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Abstract—In this paper, a new scheme for constructing parsimo-
nious fuzzy classifiers is proposed based on the L2-support vector
machine (L2-SVM) technique with model selection and feature
ranking performed simultaneously in an integrated manner, in
which fuzzy rules are optimally generated from data by L2-SVM
learning. In order to identify the most influential fuzzy rules
induced from the SVM learning, two novel indexes for fuzzy
rule ranking are proposed and named as -values and -values
of fuzzy rules in this paper. The -values are defined as the
Lagrangian multipliers of the L2-SVM and adopted to evaluate
the output contribution of fuzzy rules, while the -values are
developed by considering both the rule base structure and the
output contribution of fuzzy rules. As a prototype-based classifier,
the L2-SVM-based fuzzy classifier evades the curse of dimen-
sionality in high-dimensional space in the sense that the number
of support vectors, which equals the number of induced fuzzy
rules, is not related to the dimensionality. Experimental results
on high-dimensional benchmark problems have shown that by
using the proposed scheme the most influential fuzzy rules can
be effectively induced and selected, and at the same time feature
ranking results can also be obtained to construct parsimonious
fuzzy classifiers with better generalization performance than the
well-known algorithms in literature.

Index Terms—Feature ranking, fuzzy classifier, L2-support
vector machine (L2-SVM), prototype-based classifier, rule induc-
tion, rule ranking.

I. INTRODUCTION

SUPPORT vector machine (SVM) and kernel-based learning
systems are a powerful class of algorithms for classifica-

tion or regression. The advantage of the SVM learning algo-
rithm lies in that based on quadratic programming it leads to
parsimonious model structure for regression and classification
[1]. In data-driven fuzzy modeling, the commonly used scheme
for achieving a parsimonious fuzzy system is to perform rule
base reduction by removing redundant rules based on heuristic
criteria or selecting relevant variables based on their influence
on the output. Although some researchers have made efforts to
apply the “kernel tricks” to fuzzy systems for regression and
classification [2]–[4], the advantage of the SVM in yielding par-
simonious solutions has not been fully exploited in fuzzy sys-
tems yet. This is mainly because it is difficult to link the basis
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functions or membership functions (MFs) used in fuzzy systems
to the kernel functions used in the SVM. Chen and Wang [5] in-
dicated that if the MFs associated with the same input variable
are generated from location transformation of a reference func-
tion [6], then the if-part in each fuzzy rule defined as the t-norm
of every variable’s MF is proven to be a Mercer kernel under the
condition that the Fourier transform of the reference function
is non-negative [7]. Thus, fuzzy classifiers can be constructed
based on the SVM technique, leading to a parsimonious model
structure. However, one challenging problem has not been ad-
dressed in [5] for the SVM-based fuzzy classifier, that is, how
to select optimal parameters for kernel functions and the regu-
larization parameter in SVM so as to improve the generalization
performance.

As a matter of fact, the problem of optimal kernel param-
eter selection for kernel functions remains open for most kernel
machine models [4], [8]–[11]. Facing so many parameters in
the SVM-based fuzzy classifier, methods based on exhaustive
search become intractable. Recently, Chapelle et al. suggested
a technique of choosing parameters for SVMs by minimizing
radius-margin bound [12]. However, the radius-margin bound
only holds in L2-SVM. For the L1-SVM, which was used in
[5] for constructing parsimonious fuzzy classifier, the radius-
margin bound can not be applied. In order to perform the auto-
matic model selection in SVM-based fuzzy classification, this
paper proposes a L2-SVM-based fuzzy classifier construction
method which automatically choose the number of fuzzy rules
and identify the important input features at the same time.

It is noteworthy that fuzzy rule selection is an important issue
in fuzzy systems. Even though the SVM learning produces
sparse support vectors, it is demonstrated in our experiments
that there exist redundant or correlated fuzzy rules in the fuzzy
classifier initially induced by the L2-SVM learning and that a
fuzzy rule selection procedure can result in more parsimonious
L2-SVM-based fuzzy classifiers with better generalization per-
formance. Currently, in traditional fuzzy modeling, one strategy
for rule ranking and rule subset selection that has received much
attention in recent literature [13]–[17] is based on the singular
value decomposition (SVD) of the firing strength matrix (FSM)
of fuzzy rules. Specifically speaking, SVD-QR with column
pivoting algorithm is applied to the FSM to produce rule
ranking information. However, the rule ranking result by the
SVD-QR with column pivoting algorithm is heavily dependent
on the estimation of an effective rank which is related to the
number of near zero singular values. The problem is that there
is usually no clear gap between the small singular values and
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other “large” singular values, and different ranks often produce
dramatically different rule ranking results [17]. A method to
avoid the estimation of the effective rank is to apply the pivoted
QR decomposition directly to the FSM, in which the -values
defined as the absolute values of diagonal elements of matrix

in QR decomposition tend to track the singular values of the
FSM [17], [18] and can be used for rule ranking to identify the
influential rules. However, when the pivoted QR decomposition
algorithm or the SVD-QR with column pivoting algorithm is
applied to fuzzy rule ranking, they ignore the effects of the rule
consequents. A more effective rule ranking should consider
the output contribution of the fuzzy rules [17]. Moreover, as
indicated in [17], it is highly expected for a rule ranking method
to take into account both the rule base structure and the output
contribution of fuzzy rules in order to generate a compact rule
base with good generalization performance. To the best of our
knowledge, this kind of more reasonable rule ranking scheme
(i.e., taking into account both the rule base structure and the
output contribution of fuzzy rules) has not been reported in lit-
erature yet. Thereupon, this paper is also committed to address
this difficulty.

In fact, in the L2-SVM induced fuzzy classifier, the La-
grangian multipliers of the SVM
(where is the number of training samples) are closely related
to the effect of the rule consequents and can be considered as
the measures of the output contribution of fuzzy rules. In this
paper, two novel rule ranking indices named as -values and

-values of fuzzy rules are proposed in terms of . The rule
ranking by -values takes into account the output contribution
of induced fuzzy rules but ignores the rule base structure,
while the rule ranking by -values considers both the rule base
structure and the output contribution of fuzzy rules.

The organization of this paper is as follows. Section II de-
scribes a new L2-SVM-based fuzzy classification algorithm.
Two new fuzzy rule ranking indices and a fuzzy rule subset se-
lection procedure are proposed in Section III. Section IV eval-
uates the performance of the proposed scheme with high-di-
mensional benchmark problems, followed by discussions about
additional advantages of the proposed scheme in Section V.
Section VI concludes the paper.

II. THE PROPOSED L2-SVM-BASED FUZZY CLASSIFICATION

SYSTEM

A. Formulation of the L2-SVM-Based Fuzzy Classifier

Consider a fuzzy model with fuzzy rules in the following
form:

if is and and then (1)

where , and are the input and output vari-
ables of the th rule , respectively, and are the linguistic
labels expressed as fuzzy sets with specific semantic meanings
of behaviors of the system being modeled, which are charac-
terized by membership functions generated by expert
knowledge or from data, is the consequent parameter of the

th rule. In order for the input space to be thoroughly covered
by the fuzzy rule “patches,” the following auxiliary rule is added
into the rule base [5]:

if is and and is then (2)

where denotes the domain of and , and
. The overall output of the system is expressed by

(3)

where is the firing strength of the th rule and is usually cal-
culated in terms of an appropriate T-norm operator such as the
product as follows:

(4)

Apparently, this is a zero order Takagi–Sugeno (TS) fuzzy
system [19], a kind of linguistic model with attractive proper-
ties such as the automatic determination of system parameters
from data [20]. A binary fuzzy classifier can be defined as
follows:

(5)

In order to apply SVM learning to (5), must be a Mercer
kernel. Fortunately, as analyzed in [5], if the MFs are
generated from a reference function through location shift

[6], i.e., , and the Fourier transform of

the reference function is non-negative, then is proved to be
a Mercer kernel. There are several reference functions defined
in [5] that ensure the multidimensional MF to be a Mercer
kernel. In this paper, the following reference function is adopted:

(6)

whose Fourier transform is non-negative, hence

is a Mercer kernel, where

is called prototype or kennel centre. It
should be noted that parameters in the reference function
(6) are kernel parameters indicating the importance of input
variables, which were manually selected in the modelling
scheme used in [5]. However, it is impractical to manually
choose different values of for different features in a high-di-
mensional input space in order to obtain a classification system
with good generalization performance. This paper adopts a
learning scheme to automatically update parameters .
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In order to perform input feature/variable ranking automat-
ically, input variables are scaled by the following modulator
function:

(7)

where indicates the importance of the input variable
to the classification task and is defined as

(8)

where . The previous definition of is to ensure
when is adjusted by a learning algorithm. Let

in (6), then a SVM-based fuzzy classifier can be expressed as

(9)

where
. It

can be seen from (1), (4) and (9) that each
corresponds to a fuzzy rule. To construct a L2-SVM-based
fuzzy classifier described by (9), the following parameters
should be determined: The number of rules , prototypes ,
weights , bias , and scaling parameters .

Given a training dataset , where
, the L2-SVM learning algorithm seeks the optimal

hyperplane with maximal margin by minimizing the following
function over :

(10)
under the constraints

and (11)

where is a kernel function used in the L2-SVM
and is defined as

(12)

and for , and 0 for , is a regulariza-
tion parameter penalizing the training error. By solving the dual
optimization problem (10) and (11), one obtains the optimal co-

efficient vector . There would be many
zero coefficients in , and only those samples that correspond
to nonzero coefficients will play a role in the determination of
model parameter values and are called support vectors. Let be

the number of nonzero coefficients which are denoted as .
Then, the output of the th fuzzy rule can be calculated as

(13)

where , , are the class labels of the corre-
sponding support vectors. Hence, the nonlinear decision func-
tion (9) becomes

(14)

where represent support vectors which will be set as pro-
totypes in fuzzy rule induction, and the bias term can be
computed as follows:

(15)

In the previous solution, the values of and are assumed
known. In [5] these parameter values are chosen manually. This
paper automatically identifies the values of and from data
based on L2-SVM techniques. The following radius-margin
bound [1] is adopted in this paper as the objective function:

(16)

where represents the squared radius of the smallest sphere
containing all the training samples in the feature space and
denotes the squared margin from the SVM hyperplane to the
closest training sample. It was shown [1] that the margin can
be expressed as . Therefore, the radius-
margin bound becomes

(17)

On the other hand, the squared radius of the smallest sphere
enclosing all the training samples can be estimated by solving
the following quadratic programming problem [1]:

(18)

subject to

and (19)

Parameters ( by (8) ) and can be learnt optimally
from data in terms of the gradients of with respect to and
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, respectively. Detailed analysis of training L2-SVM can be
found in [12].

B. Extraction of Fuzzy Rules After the L2-SVM Learning
Process

After the L2-SVM learning process is completed, a parsimo-
nious fuzzy classifier can be induced, in which the fuzzy rules
are extracted in the form of (1) based on the decision function
of the SVM. Specifically speaking, the induction process is per-
formed as follows.

Step 1) Set the number of fuzzy rules as the number of sup-
port vectors.

Step 2) The premise parts of fuzzy rules are evaluated from
support vectors and modulator function values: the
MFs of the th rule are ,

where is the th element of the th support vector
. Here, the learned

value of is used to calculate the kernel parameter
in (8).

Step 3) The consequent parts of fuzzy rules are induced
from and class labels: The consequent value of
the th rule is , , where

represent non-zero , and the class la-
bels corresponding to the support vectors.

C. Feature Ranking

After the L2-SVM learning process, the goodness of features
can also be identified based on the values of parameters . It is
clear that a larger value of indicates that feature is more
important. In this paper, the most appropriate features relevant to
the classification task are identified based on a relative ranking
index defined as follows:

(20)

D. A Comparison Between the Proposed Method and Radial
Basis Function Classifier

Radial basis function networks (RBFNs) have been a topic of
extensive research with wide applications in machine learning
and engineering. The output of a binary RBFN classifier can be
computed by the following expression:

(21)

where are called radial basis functions (RBFs)
with prototypes , and are the network weights. From (9)
and (21), it can be seen that the proposed classifier and RBFN
classifier have a similar decision function for classification, and
both RBFN classifiers and SVM-based classifiers can be inter-
preted as fuzzy classifiers. Some researchers actually suggested

to treat RBFN as a special case of SVM [21]. However, there
are essential differences between RBFN classifiers and SVM-
based classifiers. First, the learning objective functions and the
learning algorithms are substantially different. The parameters
of a RBFN can be learned via nonlinear optimization using Lev-
enberg–Marquardt method [22], [23], evolutionary algorithm
[24], EM algorithm [25], or structured nonlinear optimization
method [26]. Additionally, the network prototypes are usually
determined via other means such as unsupervised clustering al-
gorithms, and the linear weights may then be estimated by the
standard least squares solution. Obviously, although this sort of
method using least square techniques may give a rough approx-
imation, it cannot yield optimal parameters [26]. Moreover, the
number of prototypes in RBFN has to be determined via other
means, such as cross validation or cluster validity index. An-
other interesting approach to constructing RBFNS is to use the
orthogonal least squares (OLS) algorithm to identify a parsimo-
nious RBFN by formulating the problem as a linear learning
one [27], in which training samples act as candidate RBFN pro-
totypes.

Unlike RBFN, the invention of SVM was driven by under-
lying statistical learning theory, i.e., following the principle of
structural risk minimization that is rooted in VC dimension
theory, which makes its derivation even more profound [28].
Vapnik’s theory [1] shows that the SVM solution is found
by minimizing both the error on the training set (empirical
risk) and the complexity of the hypothesis space, expressed
in terms of VC-dimension. In this sense, the decision func-
tion found by SVM is a tradeoff between learning error and
model complexity. Hence, SVM classifiers usually achieve
good generalization performance. Additionally, SVMs have
a clear geometrical interpretation and a global minimum of
the cost function can be surely found by SVM training, be-
cause the parameters of a SVM, including the number of
kernel functions, their prototypes, i.e., support vectors, and
the linear weights and bias levels, are determined by solving a
convex quadratic programming problem with linear inequality
and equality constraints. Except for the kernel function pa-
rameters, the above mentioned parameters of a SVM are all
computed automatically in one model structure. The proposed
L2-SVM-based fuzzy classifier not only inherits the above
properties of SVM, but also learns the kernel function pa-
rameters adaptively from data.

III. FUZZY RULE RANKING AND RULE SUBSET SELECTION

The parsimony of the L2-SVM-based fuzzy classifier hails
from the inherent sparse solutions in the SVM, i.e., the sup-
port vectors with nonzero Lagrangian multipliers . How-
ever, these induced fuzzy rules are equally treated in the in-
duced fuzzy classifier without fuzzy rule selection. In this sec-
tion, a fuzzy rule ranking is produced according to the impor-
tance of induced fuzzy rules, aiming to generate a more par-
simonious fuzzy classifier based on the most influential fuzzy
rules. First, the so-called -values of fuzzy rules are briefly in-
troduced. After that, two new indices for fuzzy rule ranking and
a fuzzy rule selection procedure are developed.
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A. -Values of Fuzzy Rules

For an induced fuzzy classifier, its FSM is defined as follows:

...
...

... (22)

where

(23)

It can be seen that each column of the matrix corresponds to
one fuzzy rule. Therefore, the important fuzzy rules correspond
to the columns that are linearly independent of each other. As
indicated in [14], [15], redundant fuzzy rules (corresponding to
linearly dependent or zero-valued columns) are associated with
near zero singular values of . As a matter of fact, the smaller
are the singular values, the less influential are the associated
rules, which is the starting point of the SVD-QR with column
pivoting algorithm and the pivoted QR decomposition algorithm
that have been applied to fuzzy rule ranking [13]–[17]. The piv-
oted QR decomposition algorithm for ranking fuzzy rules is
summarized as follows:

1) Calculate the QR decomposition of and get the permuta-
tion matrix via , where is an unitary matrix,

is an upper triangular matrix. The absolute values of the
diagonal elements of , denoted as , decrease as in-
creases and are named as -values.

2) Rank fuzzy rules in terms of the -values and the permu-
tation matrix in which each column has one element
taking value 1 and all the other elements taking value 0.
Each column of corresponds to a fuzzy rule. The num-
bering of the rule that corresponds to the th column is the
same as the numbering of the row where the “1” element
of the th column is located. For example, if the “1” of the
1st column is in the 4th row, then the 4th rule is the most
important one and its importance is measured as . The
rule corresponding to the 1st column is the most important,
and in descending order the rule corresponding to the last
column is the least important.

By applying the pivoted QR decomposition algorithm to the
induced fuzzy classifier, each rule can be assigned a -value,
which measures the importance of the fuzzy rule. However, the

-values reflect the rule base structure only, without consid-
ering the output contribution of the induced fuzzy rules. Two
new indexes based on the L2-SVM learning results are proposed
in the following.

B. -Values of Fuzzy Rules

It can be seen from the induction procedure described in the
previous section that for each induced fuzzy rule, its associated
Lagrangian multiplier determines the depth of the effect
of the rule consequent. Hence, is a very useful index for

measuring the output contribution of the induced fuzzy rule.
These Lagrangian multipliers are called -values of fuzzy rules
in this paper.

C. -Values of Fuzzy Rules

Although the fuzzy rule ranking by -values takes into ac-
count the output contribution of induced fuzzy rules, it ignores
the rule base structure. In order to consider both the rule base
structure and the output contribution of fuzzy rules, a -value
for is suggested as follows:

(24)

where and are the -value and -value of , re-
spectively.

D. Fuzzy Rule Selection

Given a fuzzy classifier induced by the L2-SVM
learning process, the -values and -values can be used to iden-
tify the most influential fuzzy rules that ensure the smallest pos-
sible model that explains the available data well. Let be the
validation dataset and the test dataset. The fuzzy rule selec-
tion procedure is described by the following steps.

Step 1) Evaluate the misclassification rates (MRs) of the
on the validation dataset and the test dataset

separately, which are represented as and .

Step 2) Set and assign a small value to threshold
.

Step 3) Select the most influential fuzzy rules by
.

Step 4) Construct a fuzzy classifier by using the
influential fuzzy rules selected in Step 3).

Step 5) Apply to the validation dataset and the test
dataset to obtain new MRs: and .

Step 6) If , stop the selection and use
as the final compact classifier and as

the measure of generalization performance for ;
Otherwise, increase by 1, assign a higher value to threshold

, and go to Step 3).

E. Implementation of the Proposed L2-SVM-Based Fuzzy
Classifier Construction

Given a training dataset , where
, the proposed scheme includes the following steps.

Step 1) Initialization

Assign the same small value to parameters , i.e., treat each
feature equally at the beginning; Assign an initial value to the
regularization parameter and a small positive value to .
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Step 2) Perform the L2-SVM learning to obtain the optimal
solution and the margin .

Step 3) Solve the quadratic programming problem (18) and
(19) to get the optimal solution and the squared radius .

Step 4) Update parameters and in terms of the gradients
of with respect to and separately, and update
according to (8) .

Step 5) Go to Step 2 until the radius-margin bound decrement
.

Step 6) Extract fuzzy rules as indicated in Section II-B .

Step 7) Conduct fuzzy rule ranking and rule subset selection
as indicated in Sections III-B –D to obtain a more compact
fuzzy classifier.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the pro-
posed L2-SVM-based fuzzy classification algorithm on the
benchmark problems based on ringnorm data and german
data, which are available from the DELVE repository
(http://www.cs.toronto.edu/~delve/data/ringnorm/) and the
UCI repository (http://www.ics.uci.edu/~mlearn/ MLRepos-
itory.html), in comparison with some well-known fuzzy and
nonfuzzy classifiers.

A. Experiments on Ringnorm Dataset

The ringnorm dataset contains 7400 samples, each consisting
of 20 attributes (features). This is a two-class classification
problem proposed by Breiman who reported that the theoreti-
cally expected MR is 1.3% [29]. For such a high-dimensional
problem, it is very difficult to apply grid partitioning to gen-
erate fuzzy rules. Imagine that in the simplest case, if two
fuzzy sets were used to partition each attribute, then a grid
partitioning-based method would generate fuzzy rules.
However, prototype-based fuzzy classifiers like the proposed
one can avoid this dilemma of dimensionality.

In the following experiment, the radius-margin bound is nor-
malized as , and the parameter is
updated by using a transform ,
to meet the requirement of . was initially set to 1,
parameters were initialized to be 0.5 by setting the initial
value of as 0.8326, the learning rates for updating and
were set as 0.0001 and 0.01 separately, and the threshold for
updating the radius-margin bound was set as .
From the available 7400 ringnorm samples, 400 samples were
randomly selected for the training process, 5000 samples for the
testing process, and the remaining 2000 samples as a valida-
tion dataset for fuzzy rule subset selection. After the L2-SVM
learning process, 249 support vectors were generated, that is,
249 fuzzy rules were generated for the induced fuzzy classi-
fier. The induced fuzzy classifier produced 66 misclassifications
on the test dataset with a MR of 1.32%, which shows that the
L2-SVM-based fuzzy classifier possesses good generalization
ability on the ringnorm problem. The feature ranking results are

TABLE I
FEATURE RANKING IN THE DESCENDING ORDER FOR THE 20 FEATURES OF

RINGNORM DATA

given in Table I, in which the 20 attributes are sorted by the
values of in a descending order.

For the purpose of comparison, one linear classification
method and five nonlinear ones were applied to the ringnorm
data with the same training set, test set, and validation set. These
methods include linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA) [30], RBFN with OLS-based
forward selection (OLS-RBFN) [27], multilayer perceptron
(MLP) [28], fuzzy learning vector quantization (FLVQ) [31],
and FLVQ combined with a MLP (FLVQ-MLP). The LDA
misclassified 1227 samples with a MR of 24.54% on the test
dataset, and the QDA produced 130 misclassifications on test
samples with a MR of 2.6%, which implies that the ringnorm
data is not linearly separable. Based on the function package
provided by Orr [32], the OLS-RBFN was implemented to
classify the ringnorm data. In our experiment, the bias term
was considered in the decision function, and the generalized
cross-validation (GCV) was used as a model selection cri-
terion for OLS-RBFN to balance the bias and variance and
optimally select a subset of RBFs. The widths of RBFs were
also optimized as indicated in [33]. Two types of RBFs were
used in our experiment: Gaussian basis functions (BFs) and
Cauchy BFs. The OLS-RBFN with Gaussian BFs achieved a
MR of 2.52% by misclassifying 126 test samples, and there
were 156 misclassifications produced by the OLS-RBFN with
Cauchy BFs leading to a MR of 3.12% on the test dataset. The
generalized delta rule [28] was used to train the MLP network
with 15 hidden neurons, in which the momentum parameter
and the learning rate were set as 0.3 and 0.7 separately. The
trained MLP misclassified 650 test samples with a MR of 13%.

It is worthily noted that RBFN with Gaussian BFs can be
regarded as a sort of fuzzy classifier, as there exists equiva-
lence between fuzzy systems and RBFNs with Gaussian BFs
[34]–[36]: i) The number of RBF units is equal to the number
of fuzzy IF–THEN-rules; ii) The output of each fuzzy rule is a
constant (the fuzzy system is a zero-order TS fuzzy system); iii)
The MFs within each fuzzy rule are chosen as Gaussian func-
tions with the same variance in RBFN; and iv) The T-norm oper-
ator used in fuzzy system to compute the activation of each rule
is multiplication. Hence, we treat the above OLS-RBFN with
Gaussian BFs as a neural-fuzzy system with automatic model
selection. However, in order to further compare the proposed
L2-SVM-based fuzzy classifier with the well-known fuzzy clas-
sifiers, we also applied the FLVQ to the ringnorm problem.
FLVQ requires its user to specify the number of prototypes, the
initial exponent , the final exponent , and the maximum
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TABLE II
GENERALIZATION PERFORMANCES OF THE WELL-KNOWN ALGORITHMS ON

RINGNORM DATA

Fig. 1. R-values of induced fuzzy rules using 20 features of ringnorm data.

number of epochs. In [31], a heuristic constraint
is recommended. As FLVQ is a clustering algorithm,

in our experiment the labels were not used in the clustering
process, but used for calculating the clustering error rate MR
to evaluate the performance of FLVQ. From our experiment, it
is found that the choice of the maximum number of epochs had
great influence on the performance of FLVQ, whereas the vari-
ations of and in the interval (1.1, 7) did not much im-
pact the performance of FLVQ. Hence, the available validation
dataset with 2000 samples was used to find an optimal max-
imum number of epochs for FLVQ, and then the FLVQ was
applied to the dataset with 5400 samples including the above
training dataset and the test dataset. This is because FLVQ is an
unsupervised clustering algorithm which does not need to di-
vide an available dataset into training one and test one. On the
ringnorm problem, the trained FLVQ misclassified 1320 sam-
ples with a MR of 24.44%. This result is not surprising, be-
cause the clustering is completely unsupervised and does not
take the given desired output information (class labels) into ac-
count, which could become a possible problem of the approach
in classification as noted by Bishop [37]. To make a fairer com-
parison, FLVQ combined with a MLP was tested, in which the
FLVQ worked as a feature extractor in the first stage and the
MLP as classifier in the second stage. This FLVQ-MLP classi-
fier achieves a MR of 2.46% by misclassifying 123 test samples.

The above classification results are summarized in Table II,
which shows that the L2-SVM-based fuzzy classifier outper-

Fig. 2. �-values of induced fuzzy rules using 20 features of ringnorm data.

Fig. 3. !-values of induced fuzzy rules using 20 features of ringnorm data.

forms the well-known pattern classification methods. Another
important objective of our experiments on the ringnorm
problem is to test the effectiveness of the proposed fuzzy
rule selection method. Therefore, after the L2-SVM learning
fuzzy rule ranking was conducted in terms of the -values,

-values, and -values of fuzzy rules separately. Figs. 1–3
illustrate the -values, -values, and -values of the induced
fuzzy rules, respectively. It can be seen that each rule has
different -value, -value, and -value relatively, and that a
rule with higher -value does not mean it definitely has higher

-value or -value, and vice versa. Hence, these three indices
evaluate the importance of fuzzy rules in their own ways. In the
following, in order to construct the possible smallest classifier
with good generalization performance, these three indexes
were separately used to select the most influential fuzzy rules.
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TABLE III
FUZZY RULE SUBSET SELECTION IN TERMS OF R-VALUES, �-VALUES, AND !-VALUES OF FUZZY RULES USING 20 FEATURES OF RINGNORM DATA

TABLE IV
FUZZY RULE SUBSET SELECTION IN TERMS OF R-VALUES, �-VALUES, AND !-VALUES OF FUZZY RULES USING 18 FEATURES OF RINGNORM DATA

TABLE V
GENERALIZATION PERFORMANCES OF THE WELL-KNOWN ALGORITHMS ON

GERMAN DATA

Table III summarizes the rule subset selection results, in which
corresponds to applying the initially induced fuzzy

classifier (i.e., without rule selection). It can be seen
that in terms of -values, the smallest fuzzy classifier, which
keeps the MR of 1.32% on test samples, consists of 214 fuzzy
rules. In terms of -values of fuzzy rules, taking into account
the effects of rule consequents, the rule selection procedure
identified 90 most influential fuzzy rules with the MR of 1.32%
reserved on the test dataset. Similar rule selection result was
obtained by using -values of fuzzy rules, which produced
a fuzzy classifier with 89 rules and led to the MR of 1.32%
on test samples. As a matter of fact, fuzzy rule ranking in
terms of R-values is based on the QR decomposition method
[17]. It is clear that the proposed scheme using -values and

-values outperforms the QR decomposition method in fuzzy
rule selection by identifying much more compact rule bases.

In order to demonstrate the effect of dropping the least im-
portant features on fuzzy rule selection and classification per-
formance, 18 first ranked features were selected to construct
the fuzzy model. Before fuzzy rule selection, the induced fuzzy
classifier based on the 249 fuzzy rules using 18 features, de-
noted as , achieved a MR of 2.06% on test samples. It

is noted that the -values of fuzzy rules in are the same
as the ones in , whereas the -values and -values of

the fuzzy rules in are different from the ones in
respectively. Table IV gives the corresponding rule subset selec-
tion results using 18 features in terms of the -values, -values,
and -values of the fuzzy rules in . The smallest fuzzy
classifier produced by using -values, with the MR of 2.06%
on test samples, contains 230 fuzzy rules. By using -values of
fuzzy rules in the rule selection procedure, 89 fuzzy rules were
selected for the induced fuzzy classifier with the MR of 2.06%
on test samples. As shown in Table IV, in terms of -values of
fuzzy rules, a fuzzy classifier with 83 fuzzy rules was induced
and achieved a MR of 1.78% on test samples, which is better
than using all the 249 fuzzy rules.

B. Experiments on German Dataset

In the following, the German dataset was used to further eval-
uate the proposed method in comparison with the well-known
classifiers. The german credit dataset with 1000 samples is
known as a benchmark problem for its two classes with many
odd samples in 20-dimensional space. In this experiment, 300
samples were randomly selected for training L2-SVM, 400
samples for testing process, and the remaining 300 samples as a
validation dataset for fuzzy rule subset selection. The learning
rates for updating and were set as 0.00005 and 0.006
separately by a trial and error approach, parameters were all
initialized as 0.5 with initial , was initialized
to 1, and the threshold for updating radius-margin bound was
set as . After the L2-SVM learning process,
195 support vectors were generated, that is to say, 195 fuzzy
rules were generated for the induced fuzzy classifier, which
produced 98 misclassifications on the test dataset with a MR of
24.5%. Similar to the experiment with the ringnorm dataset, the
well-known classification methods, LDA, QDA, OLS-RBFN,
MLP, FLVQ, and FLVQ-MLP, were used to compare with
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Fig. 4. R-values of induced fuzzy rules using 20 features of German data.

the L2-SVM induced fuzzy classifier. The LDA misclassified
125 samples with a MR of 31.25% on the test dataset, and the
QDA produced 118 misclassified test samples with a MR of
29.5%. In the experiment on OLS-RBFN, the bias term was
also considered in the decision function, and GCV was used
as a model selection criterion for OLS-RBFN to balance the
bias and variance, and optimally select a subset of RBFs. The
widths of RBFs were also optimized. The OLS-RBFN with
Gaussian BFs achieved a MR of 28.5% by misclassifying 114
test samples, and there were 110 misclassifications produced by
the OLS-RBFN with Cauchy BFs leading to a MR of 27.5% on
the test dataset. The MLP network with 15 hidden neurons was
trained by the generalized delta rule with momentum parameter
0.3 and the learning rate 0.7. The trained MLP misclassified 112
test samples with a MR of 28%. When FLVQ was applied to a
dataset with 700 samples including the above training samples
and test samples, it achieves a MR of 37.85%. By combining
FLVQ and a MLP with 15 hidden neurons, the momentum
parameter as 0.1 and the learning rate 0.2, the FLVQ-MLP
classifier misclassified 113 test samples with a MR of 28.25%.
The above classification results are summarized in Table V.
As analyzed in [38], there exists too much noise in the german
credit dataset, which weakens the predictive capability of the
features. From Table V, it can be seen that the L2-SVM induced
fuzzy classifier also outperforms the well-known classification
methods in terms of the generalization performances on the
German credit problem.

Furthermore, in order to construct the possible smallest clas-
sifier with good generalization performance, the three indexes:

-values, -values, and -values of fuzzy rules were separately
used to select the most influential fuzzy rules. Figs. 4–6 illustrate
the -values, -values, and -values of the fuzzy rules respec-
tively. Table VI summarizes the rule subset selection results. It
can be seen that in terms of -values, the smallest fuzzy classi-
fier, which achieves a MR of 25.25% on test samples, consists of

Fig. 5. �-values of induced fuzzy rules using 20 features of German data.

Fig. 6. !-values of induced fuzzy rules using 20 features of German data.

112 fuzzy rules. In terms of -values, 77 most influential fuzzy
rules were identified with a MR of 25.00% on the test dataset.
The rule selection by using -values produced a fuzzy classifier
with 70 rules and led to a MR of 24.75% on test samples.

From the previous results it can be seen that the two new in-
dexes, -values and -values of fuzzy rules, can generate much
more compact rule bases than the classifier generated by the tra-
ditional -values and the initially induced classifier .
This indicates that the induced fuzzy rules, corresponding to the
support vectors in the SVM, should not be treated equally in the
classification even though the inherent mechanism of the SVM
has the potential of producing sparse solutions. Some support
vectors or fuzzy rules are much more important than the others.

V. DISCUSSIONS

The proposed L2-SVM-based fuzzy classifier and the rule
ranking indexes possess some additional merits that are worthy
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TABLE VI
FUZZY RULE SUBSET SELECTION IN TERMS OF R-VALUES, �-VALUES, AND !-VALUES OF FUZZY RULES USING 20 FEATURES OF GERMAN DATA

of being delineated further. One additional merit is that the pro-
posed fuzzy rule ranking indices are also very useful for iden-
tifying the most influential support vectors for SVM itself. Al-
though the SVM learning process produces sparse support vec-
tors, it treats the support vectors equally in the classification
process in the sense that all support vectors are equally con-
sidered for the classification. To the best of our knowledge, cur-
rently there is no special mechanism to select the most influen-
tial support vectors by considering the different depths of real
contributions to the classification from different support vectors.
A potential problem is that there may be redundant or correlated
support vectors in the SVM. If a support vector ranking is pro-
duced for the SVM classification according to the importance
of support vectors, a more parsimonious SVM classifier can be
obtained in terms of the ranking results. Because each fuzzy rule
in the induced fuzzy classifier corresponds to a support vector in
L2-SVM, the proposed two rule ranking indices can be directly
used to identify the most influential support vectors for SVM
classification.

The second additional merit is that the proposed method
provides a new way of constructing prototype-based fuzzy
classifiers, which is different from the most currently used pro-
totype-based fuzzy classifiers. It is known that the outstanding
advantage of prototype-based fuzzy classifiers over grid-based
fuzzy classifiers lies in that the prototype-based fuzzy classifiers
can overcome the curse of dimensionality. However, there are
three fundamental issues needed to be addressed in designing a
prototype-based classifier [39]: i) How many prototypes are to
be generated; ii) How to generate the prototypes; and iii) How
to use the prototypes to design a classifier. Currently, in most
efforts made to design prototype-based fuzzy classifiers, these
three issues are addressed independently and separately. For
example, unsupervised clustering algorithms such as c-means
[40], fuzzy c-means [41], and FLVQ [31], are widely used
to generate prototypes, but most of the clustering algorithms
require the number of clusters (prototypes) to be supplied exter-
nally or to be determined by using some cluster validity indices.
Once the prototypes are generated, there are different ways of
using the prototypes to design the classifier. One commonly
used strategy is that these currently generated prototypes are
used as initial fuzzy partitions, and an adaptive learning algo-
rithm such as neural network learning algorithm is then applied
to update these prototypes. Finally, based on training dataset,
the adaptive prototype-based classifier is trained optimally with

good generalization performance on test dataset. An example
of using this strategy is the neuro-fuzzy classifier NEFCLASS
[42], which uses fuzzy clustering to initialize its prototypes in
[43]. Recently, new efforts have been made to develop proto-
type-based classifiers by integrating the above issues into one
modeling process. Mountain clustering method can automati-
cally estimate the number of prototypes whilst generating the
prototypes [44]. Laha and Pal [39] suggested two approaches
to designing nearest prototype classifiers by addressing the
problem of finding the required number of prototypes as well
as the prototypes themselves together. The proposed method of
constructing fuzzy classifiers based on L2-SVM in this paper
can fulfill the integration of all the three issues together. In the
L2-SVM-based fuzzy classifier, one does not need to specify
the initial number of fuzzy rules in advance, because each fuzzy
rule corresponds to a support vector, and the number of support
vectors or fuzzy rules depends on the number of nonzero La-
grangian multipliers . After the L2-SVM learning process,
not only the support vectors, i.e., the prototypes, are generated,
its classifier defined by the support vectors in a decision surface
is also produced. These Lagrangian multipliers are naturally
obtained from solving a quadratic programming. That is to
say, all the above three issues in designing a prototype-based
classifier are addressed together and automatically identified
from data in one model structure in the proposed scheme.

The third additional advantage of the proposed method is
that not only the fuzzy rules are generated optimally from data
through the SVM learning, but also the ranking results of all the
input features are simultaneously obtained. Although traditional
methods for feature ranking are capable of identifying the influ-
ential features for fuzzy modeling [45], [46], most of them per-
form feature ranking in a separate phase from the classifier con-
struction process. Importantly, if feature ranking and classifier
construction are performed simultaneously in an integrated way,
the goodness of features can be learned automatically from data
and the most appropriate set of features relevant to the task could
be found [47], [48]. As a result, a parsimonious fuzzy model
with good generalization performance would be obtained. In the
proposed L2-SVM-based fuzzy classification system, after the
training process, an importance rank of each feature is discov-
ered and the values of parameters characterizing MFs can also
be evaluated based on the feature ranking results. In such a way,
both feature ranking and automatic updating of MF parameters
can be realized in an integrated manner.
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VI. CONCLUSION

In this paper, a new scheme is proposed for constructing par-
simonious fuzzy classifiers with simultaneous model selection
and feature ranking based on the L2-SVM technique. Another
contribution of this paper is to have proposed two novel indices,

-values and -values of fuzzy rules, for fuzzy rule selection
based on the L2-SVM learning results. Because the number of
induced fuzzy rules in the L2-SVM-based fuzzy classifier is
not related to the dimensionality of input space, the proposed
scheme provides an efficient way of avoiding the “curse of di-
mensionality” during constructing fuzzy classifiers in high-di-
mensional space. Furthermore, the combination of model se-
lection, feature ranking, and fuzzy rule selection in the pro-
posed scheme leads to parsimonious fuzzy classifier construc-
tion, which is demonstrated by experiments on two benchmark
high-dimensional problems. The experimental results have also
shown that -values and -values are more effective than the
traditional -values in fuzzy rule ranking and selection.
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