-1640 |
|
|
bib |
|
|
H. Ishibuchi, Y. Nojima, I. Kuwajima. Genetic rule selection as a postprocessing procedure in fuzzy data mining. 2006 International Symposium on Evolving Fuzzy Systems (EFS06). Lake District (UK, 2006) 286-291 |
|
|
bib |
|
|
J.-H. Park, D. Stonier, J.-H. Kim, B.-H. Ahn, M.-G. Jeon. Recombinant rule selection in evolutionary algorithm for fuzzy path planner of robot soccer. 29th Annual German Conference on Artificial Intelligence (KI06). Lecture Notes in Computer Science 4314, Springer-Verlag 2006, Bremen (Germany, 2006) 317-330 |
|
|
bib |
|
|
Z.-Y. Xing, Y.-L. Hou, Y. Zhang, L.-M. Jia, Y. Hou. A multi-objective cooperative coevolutionary algorithm for constructing accurate and interpretable fuzzy systems. 2006 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE06). Vancouver (Canada, 2006) 1404-1410 |
|
|
bib |
|
|
X. Zong-yi, H. Yuan-long, T. Zhong-zhi, J. Li-min. Construction of fuzzy classification system based on multi-objective genetic algorithm. Sixth International Conference on Intelligent Systems Design and Applications (ISDA06). Jinan (China, 2006) 1029-1034 |
|
|
bib |
|
2005 |
|
P.A.D. Castro, H.A. Camargo. Focusing on interpretability and accuracy of a genetic fuzzy system. The 2005 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2005). Reno (USA, 2005) 696-701 |
|
|
bib |
|
|
H. Ishibuchi, Y. Nojima. Performance evaluation of evolutionary multiobjective approaches to the design of fuzzy rule-based ensemble classifiers. Fifth International Conference on Hybrid Intelligent Systems (HIS05). Rio de Janeiro (Brazil, 2005) 271-276 |
|
|
bib |
|
|
H. Ishibuchi, Y. Nojima. Comparison between fuzzy and interval partitions in evolutionary multiobjective design of rule-based classification systems. The 2005 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2005). Reno (USA, 2005) 430-435 |
|
|
bib |
|
2004 |
|
H. Ishibuchi, T. Yamamoto. Multi-objective evolutionary design of fuzzy rule-based systems. 2004 IEEE International Conference on Systems, Man and Cybernetics (SMC 2004). The Hague (The Netherlands, 2004) 2362-2367 |
|
|
bib |
|
2003 |
|
T. Yamamoto, H. Ishibuchi. Performance evaluation of three-objective genetic rule selection. The 2003 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2003). St Louis (USA, 2003) 149-154 |
|
|
bib |
|
2001 |
|
|
|
|
bib |
|
2000 |
|
H. Ishibuchi, T. Nakashima, T. Kuroda. Hybrid fuzzy GBML algorithm for designing compact fuzzy rule-based classification systems. The 2000 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2000). San Antonio (USA, 2000) 706-711 |
|
|
bib |
|
|
H. Roubos, M. Setnes. Compact fuzzy models through complexity reduction and evolutionary optimization. IEEE International Conference on Fuzzy Systems 2000 (Fuzz-IEEE 2000). San Antonio (USA, 2000) 762-767 |
|
|
bib |
|
1999 |
|
H. Ishibuchi, T. Sotani, T. Murata. Tradeoff between the performance of fuzzy rule-based classification systems and the number of fuzzy if-then rules. 1999 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS 1999). New York (USA, 1999) 125-129 |
|
|
bib |
|
1998 |
|
H. Ishibuchi, T. Murata. Multi-objective genetic local search for minimizing the number of fuzzy rules for pattern classification problems. The 1998 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 1998). Anchorage (USA, 1998) 1100-1105 |
|
|
bib |
|
1997 |
|
H. Ishibuchi, M. Nii, T. Murata. Linguistic rule extraction from neural networks and genetic-algorithm-based rule selection. The 1997 IEEE International Conference on Neural Networks. Houston (USA, 1997) 2390-2395 |
|
|
bib |
|
1994 |
|
H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka. Acquisition of fuzzy classification knowledge using genetic algorithms. The 1994 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 1994). Orlando (USA, 1994) 1963-1968 |
|
|
bib |
|
|
|
|
Journal Contributions: Published
Jump to Year: 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1994
2008 |
|
R. Naresh, V. Sharma, M. Vashisth. An integrated neural fuzzy approach for fault diagnosis of transformers. IEEE Transactions on Power Delivery 23:4 (2008) 2017-2024 |
|
|
bib |
|
|
S. Nefti, M. Oussalah, U. Kaymak. A new fuzzy set merging technique using inclusion-based fuzzy clustering. IEEE Transactions on Fuzzy Systems 16:1 (2008) 145-161 |
|
|
bib |
|
|
N.R. Pal, S. Saha. Simultaneous structure identification and fuzzy rule generation for Takagi-Sugeno models. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 38:6 (2008) 1626-1638 |
|
|
bib |
|
|
P. Salgado. Rule generation for hierarchical collaborative fuzzy system. Applied Mathematical Modelling 32:7 (2008) 1159-1178 |
|
|
bib |
|
|
E. Schmitt, V. Bombardier, L. Wendling. Improving fuzzy rule classifier by extracting suitable features from capacities with respect to the Choquet integral. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 38:5 (2008) 1195-1206 |
|
|
bib |
|
2007 |
|
A. Bouchachia, R. Mittermeir. Towards incremental fuzzy classifiers. Soft Computing 11:2 (2007) 193-207 |
|
|
bib |
|
|
J.L. Castro, L.D. Flores-Hidalgo, C.J. Mantas, J.M. Puche. Extraction of fuzzy rules from support vector machines. Fuzzy Sets and Systems 158:18 (2007) 2057-2077 |
|
|
bib |
|
|
Y. Hou, J.M. Zurada, W. Karwowski, W.S. Marras, K. Davis. Identification of key variables using fuzzy average with fuzzy cluster distribution. IEEE Transactions on Fuzzy Systems 15:4 (2007) 673-685 |
|
|
bib |
|
|
S.-M. Zhou, J.Q. Gan. Constructing L2-SVM-based fuzzy classifiers in high-dimensional space with automatic model selection and fuzzy rule ranking. IEEE Transactions on Fuzzy Systems 15:3 (2007) 398-409 |
|
|
bib |
|
2006 |
|
C.-T. Lin, C.-M. Yeh, S.-F. Liang, J.-F. Chung, N. Kumar. Support-vector-based fuzzy neural network for pattern classification. IEEE Transactions on Fuzzy Systems 14:1 (2006) 31-41 |
|
|
bib |
|
2005 |
|
J.G. Castellano, A.M. Fanelli, C. Mencar, C. Castiello. Knowledge discovery by a neuro-fuzzy modeling framework. Fuzzy Sets and Systems 149 (2005) 187-207 |
|
|
bib |
|
|
M.K. Ciliz. Rule base reduction for knowledge-based fuzzy controllers with application to a vacuum cleaner. Expert Systems with Applications 28:1 (2005) 175-184 |
|
|
bib |
|
2004 |
|
P. Carmona, J.L. Castro, J.M. Zurita. FRIwE: Fuzzy Rule Identification With Exceptions. IEEE Transactions on Fuzzy Systems 12:1 (2004) 140-151 |
|
|
bib |
|
|
D. Chakraborty, N.R. Pal. A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification. IEEE Transactions on Neural Networks 15:1 (2004) 110-123 |
|
|
bib |
|
|
M.-Y. Chen, D.A. Linkens. Rule-base self-generation and simplification for data-driven fuzzy models. Fuzzy Sets and Systems 142:2 (2004) 243-265 |
|
|
bib |
|
|
W. Duch, R. Setiono, J.M. Zurada. Computational intelligence methods for rule-based data understanding. Proceedings of the IEEE 92:5 (2004) 771-805 |
|
|
bib |
|
|
X. Hong, C.J. Harris, S. Chen. Robust Neurofuzzy Rule Base Knowledge Extraction and Estimation Using Subspace Decomposition Combined with Regularization and D-Optimality. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34:1 (2004) 598-608 |
|
|
bib |
|
|
Q. Shen, R. Jensen. Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring. Pattern Recognition 37:7 (2004) 1351-1363 |
|
|
bib |
|
2003 |
|
|
|
|
bib |
|
|
M.R. Berthold. Mixed fuzzy rule formation. International Journal of Approximate Reasoning 32:2-3 (2003) 67-84 |
|
|
bib |
|
|
Y. Chen, J.Z. Wang. Support Vector Learning for Fuzzy Rule-Based Classification Systems. IEEE Transactions on Fuzzy Systems 11:6 (2003) 716-728 |
|
|
bib |
|
|
X. Hong, C.J. Harris. A neurofuzzy network knowledge extraction and extended Gram-Schmidt algorithm for model subspace decomposition. IEEE Transactions on Fuzzy Systems 11:4 (2003) 528-541 |
|
|
bib |
|
|
J.A. Roubos, M. Setnes, J. Abonyi. Learning fuzzy classification rules from labeled data. Information Sciences 150:1-2 (2003) 77-93 |
|
|
bib |
|
2002 |
|
|
|
|
bib |
|
|
|
|
|
bib |
|
|
R.P. Li, M. Mukaidono, I. Burhan. A fuzzy neural network for pattern classification and feature selection. Fuzzy Sets and Systems 130:1 (2002) 101-108 |
|
|
bib |
|
|
Q. Shen, A. Chouchoulas. A rough-fuzzy approach for generating classification rules. Pattern Recognition 35:11 (2002) 2425-2438 |
|
|
bib |
|
2001 |
|
V. Ravi, H.J. Zimmermann. A neural network and fuzzy rule base hybrid for pattern classification. Soft Computing - A Fusion of Foundations, Methodologies and Applications 5:2 (2001) 152-159 |
|
|
bib |
|
|
M. Setnes, R. Babuska. Rule base reduction: Some comments on the use of orthogonal transforms. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews 31:2 (2001) 199-206 |
|
|
bib |
|
2000 |
|
V. Ravi, H.J. Zimmermann. Fuzzy rule based classification with FeatureSelector and modified threshold accepting. European Journal of Operational Research 123:1 (2000) 16-28 |
|
|
bib |
|
|
V. Ravi, P.J. Reddy, H.J. Zimmermann. Pattern classification with principal component analysis and fuzzy rule bases. European Journal of Operational Research 126:3 (2000) 526-533 |
|
|
bib |
|
|
Q. Shen, A. Chouchoulas. Modular approach to generating fuzzy rules with reduced attributes for the monitoring of complex systems. Engineering Applications of Artificial Intelligence 13:3 (2000) 263-278 |
|
|
bib |
|
|
R. Silipo, M.R. Berthold. Input features' impact on fuzzy decision processes. IEEE Transactions on Systems, Man and Cybernetics, Part B 30:6 (2000) 821-834 |
|
|
bib |
|
1999 |
|
L. Mikenina, H.J. Zimmermann. Improved feature selection and classification by the 2-additive fuzzy measure. Fuzzy Sets and Systems 107:2 (1999) 197-218 |
|
|
bib |
|
|
M. Ramze, B. Goedhart, B.P.F. Lelieveldt, J.H.C. Reiber. Fuzzy feature selection. Pattern Recognition 32:12 (1999) 2011-2019 |
|
|
bib |
|
|
J. Yen, L. Wang. Simplifying fuzzy rule-based models using orthogonal transformation methods. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 29:1 (1999) 13-24 |
|
|
bib |
|
1998 |
|
J. Martens, G. Wets, C. Mues. An initial comparison of a fuzzy neural classifier and a decision tree based classifier. Expert Systems with Applications 15:3-4 (1998) 375-381 |
|
|
bib |
|
|
M. Setnes, R. Babuska, U. Kaymak, H.R. Van Nauta Lemke. Similarity measures in fuzzy rule base simplification. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 28:3 (1998) 376-386 |
|
|
bib |
|
1997 |
|
R. Thawonmas, S. Abe. A novel approach to feature selection based on analysis of class regions. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 27:2 (1997) 196-207 |
|
|
bib |
|
1994 |
|
C.-T. Sun. Rule-base structure identification in an adaptive-network-based fuzzy inference system. EEE Transactions on Fuzzy Systems 2:1 (1994) 64-73 |
|
|
bib |
|
|
E. Tunstel, S. Hockemeier, M. Jamshidi. Fuzzy control of a hovercraft platform. Engineering Applications of Artificial Intelligence 7:5 (1994) 513-519 |
|
|
bib |
|
Conference Contributions
Jump to Year: 2008 2007 2006 2004 1997 1994
2008 |
|
S.-M. Zhou, R.I. John, X.-Y. Wang, J.M. Garibaldi, I.O. Ellis. Compact fuzzy rules induction and feature extraction using SVM with particle swarms for breast cancer treatments. 2008 IEEE Congress on Evolutionary Computation (CEC08). Hong Kong (China, 2008) 1469-1475 |
|
|
bib |
|
2007 |
|
O. Dehzangi, M.J. Zolghadri, S. Taheri, S.M. Fakhrahmad. Efficient fuzzy rule generation: A new approach using data mining principles and rule weighting. Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD07). Haikou (China, 2007) 134-139 |
|
|
bib |
|
|
S.M. Fakhrahmad, A. Zare, M.Z. Jahromi. Constructing accurate fuzzy rule-based classification systems using apriori principles and rule-weighting. 8th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL07). Lecture Notes in Computer Science 4881, Springer-Verlag 2007, Birmingham (UK, 2007) 547-556 |
|
|
bib |
|
|
N.R. Pal. A fuzzy rule based approach to identify biomarkers for diagnostic classification of cancers. 2007 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE07). London (UK, 2007) 1-6 |
|
|
bib |
|
|
B. Pizzileo, K. Li. A new fast algorithm for fuzzy rule selection. 2007 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE07). London (UK, 2007) 1-6 |
|
|
bib |
|
2006 |
|
N.E. Mitrakis, J.B. Theocharis. A self-organizing fuzzy polynomial neural network - Multistage classifier. The 2006 International Symposium on Evolving Fuzzy Systems (EFS06). Lake District (UK, 2006) 74-79 |
|
|
bib |
|
|
D. Wang, X.-J. Zeng, J.A. Keane. Learning for hierarchical fuzzy systems based on the gradient-descent method. 2006 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE06). Vancouver (Canada, 2006) 92-99 |
|
|
bib |
|
2004 |
|
O. Ciftcioglu. Note on orthogonal transformation methods for simplifying fuzzy rule-based models. 2004 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS 2004). Banff (Canada, 2004) 756-761 |
|
|
bib |
|
|
H. Ishibuchi, T. Yamamoto. Heuristic extraction of fuzzy classification rules using data mining techniques: An empirical study on benchmark data sets. The 2004 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2004). Budapest (Hungary, 2004) 161-166 |
|
|
bib |
|
1997 |
|
H. Ishibuchi, T. Nakashima, T. Morisawa. Simple fuzzy rule-based classification systems perform well on commonly used real-world data sets. 1997 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS97). Syracuse (USA, 1997) 251-256 |
|
|
bib |
|
1994 |
|
K. Nozaki, H. Ishibuchi, H. Tanaka. Selecting fuzzy rules with forgetting in fuzzy classification systems. The 1994 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 1994). Orlando (USA, 1994) 618-623 |
|
|
bib |
|
|
If you would like to add a new reference in this specific topic, please contact:
Francisco José Berlanga Rivera ()
|
|