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An Integrated Neural Fuzzy Approach
for Fault Diagnosis of Transformers

R. Naresh, Veena Sharma, and Manisha Vashisth

Abstract—This paper presents a new and efficient integrated
neural fuzzy approach for transformer fault diagnosis using
dissolved gas analysis. The proposed approach formulates the
modeling problem of higher dimensions into lower dimensions by
using the input feature selection based on competitive learning and
neural fuzzy model. Then, the fuzzy rule base for the identification
of fault is designed by applying the subtractive clustering method
which is very good at handling the noisy input data. Verification
of the proposed approach has been carried out by testing on
standard and practical data. In comparison to the results obtained
from the existing conventional and neural fuzzy techniques, the
proposed method has been shown to possess superior performance
in identifying the transformer fault type.

Index Terms—Cluster centers, neural-fuzzy model, self-or-
ganizing network, subtractive clustering, transformer fault
diagnosis.

I. INTRODUCTION

T HE POWER transformer is essential equipment of the
electrical power system. Any fault in the power trans-

former may lead to the interruption of the power supply and ac-
cordingly, the financial losses will also be great. So it is of vital
importance to detect the incipient fault of the transformer as
early as possible. To monitor the serviceability of power trans-
formers, many devices have evolved, such as Buchholz relays or
differential relays. But the main shortcoming of these devices is
that they only respond to the severe power failures which re-
quire removal of equipment from the service. Thus, techniques
for early detection of the faults would be very valuable to avoid
outages.

Among the existing methods for identifying the incipient
faults, dissolved gas analysis (DGA) is the most popular and
successful method [1]–[3]. When there is any kind of fault,
such as overheating or discharge fault inside the transformer,
it will produce a corresponding characteristic amount of gases
in the transformer oil. This concept is the underlying prin-
ciple of DGA. Through the analysis of the concentrations of
dissolved gases, their gassing rates, and the ratios of certain
gases, the DGA method can determine the fault type of the
transformer. The commonly collected and analyzed gases are
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H , CH , C H , C H , C H , CO, and CO . An ANSI/IEEE
standard and IEC publication 599 [4], [5] describes three DGA
approaches: 1) key gas method; 2) Roger’s ratio method; and
3) the Doernenberg ratio method. All three methods are com-
putationally straightforward. However, these methods, in some
cases, provide erroneous diagnoses as well as no conclusion for
the fault type. The key gas method based on the determination
of the key gas provides the basis for qualitative determination
of fault types from the gases that are typical or predominant at
various temperatures. Now, if the fault is very severe, then all of
the gas concentrations will be high, yet insufficient to register a
fault when using the values specified in IEEE standard [2]. Also,
the gas ratios obtained for the particular transformer sample,
may not fall within ANSI/IEEE-specified ranges, leading to the
failure of the ratio methods for transformer diagnosis [6].

In recent years, many researchers have studied the applica-
tion of artificial intelligence, such as neural networks and fuzzy
set theory to increase diagnosis accuracy [6]–[15]. The fuzzy
systems, though good at handling uncertainties, could not learn
from previous diagnosis results and, hence, are not able to ad-
just the diagnostic rules automatically [10]–[13]. To account for
uncertainties, the artificial neural networks (ANNs) have been
proposed to diagnose the transformer’s faults because of their
superior learning capabilities [6]–[9]. In general, fuzzy systems
and neural networks deal efficiently with two different areas of
information processing. Fuzzy systems are good at various as-
pects of uncertain knowledge representation, while neural net-
works are efficient structures that are capable of learning from
examples. Both techniques complement each other. The gener-
alized regression neural network was used in [14] but since this
network is a one-pass network, efficiency is somewhat low for
fault detection. An application of fuzzy clustering and a radial
basis function neural network was reported in [15]; however,
when one type of fault is in the neighborhood of other types of
faults, then the chances of false diagnosis increase. In this paper,
a combination of neural network and fuzzy system is proposed
for enhancing the performance of the diagnostic system.

The objective of this work is to develop an efficient neural
fuzzy model for providing transformer diagnosis. The model is
developed from the available data for the five fault types. The
self-organizing network, based on the concept of competitive
learning, operates by dividing input data into a suitable number
of clusters. The neural fuzzy model then employs cluster centers
information to rank the importance of these gases that are used
to select the significant input features over insignificant ones.
The resulting input fault gases data are used by the subtractive
clustering method to extract the fuzzy rule base for identifying
each class of fault data. The main advantage of the proposed
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Fig. 1. Self-organizing network.

approach over others is that the fuzzy rule generation process
of subtractive clustering employed in this work is dynamic in
that the variation in radius parameter changes the rule base and
the diagnosis accuracy. Therefore, an optimal value of this pa-
rameter can be chosen to obtain the better diagnosis. Also, when
little information is available about an optimal number of cluster
centers, the proposed approach is advantageous over other opti-
mization and clustering algorithms as an adverse effect of out-
liers on diagnostic accuracy is decreased significantly.

This paper is organized as follows: In Section I, there is a
brief introduction of the topic; followed by feature selection
algorithm using the self-organizing network in Section II. In
Section III, methods of diagnosis, conventional, and existing
neural-fuzzy approaches and proposed techniques using sub-
tractive clustering are presented. In Section IV, the entire model
formulation is summarized in one algorithm. The results of the
testing the proposed diagnosis system on DGA data of power
transformers and a comparison of this proposed technique with
conventional neural fuzzy methods are dealt with in Section V,
followed by the conclusion in Section VI.

II. FEATURE SELECTION

From the training data selected from [16], it is observed
that for the major five fault types, the gases dissolved in the
oil are hydrogen, methane, acetylene, ethylene, ethane, carbon
monoxide and carbon dioxide. The first step for developing the
neural fuzzy model is feature selection. In feature selection the
gases which are most important for the diagnosis of the major
faults are obtained. Feature selection for the major faults has
been carried out by using the neural fuzzy model [17] is briefly
described in the following paragraph.

A. Generation of Clusters

An algorithm based on the self-organizing Kohonen network
has been developed in this work [17] for the input fault pattern
selection. The structure of the network is shown in Fig. 1. It has
one input layer and one competitive layer. In the input layer,
there is number of neurons according to the size of input pat-
terns. In a competitive layer, the number of neurons is generated
dynamically by selecting the appropriate value of threshold. All
of the input fault data patterns are divided into number of clus-
ters using the unsupervised learning algorithm in the competi-
tive layer. The weights of the network are adjusted according to

the distance calculated between the input pattern and the previ-
ously present weights.

Notations number of input patterns in dimensional
space; is the th training pattern;
is the th cluster center; is the number of fault points in the
th cluster; is the weight vector of

the th neuron in the competitive layer; is the initial
learning rate; is the total neurons created dynamically in the
competitive layer.

First, the input pattern is presented to the input layer of the
self-organizing network and then its Euclidean distances from
the weight vectors of competitive layer neurons are calculated.
The set of neurons having distances less than the predefined
threshold is identified. If there is only one neuron in the set, then
it is the winner; otherwise, the neuron with a lower index will be
the winner [17]. Further, a new neuron is created in the compet-
itive layer if all of the calculated Euclidean distances are larger
than the predefined threshold. If a higher value of threshold is
chosen, then the number of clusters generated will be less and
the results obtained may be vague because of underfitting. And
if a smaller value of threshold is chosen, then it would lead to
overfitting by generating a large number of clusters. So it is very
important to choose the appropriate value of threshold. Here, by
testing various values of threshold on the model, the value which
provides the best results is selected as the threshold value. If
neuron is the winner for input pattern , then it belongs to
cluster and the weight vector of that neuron is modified as

where is the learning rate which is determined by
, where is the number of input

patterns belonging to cluster .
The DGA data taken from [16] were divided into two types

(i.e., training and testing data). Out of 117 random samples, 87
samples were selected for training and the remaining 30 were
left for testing. The training data were first normalized in the
range [0, 1]. After applying data to this self-organizing network
and selecting the threshold value as 0.1, clusters were
formed dynamically.

B. Initial Fuzzy Model Derived From Competitive Learning

Here, each cluster center is considered as a fuzzy rule that
describes the system local behavior. Intitutively, cluster center

represents the rule:
“If input is around , then input belongs to cluster ”

We can also represent this rule in terms of a fuzzy inference
system, employing traditional fuzzy IF-THEN rules

is and is and

is cluster is

where denotes the th rule; and is the Gaussian mem-
bership function in the th rule. The membership function
is given by

(1)
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Fig. 2. Neural fuzzy model for feature selection.

and, consequently, the rule is given as

(2)

where is
the th element of the th cluster center and is the span in
the input data. The degree of fulfillment of each rule is com-
puted by using multiplication as the AND operator, and because
the fuzzy system performs classification, we simply select the
consequence of the rule (i.e., ) with the highest degree of ful-
fillment to be the output of the fuzzy system. Thus, these
clusters form the initial fuzzy model with rules that are
used for selecting the important features.

C. Significant Input Feature Selection

From the modeling point of view, the variables which make
the model simpler, more useful, reliable, and more practical to
apply are incorporated into the model. The initial fuzzy model
discussed in Section II-B is employed for determining the im-
portance of each fault gas. It is known that the change of the
system output is contributed to by all input variables but the
larger the output change caused by a specified input variable,
the more important this input variable is. The importance of
all input variables which, in the present problem, are seven
fault gases can be tested simultaneously under a given prede-
fined index by using a simplified fuzzy inference neural-network
model which can generate in parallel all fuzzy outputs with re-
spect to every individual input variable. The structure [17] of
neural fuzzy inference is shown in Fig. 2.

The model is a three-layer feedforward network. Un-
like common neural fuzzy models, the input and output of
each neuron are vectors. The prototypes of the clusters

form a matrix C which is generated by com-
petitive learning and stores the input patterns for a neural fuzzy
model for feature selection. The first layer is called the fuzzifi-
cation layer. The activation function of each neuron consists of
a set of membership functions, i.e., ,
where is the membership function of the th fuzzy subset
of the th input variable, which is defined as

(3)

where and are elements of matrix C, and is the spread
or span in the cluster centers.

The basic idea is that all antecedent clauses are assigned the
value 1 except for one dominant testing input variable, then
fuzzy inference using multiplication as the AND operator and de-
fuzzification using the center of gravity algorithm can be merged
into one procedure which is implemented by the second layer of
the network.

In this layer, the output of the th neuron
denotes the fuzzy inference output cor-

responding to the contribution of the th input variable. The
output vector is computed by

(4)

where is obtained from (2).
On the basis of fuzzy output vectors, the importance of

input variables can be recognized by calculating the change
range of corresponding , which can be obtained in the output
layer of the network by .

The input selection is carried out according to the following
steps.
Step 1) Define the importance factor of the th input by

(5)

where .
Step 2) Rank the importance of all input variables according

to their corresponding values.
Step 3) Remove all input variables with respect to ,

where is the predefined threshold.
Obviously, corresponds to the most important input

variable, the large varying range of the fuzzy output indi-
cating the big influence of the corresponding input variable. A
small value of corresponds to a relatively unimportant input.
When is less than the threshold (i.e., ), the corre-
sponding input variable is believed to be unimportant and can
be removed. Assume that there are inputs with the values of

; thus, a collection of inputs are selected from input
variables.

In this paper, the importance factors for different input vari-
ables obtained on the basis of aforesaid clusters are shown in
Table I. On the basis of trial-and-error simulation runs, the most
suitable value for the threshold was considered to be 0.5 and
using this value, the gases carbon dioxide and carbon monoxide
were discarded. The gases carbon dioxide and carbon monoxide
are helpful in cellulose degradation [18], [19] and their effect
on DGA is less prominent. Also from Table I, it is evident that
the importance factor of both gases is low, so these gases have
been discarded in feature selection. The value of the threshold,
if taken to be large and close to 1.0, results in the elimination
of important features which leads to poor diagnosis. And if the
threshold that is taken is very small, then all features remaining
in the network, would further lead to an increase in dimension-
ality of the network, and the partitioning of the fault region
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TABLE I
IMPORTANCE FACTOR (IF) FOR INPUT VARIABLES (IV)

would become difficult, because the region of overlap will be
more among different fault types.

Thus, when the problem of feature selection is complete, we
prune the training data to include only five significant input
gases, namely: 1) hydrogen; 2) methane; 3) acetylene; 4) ethy-
lene; and 5) ethane.

III. METHODS OF DIAGNOSIS

A. Module 1: Conventional Techniques

1) Rogers Ratio Method: This method is based on three gas
ratios. The algorithm is based on IEEE C57.104-1991 standard
[4]. The simulation code was developed in Matlab.

2) Fuzzy C Means Method: Fuzzy C-means (FCM) is the
data clustering technique which suggests that each input pattern
belong to the cluster which is defined by its membership func-
tion. This technique was defined first by J. Bezedek [12]. In this
technique, the number of input patterns having dimensions
is clustered in number of clusters. These different clusters
are defined as faults for the DGA as described in [13].

3) Generalized Regression Neural Network: The generalized
regression neural network (GRNN) has been found to be ad-
vantageous in solving a great variety of difficult mapping and
prediction problems. In this network, the input patterns are dis-
tributed in all of the pattern units. These pattern units have the
same number as that of the input patterns. Now, if a new input
pattern is given to the network, it will calculate its distance from
the respective cluster centers and this distance after multiplica-
tion with the bias will be applied to the radial basis function and,
finally, the response of the network can be obtained [14].

4) Fuzzy Clustering and Radial Basis Function Neural Net-
work: The input patterns in this case are normalized by a fuzzy
membership function called sigmoidal function. And then,
using the fuzzy clustering for selecting the efficient training
data and finally the faults were determined using the radial
basis function neural network (RBFNN) [15].

B. Module 2: Proposed Technique

1) Subtractive Clustering Method: Subtractive clustering has
been described in detail in [20]–[22]. Subtractive clustering is
a very fast and efficient clustering method designed for a mod-
erate number of input patterns, because its computation grows
linearly with the data dimension and as the square of the number
of data points. The subtractive clustering method is available in
the fuzzy logic toolbox for MATLAB [23].

In the subtractive clustering method, the training data are di-
vided according to their respective class labels and then the sub-
tractive clustering algorithm is applied on each group of data in-
dividually to extract the rules for identifying each class of data.
Let a group of data points be specified
for a particular class in the feature space. The first step in sub-
tractive clustering is to normalize the data in the feature space

in the range [0, 1]. Each data point in the class is considered a
potential cluster center and the measure of the potential of data
point to serve as a cluster center is defined as

(6)

where

(7)

denotes the Euclidean distance, and the positive constant
is effectively a normalized radius defining a neighborhood.

The data points outside this radius have little influence on the
potential of the data points within this radius. Thus, the measure
of the potential of a data point is a function of its distances to
all other data points. A data point with many neighboring data
points will have a high potential value. After the potential of
every data point has been computed, we select the data point
with the highest potential as the first cluster center.

Let be the location of the first cluster center with as
its potential value. Now, the potential of each data point is
revised by the formula

where

(8)

and is a positive constant. Thus, there is a subtraction of an
amount of potential from each data point as a function of its dis-
tance from the first cluster center. Thus, the potential of the data
points near the first cluster center will be greatly reduced and,
therefore, their possibility of getting selected as the next cluster
center will be eliminated. The constant is an effective radius
defining the neighborhood which will have measurable reduc-
tions in potential. To avoid obtaining closely spaced cluster cen-
ters, choose .

When the potential of all data points has been reduced ac-
cording to (8), then select the data point with the highest re-
maining potential as the second cluster center. Also, the poten-
tial of each data point is reduced according to its distance to the
second cluster center.

The whole procedure is generalized as follows: After the th
cluster center has been obtained, the potential of each data point
is revised by the formula

(9)

where is the location of the th cluster center and is its
potential value.

The process of acquiring a new cluster center and reducing
potential repeats until the remaining potential of all data points
are below some fraction of the potential of the first cluster center

; typically using as the stopping criterion.
2) Generating Fuzzy Rule Base From Clusters: Fuzzy rules

are obtained from cluster centers generated by subtractive clus-
tering for identifying a particular class. Suppose l number of
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cluster centers are obtained for class . Consider cluster center
in the group of data for class , this cluster center is trans-

lated into the rule

Rule If is near then class is

The degree of fulfillment of is defined as

(10)

where and . is the radius selected
for subtractive clustering. We can also write this rule in the more
familiar form

If is is

then class is

where is the th input feature and is the membership
function in the th rule associated with the th input feature (
varies in the input feature dimensions). The membership func-
tion is given by

(11)

where is the th element of , and is the spread. The
degree of fulfillment of each rule is computed by using multi-
plication as the AND operator.

Thus, by using subtractive clustering, a set of rules for identi-
fying each individual class of data is obtained. The individual
sets of rules are then combined to form the rule base of the
classifier.

3) Membership Function Optimization: For achieving the
satisfactory modeling accuracy, the optimization of model
parameters under a given performance index is required. To
find the optimal values of individual and parameters
in the membership functions (11), the classification error mea-
sure is minimized using the neural-network back propagation
algorithm [18], [20]. The performance index as a classification
error measure for a data sample that belongs to some class is
defined as

(12)

where is the highest degree of fulfillment among all
rules that infer class , and is the highest degree of
fulfillment among all rules that do not infer class . Note that
this error measure is zero only if a rule that would correctly
classify the sample has a degree of fulfillment of 1 and all rules
that would misclassify the sample have a degree of fulfillment
of 0.

The membership function parameters (11) are updated ac-
cording to the following formulae:

and
(13)

where is a positive learning rate in the back propagation algo-
rithm.

In this study, the pruned training data mentioned at the end of
the Section II-C are divided into five fault types. Then, subtrac-
tive clustering was applied on each fault type. Taking the radius
value as 0.5, 41 cluster centers are obtained. These cluster
centers translate into an equal number of fuzzy rules and the
fuzzy rule base has been generated. In the fuzzy rule base, four
rules for partial discharge, eight rules for discharge of low en-
ergy, 13 rules for discharges of high energy, nine rules for low
thermal faults, and seven rules for high thermal faults have been
obtained.

In Fig. 3, the membership functions for partial discharge are
shown. These membership functions were optimized using a
two-layer neural network back propagation algorithm with the
learning rate value chosen as . The network has five neu-
rons in the input layer and 41 neurons in the second layer with
cluster centers acting as the weight vectors. The four rules thus
formed for partial discharge are obtained from subtractive clus-
tering. The degree of fulfillment of each rule is obtained by mul-
tiplication and the AND operator. Whenever the degree of fulfill-
ment of any of these four rules is highest among the complete
fuzzy rule base, the transformer is then diagnosed with a partial
discharge fault. The x-axis in Fig. 3 represents the normalized
universe of discourse (i.e., input range of 0 to 1.0) and the y-axis
represents the membership grade, also in the range 0 to 1.

In the same manner, the membership function for other faults
type is obtained and optimized. The membership functions for
all five faults represent the complete rule base.

IV. MAIN ALGORITHM

The feature selection and derivation of the fuzzy rule base
have been described in Sections II and III-B. Here, the step-
wise details of the proposed integrated neural fuzzy approach
for transformer fault diagnosis are presented as follows.
Step 1) The input fault data are divided into training and

testing data.
Step 2) Evaluate cluster centers for the training data by com-

petitive learning.
Step 3) Calculate antecedents and consequents using the ini-

tial fuzzy model.
Step 4) Using the neural fuzzy model, find significant input

features.
Step 5) Apply subtractive clustering to selected training fea-

ture data to obtain cluster centers.
Step 6) Develop the fuzzy rule base using cluster centers ob-

tained in Step 5).
Step 7) Optimize the membership functions of the fuzzy rule

base using the back propagation algorithm.
Step 8) Apply the model that has been developed in Steps 1)

to 7) on testing fault data and print the results.

V. TEST RESULTS AND DISCUSSION

After network formulation is over, the proposed model has
been tested on two test cases for checking the validity of feature
selection and its superiority over the conventional and existing
neural fuzzy methods, such as Roger’s ratio method, FCM,
GRNN, and fuzzy clustering and RBFNN. The two test cases
include one standard test data from [16] and other practical
fault data from working transformers of the Himachal Pradesh
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Fig. 3. Rules for partial discharge.

State Electricity Board (H.P.S.E.B.), a part of the Northern
Power Grid of India. All of the coding has been performed
in MATLAB 7.0, according to algorithmic steps given in
Section IV.

Test Example 1: Based on the 117 data samples, out of which
87 samples were selected randomly for training to take into ac-
count all possible variations in faults present in the oil during
diagnosis of transformers and the remaining 30 samples were
selected for testing. In the training data, fault gases are H , CH ,
C H , C H , C H , CO, and CO . These are the input features.
In feature selection, the training data are first normalized be-
tween [0, 1]. And these normalized data are then applied to the
self-organizing network. Using the threshold as 0.1, 69 clus-
ters were formed dynamically. These cluster centers are then
converted to an equal number of fuzzy rules. Finally, the im-
portance of each feature is obtained by using the information
obtained from the cluster centers using a three-layer feedfor-
ward network. The importance of carbon monoxide and carbon
dioxide was found to be less than the threshold value (i.e., 0.5),
which was selected on the basis of a trial-and-error run. After
feature selection, only first five fault gases are selected and con-
sidered to be important for the diagnosis of the five faults present
in the training data. This developed model has also been tested
on the same testing patterns without a feature selection concept
which means that all seven input gas features are taken into ac-
count and the results have been produced in Table II. It has been
observed that the rate of misclassification is very high with all of
the input variables present compared to selected variables. With
all input variables present, 15 samples out of 30 were misclassi-
fied in the testing data. Also, it has been seen in the analysis that
with selected variables, out of 30 samples, only 1 was misclas-
sified in the testing data, yielding a 96.67% success rate. Thus,

TABLE II
PROPOSED MODEL DIAGNOSIS WITH AND WITHOUT FEATURE SELECTION

it is concluded that the neural fuzzy model, when trained with
the selected variables, gives a better diagnosis compared to the
neural fuzzy model with all input variables present.

The following notations for the fault types are considered:

Partial discharge

Low energy discharge

High energy discharge

Thermal faults

Thermal faults

No diagnosis

On these input patterns, other models, such as Roger’s ratio
method [2], FCM [12], [13]; GRNN [14]; and fuzzy clustering
and RBFNN [15] were applied. The comparison of the results
obtained for the testing patterns using existing neural fuzzy
methods and the proposed approach are shown in Fig. 4.

As is evident from Fig. 4, 50% model accuracy is achieved
with FCM, because the various fault points corresponding to
input training data may be lying in the overlapping regions and,
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Fig. 4. Comparison of the proposed approach with the existing models.

Fig. 5. Comparison of the proposed model for different values of radii.

hence, the results obtained are highly inaccurate. In fuzzy clus-
tering and RBFNN, the accuracy achieved is 60%, because the
training data are very noisy and if one type of fault is very close
to the other type of fault, then there is a prominent likelihood of
erroneous diagnosis.

In the Roger’s ratio method, the accuracy achieved is 76.67%.
The Roger’s ratio method, though accurate, sometimes tends
to have no diagnosis. The main reason is that in this method,
the obtained ratios may not match the standard ratios. In other
words, we can say that the Roger’s ratio method is not able to
cover the entire input space. The generalized regression neural
network has an accuracy of 80%. The accuracy is higher than
other methods as each input pattern here is considered to be a
separate cluster center and the overlapping problem is efficiently
handled. But it is a one-pass network and that is why efficiency
is somewhat low.

It has been shown in Table II that with the proposed integrated
neural fuzzy network, 96.67% accuracy has been achieved. Such
a high success rate of the proposed neural fuzzy approach has
been made possible by a suitable choice of radius parameter

in the subtractive clustering algorithm. In this clustering ap-
proach, the number of fuzzy rules generated is equal to the
number of cluster centers formed. It may be noted that the fuzzy
rule generation process via subtractive clustering is dynamic in
nature. This is because the number of fuzzy rules generated in
this process is sensitive to the value of parameter and, hence,
its optimal selection is important for better results. Therefore,
subtractive clustering algorithm has been simulated for various
values of in the range 0.0 to 1.0. The results so obtained
in terms of efficiency of the algorithm on the testing data are
plotted in Fig. 5.

From Fig. 5, it clear that the judicious selection of param-
eter is required for achieving better transformer diagnostic
results with the proposed approach, as smaller results in un-
derfitting and larger leads to overfitting. From the aforemen-
tioned discussion, it is clear that when little information is avail-
able regarding the optimal number of clusters, then the proposed

TABLE III
GAS CONCENTRATIONS OF OIL SAMPLES

TABLE IV
DIAGNOSIS RESULTS OF TRANSFORMERS

technique is advantageous over optimization and other classes
of clustering algorithms. Also, this technique is noise robust, so
the effect of outliers on the choice of cluster centers is not signif-
icant. The neural-network back propagation algorithm has been
used for improving the results by optimizing the membership
functions for various fault types.

Test Example 2: The proposed neural fuzzy model has now
been tested on the H.P.S.E.B. working transformers oil sam-
ples. The concentrations for the faulty transformers as detected
by the laboratory equipment Transport X, which is a portable
DGA [24], are given in Table III. The Transport X has an em-
bedded software package which provides transformer fault di-
agnosis by three methods, namely, the key gas method, Roger’s
ratio method, and Duval’s triangle method. The incorporated
software contains instructions to guide the user through the op-
eration of the system and algorithms to assist the diagnosis of
the equipment. The algorithms for key gas and Roger’s ratio
method are based on the IEEE C57.104-1991 [4] standard, and
the algorithm for Duval’s triangle method is based on TechCon
2004-Michel Duval [25]. The results of testing the integrated
neural fuzzy model on the H.P.S.E.B. working power trans-
formers oil samples are given in Table IV.

From the portable DGA, the concentration levels of the gases
were obtained and using those values of DGA gas concentra-
tions, the diagnoses are as follows.

In Table IV, the results of fault diagnosis obtained by the
portable DGA by Roger’s ratio method and the proposed neural
fuzzy model are provided. Also, these results are compared with
FCM, fuzzy clustering and RBFNN and GRNN. From the re-
sults, it is evident that the proposed neural fuzzy model, when
applied to the practical data, gives a better diagnosis compared
to the conventional Roger’s ratio and other existing neural fuzzy
techniques.

VI. CONCLUSION

A reliable and efficient integrated neural fuzzy fault diagnosis
approach has been developed and implemented in this paper.
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This neural fuzzy model was formulated by applying the fea-
ture selection concept on the training data and thereafter on the
selected input features, the subtractive clustering technique was
applied and the desired rules were obtained which were fur-
ther optimized using the neural-network back propagation al-
gorithm. After completion of training, the rule base was applied
on the two testing data. The results obtained from the proposed
neural fuzzy model were then compared with the conventional
Roger’s ratio method and the existing neural fuzzy approaches.
The comparison with the different conventional methods leads
to the observation that the proposed approach was successfully
tested and provided better results. This may be due to the reason
that the entire fault input space has been covered for fault diag-
nosis and analysis. Another important aspect of input feature se-
lection has also been incorporated in this developed model and
it has been observed that the results obtained with feature selec-
tion were better than without feature selection.
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