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Abstract-The process of monitoring the events occurring in
a computer system or network and analyzing them for sign of
intrusions is known as intrusion detection system (IDS). The
objective of this paper is to extract fuzzy classification rules for
intrusion detection in computer networks. The proposed
method is based on the iterative rule learning approach (IRL)
to fuzzy rule base system design. The fuzzy rule base is
generated in an incremental fashion, in that the evolutionary
algorithm optimizes one fuzzy classifier rule at a time. The
performance of final fuzzy classification system has been
investigated using intrusion detection problem as a high-
dimensional classification problem. Results show that the
presented algorithm produces fuzzy rules, which can be used to
construct a reliable intrusion detection system.

I. INTRODUCTION

An intrusion is defined as any set of actions that attempt
to compromise the integrity, confidentiality or availability of
a resource [1]. Intrusion Detection Systems (IDS) are
effective security tools, placing inside a protected network
and looking for known or potential threats in network traffic
and/or audit data recorded by hosts. Basically, an IDS
analyzes information about users' behaviors from various
sources such as audit trail, system table, and network usage
data.
The problem of intrusion detection has been studied

extensively in computer security [3]-[6], and has received a
lot of attention in machine learning and data mining [7]-[9].

Intrusion detection is classified into two types: misuse
intrusion detection and anomaly intrusion detection.
Signature or misuse detection is based on patterns of known
intrusions [10]-[12]. In this case, the intrusion detection
problem is a classification problem. This approach allows
the detection of intrusions which the system has learned
their signatures perfectly. To remedy the problem of
detecting novel attacks, anomaly detection attempts to
construct a model according to the statistical knowledge
about the normal activity of the computer system [13]-[15].
The above discussion points out that the tradeoff between

the ability to detect new attacks and the ability to generate a
low rate of false alarms is the key point to develop an
effective IDS. In this paper, we exploit a new evolutionary
fuzzy system to develop an IDS based on misuse detection.
The goal of our algorithm is to find high quality fuzzy if-
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then rules to predict the class of input patterns correctly.
Evolutionary algorithms (EA) have been used as rule

generation and optimization tools in the design of fuzzy
rule-based systems [16, 17]. Those EA-based studies on the
design of fuzzy rule-based systems are usually referred to as
Evolutionary Fuzzy Systems (EFS), each of which can be
classified into the Michigan, Pittsburgh or Iterative Rule
Learning (IRL) approaches [16].
Some studies are categorized as the Michigan approach

where a single fuzzy if-then rule is coded as an individual
[11, 18]. Many fuzzy EFS methods are categorized as the
Pittsburgh approach where a set of fuzzy if-then rules is
coded as an individual [19, 20]. In the third approach, the
iterative one, chromosomes code individual rules, and a new
rule is adapted and added to the rule set, in an iterative
fashion, in every run of the GA [10, 21, 25].

In this paper, we have extended our previous Michigan-
based intrusion detection algorithm [11] from a problem
with two classes to a five-class classification problem. To
accomplish this purpose we have used an IRL-based
evolutionary fuzzy system that learns the final fuzzy
classification rule set in an iterative fashion. The proposed
evolutionary fuzzy system has been tested using the public
KDD CUP'99 intrusion detection data set available at the
University of California, Irvine web site [22]. As our
proposed classification system is an IRL-based evolutionary
fuzzy system for computer intrusion detection, we call it
CID-IRL through the rest of the paper.

The rest of the paper is as follows: Fuzzy rule base for
pattern classification is presented in section II. The proposed
IRL-based evolutionary fuzzy system is discussed in Section
III. Experimental results are reported in Section IV. Section
V is conclusions.

II. FUZZY RULE BASE FOR PATTERN CLASSIFICATION

Let us assume that our pattern classification problem is a
c -class problem in the n -dimensional pattern space with
continuous attributes. We also assume that M real vectors
xp = (Xpl I Xp2l ... Xpn ), p = 1, 2,...,M, are given as training
patterns from the c classes ( c <<M ).

Because the pattern space is [0, 1]n, attribute values of

each pattern are xpi E [0,1] for p=1,2,...,M and

i= 1,2,...,n. In computer simulations of this paper, we
normalize all attribute values of each data set into the unit
interval [0,1] .
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In the presented fuzzy classifier system, we use fuzzy if-
then rules of the following form.

Rule R1: If xi is A11 and ... and xn isAjn , then Class

C1 with CF=CFj.

where Ri is the label of the jth fuzzy if-then rule,

A . Ajn are antecedent fuzzy sets on the unit

interval[0,1], C1 is the consequent class (i.e., one of the

given c classes), and CFj is the grade of certainty of the

fuzzy if-then rule R. . In computer simulations, we use a

typical set of linguistic values in Fig. 1 as antecedent fuzzy
sets. The membership function of each linguistic value in
Fig. 1 is specified by homogeneously partitioning the
domain of each attribute into symmetric triangular fuzzy
sets. We use such a simple specification in computer
simulations to show the high performance of our fuzzy
classifier system, even if the membership function of each
antecedent fuzzy set is not tailored. However, we can use
any tailored membership functions in our fuzzy classifier
system for a particular pattern classification problem.

Membership

1.0

0.0
Attribute Value

Membership

1.0

DC

0.0 1.0
Attribute Value

Fig. 1. The used antecedent fuzzy sets in this paper. 1: Small, 2: medium
small, 3: medium, 4: medium large, 5: large, and 0: don't care.

The total number of fuzzy if-then rules is 6n in the case
of the n -dimensional pattern classification problem. It is
impossible to use all the 6n fuzzy if-then rules in a single
fuzzy rule base when the number of attributes (i.e. n) is
large (e.g., intrusion detection problem which n = 41).
Our fuzzy classifier system searches for a relatively small

number of fuzzy if-then rules with high classification
ability. Since the consequent class and the certainty grade of
each fuzzy if-then rule can be determined from training
patterns by a simple heuristic procedure [24], the task of our
fuzzy classifier system is to generate combinations of
antecedent fuzzy sets for a set of fuzzy if-then rules. While
this task seems to be simple at first glance, in fact it is very
difficult for high-dimensional pattern classification
problems, since the search space involves 6n combinations.

In our fuzzy classifier system, the consequent Class C1 and

the grade of certainty CF1 of each fuzzy if-then rule are

determined by a modified version of the heuristic procedure
which is discussed in [24].

To determine C1 and CFJ of each rule in the population

the following steps should be done:
Step 1: Calculate the compatibility of each training

pattern x p = (x PJxp2, ... ,Xpn ) with the fuzzy if-then rule

Ri by the following product operation:

luj (xp)=gI (xpI)x .. XAujn (x) p 1,2,..,m, (1)

where uAj (x pi ) is the membership function of ith attribute

of pth pattern and M denotes total number of patterns.

Step 2: For each class, calculate the relative sum of the
compatibility grades of the training patterns with the fuzzy
if-then rule R1 :

(2)Classh(R)= I /di (xxp) CClass h X h =1h 2, ... Ic
x E=sClassh /N

where 18Clas h (Rj ) is the sum of the compatibility grades of

the training patterns in Class h with the fuzzy if-then rule
R and N Class h is the number of training patterns which their

corresponding class is Class h .

The described modification of the heuristic procedure has
occurred in this step, since in the procedure discussed in
[24] the sum of the compatibility grades is calculated instead
of calculating the relative sum of the grades. This is because
in intrusion detection problem some of the classes are very
similar to each other. Moreover, the number of training
patterns for each of the classes is significantly different. So
if we use the traditional heuristic method of [24], the
consequent class of R1 might be specified incorrectly.

Step 3: Find Class hi that has the maximum value of

XIClass h (R ) :

ACh (Rj ) = max{IQass 1(j . aRj )}. (3)

If two or more classes take the maximum value, the
consequent Class C1 of the fuzzy if-then rule R cannot be

determined uniquely. In this case, let C1 be yo. If a single

class takes the maximum value, let C1 be Class hi . If there

is no training pattern compatible with the fuzzy if-then rule

Rj (i.e., if /U0m, h (Rj ) = 0 for h = 1, 2,. . ., c ) the consequent
Class C1 is also specified as yo.



Step 4: If the consequent Class C1 is y, let the grade

certainty CFj of the fuzzy if-then rule R be CF[ =

Otherwise, the grade of certainty CFj is determined

follows:

Cj = )3Cc,,s hj (Raj-3/Y'AClass h (Ri
h=1

where

E ACImssh(Rj)/(C-1)
h .hj

By the proposed heuristic procedure we can specify
consequent class and the certainty grade for
combination of antecedent fuzzy sets. Such a combinatio
generated by a fuzzy classifier system, which
construction steps will be explained in the next subsectioi

The task of our fuzzy classifier system is to genei
combinations of antecedent fuzzy sets for generating a i
set S with high classification ability. When a rule set,
given, an input pattern xp =(xp1Xp 2 ...lXpn) is classi.

by a single winner rule R inS, which is determinec

follows:
p(x,)CF. = max{Ip (~.F 1SI.

That is, the winner rule has the maximum product of
compatibility and the certainty gradeCF .

The method of coding fuzzy if-then rules which is use(
this paper is the same as the method which we employe(
[11]. Each fuzzy if-then rule is coded as a string.
following symbols are used for denoting the five lingui
values: (Fig. 1)

0: don't care (DC), 1: small (5), 2: medium small (MS)
medium (M), 4: medium large (ML), 5: large (L).

Intrusion Detection is a high-dimensional classificai
problem with a 41-dimensional feature vector as its in
and 5 classes as its output. The CID-IRL consists c
classifiers, where c is the number of classes. Each classi
contains a subset of rules with the same labels.
proposed algorithm focuses on learning of each class
improve the total accuracy of the main classifier. Theref
the proposed evolutionary fuzzy rule learning algorithn
repeated for each class of the classification prob
separately.
By considering the above feature of CID-IRL, the

classifier consists of c classifiers. Each of these classif
develops independently. The combination of the obtai
fuzzy rule sets are used in the structure of the f
classification system.

III. IDS BASED ON CID-IRL

CID-IRL is a kind of boosted evolutionarv fuzzy sysl
that learns fuzzy if-then rules in an incremental fashion

that the evolutionary algorithm optimizes one fuzzy
classifier rule at a time. The boosting mechanism reduces the
weight of those training instances that are classifier correctly
by the new rule. Therefore, the next rule generation cycle
focuses on fuzzy rules that account for the currently
uncovered or misclassified instances. At each iteration the
fuzzy rule that can classifies the current distribution of
training samples better than other rules of the population is
selected out to be included in the final classification fuzzy
rule base. The idea behind using the boosting mechanism is
to aggregate multiple hypotheses generated by the same
learning algorithm invoked over different distributions of
the training data into a single composite classifier.

In the above learning framework we have used the fitness
function which is computed according to equations (7) to
(9).

its
ICk = . (XknslIS kck W, A (Xk)

rate 'P-= k
rule klCk c=
S is

ICk
W AR (Xk

fled f Zk~c. kR(k
ftN =

as Z wkICk #C.

fitness(Rj) = w fp - WN N
(6) where,

the fp : rate of positive training instances covered by the
rule Ri (correct classification).

(7)

(8)

(9)

fN: rate of negative training instances covered by the
rule Ri (misclassification).

wk: a weight which reflects the frequency of the instance
xk in the training set.
wp : the weight of positive classification
WN: the weight of negative classification
(misclassification).

Outline of the proposed iterative evolutionary fuzzy
system is presented as follows:
Step 1: Generate an initial population of fuzzy if-then rules
based on weight of training samples. (Initialization)
Step 2. Generate new fuzzy if-then rules by genetic
operations. (Generation)
Step 3. Replace a part of the current population with the
newly generated rules. (Replacement)
Step 4. Terminate the inner cycle of the algorithm if a
stopping condition is satisfied, otherwise return to Step 2.
(Inner Cycle Termination Test)
Step 5. Terminate the outer cycle of the algorithm if a
stopping condition is satisfied, otherwise go to the next step
(Outer Cycle Termination Test)
Step 6. Adjust the new weight of each training sample that
covers by the new added fuzzy rule. Go to step 1. (Weight
Adjustment)

Each step of CID-IRL is described as follows:



Step 1: Let us denote the number of fuzzy if-then rules in
the population byNPOP. To produce an initial population,

N O. fuzzy if-then rules are generated according to a

random pattern in the train dataset [24]. As it was mentioned
in the previous section, the proposed evolutionary fuzzy
system is considered for each of the classes of the
classification problem separately. Therefore, the mentioned
random pattern is extracted according to the patterns of the
training dataset, which their consequent class is the same as
the class that the algorithm works on. Note that the
probability for each training pattern to be chosen in this step
is proportional to its current weight. This means that the
algorithm considers a greater probability for those patterns
that have not been learned in previous iterations. Next, for
this random pattern, we determine the most compatible
combination of antecedent fuzzy sets using only the five
linguistic values (Fig. 1). The compatibility of antecedent
fuzzy sets with the random pattern is measured by (1). After
generating each fuzzy if-then rule, the consequent class of
this rule is determined according to the heuristic method,
explained in the previous section. The generation of each
fuzzy rule is accepted only if its consequent class is the same
as its corresponding random pattern class. Otherwise, the
generated fuzzy rule is rejected and the rule generation
process is repeated. After generation of N.O fuzzy if-then

rules, the fitness value of each rule is evaluated by
classifying all the given training patterns using the set of
fuzzy if-then rules in the current population. Each fuzzy if-
then rule is evaluated according to the fitness function,
which is presented in equation (8):

Step 2: A pair of fuzzy if-then rules is selected from the
current population to generate new fuzzy if-then rules for
the next population. Each fuzzy if-then rule in the current
population is selected using the tournament selection
strategy. This procedure is iterated until a pre-specified
number of pairs of fuzzy if-then rules are selected. A
crossover operation is then applied to a selected random pair
of fuzzy if-then rules with a pre-specified crossover
probability. Note that the selected individuals for crossover
operation should be different. In computer simulations of
this paper, we have used the uniform crossover. After
performing the crossover operation, consequent classes of
the generated individuals are determined. If these classes are
the same as their parent classes then the generated
individuals are accepted, otherwise the crossover operation
is repeated according to a pre-defined iteration number for
each individual that its consequent class is not the same as
its parents. We call the above-mentioned iteration
number Xrepeat. With a pre-specifled mutation probability,

each antecedent fuzzy set of fuzzy if-then rules is randomly
replaced with a different antecedent fuzzy set after the
crossover operation. After performing the mutation
operation, consequent class of the mutated individual is
determined. If the result class is the same as the class of the
individual before the mutation operation the mutated

individual is accepted, otherwise the mutation operation is
repeated until a pre-specified iteration number. We call this
numberMrepeat. After performing selection, crossover and

mutation steps, the fitness value of each of the generated
individuals is evaluated according to equation (8).
Step 3: A pre-specified number of fuzzy if-then rules in

the current population are replaced with the newly generated
rules. In our fuzzy classifier system, PR percent of the worst
rules with the smallest fitness values are removed from the
current population and (100 -PR) percent of the newly
generated fuzzy if-then rules are added. (PR is the
replacement percentage) After performing the mentioned
replacement procedure, the fitness value of each of the
individuals is evaluated according to equation (8).

Step 4: We can use any stopping condition for
terminating the inner cycle of the IRL-based fuzzy rule-
learning algorithm. In computer simulations of this paper,
we used the total number of generations as a stopping
condition.

Step 5: After termination of the inner cycle of CID-IRL,
the algorithm adds the best fuzzy rule of the evolved
population to the final classification rules list and checks if
this added fuzzy rule is capable of improving the
classification rate of final classification system. If the
classification rate is not improved the algorithm removes the
added fuzzy rule from the final classification rules list and
terminates. Otherwise, it goes to the next step.

Step 6: At each step, GA is run and rule Rt with the best
fitness value is inserted into the fuzzy rule base. Since each
inserted rule is an incomplete weak classifier, rules in the
fuzzy rule base have a classification error value,
denoted E(Rt ):

E(Rt) = 1- CFt (10)

After each rule extraction process, instances that are
misclassified will end up having the same weight, and those
instances that classified correctly are reduced by some

factor 3k . Hence, after the extraction of rule Rt, the weight
at iteration t +1 becomes:

k

t l =
k()*p

if Ci . Ck

if ci = Ck
(1 1)

where 1k is calculated for each instance by using the
following equation:

(12)

Note that initially wk = 1 . After this step, the algorithm
jumps to step 1.

E(Rt) gRt (x
k
)

,8 k =

I-E(R)



I. EXPERIMENTAL RESULTS

We applied our proposed method to the Knowledge
Discovery and Data (KDD) Mining Cup 1999 intrusion-
detection data set. Each object in the data set is a network
connection. Each object is defined in 41D space, and
belongs to one of five classes: normal, probe, denial-of-
service (DOS), unauthorized access to root (U2R), and
unauthorized access from remote machine (R2L). Objects in
the normal class are harmless connections, whereas objects
in the other four classes are different types of attacks. The
training set contains 494,021 connections; the text data
includes 311,029. The KDD Cup 1999 data set is the only
large-scale, publicly available data for evaluating intrusion-
detection tools. A detailed description of the data set is
available at [22]. We have used a subset of the 10% KDD-
Cup 99 dataset as our train dataset. The test dataset is the
same as that, which was used in evaluating classification
algorithms in KDD-Cup 99 contest. We normalized the train
and test data sets, where each numerical value in the data set
is normalized between 0.0 and 1.0. Table I shows parameter
specification that we have used in our computer simulations
for CID-IRL. The evolutionary process of CID-IRL is
investigated in Fig. 2. According to this figure, we can
comprehend that our proposed iterative fuzzy rule learning
algorithm is capable of evolving fuzzy if-then rules that
cooperate and compete with one another efficiently.

Classification performance of CID-IRL is measured and
compared with that of different baseline classifiers including
pruning C4.5, Naive Bayes (NB), k-Nearest Neighbor (k-
NN) and Support Vector Machine (SVM). In k-NN
parameter k is set to 5, and the SVM is trained using the
well-known fast sequential minimal optimization method
with a polynomial kernel. Table II shows the results of
Recall, Precision, and F-measure of different classifiers for
each class of intrusion detection problem. This table shows
that our proposed evolutionary fuzzy system is within the
best three top classifiers for all of the classes in the
investigated classification problem. Therefore, we can
conclude that our proposed evolutionary fuzzy system is a
reliable approach for generating a high performance
classification system.

II. CONCLUSIONS

In this paper, the use of an iterative evolutionary fuzzy
system (CID-IRL) is investigated to develop an intrusion
detection system capable of detecting intrusive behaviors in
a computer network. Computer simulations on DARPA
datasets demonstrate high performance of CID-IRL for
intrusion detection. As intrusion detection is a high-
dimensional classification problem one of the important
properties of the proposed EFSs in this paper is that the class
labels of all of the rules in the population are the same. This
feature allows the algorithm to focus on learning of each
class independently. An initialization procedure is used to

generate fuzzy if-then rules directly from the training data
set. These rules enable the algorithm to focus on finding
fuzzy rules, which are related to a special class. Moreover,
the probability of choosing an instance from the training
data was depended on the instance weight. This technique
enabled the learning algorithm to guide its evolutionary
process at its start up significantly. The performance of CID-
IRL was compared to several classification algorithms.
Results showed that the performance of the presented
iterative algorithm is competitive to several well-known
classification algorithms such as pruning C4.5, Naive Bayes
(NB), k-Nearest Neighbor (k-NN) and Support Vector
Machine (SVM).

It would be interesting to investigate the performance of
other kinds if evolutionary fuzzy systems (e.g. Michigan and
Pittsburgh approaches) for the intrusion detection
classification problem. Moreover, the use of multi-objective
evolutionary fuzzy systems to extract a comprehensible
fuzzy classifier for intrusion detection is another
considerable investigation topic, which is left for our future
work.

TABLE I
PARAMETERS SPECIFICATION IN COMPUTER SIMULATIONS FOR CID-IRL

Parameter Value

population size (Npop 200

crossover probability Pc ) 90

mutation probability (Pm ) 10

Crossover attempts ( Xrepeat) 20

Mutation attempts ( Mrepeat) 20

Weight of positive class ( wp) 0.01

Weight of negative class ( WN) 0.99

replacement percentage ( PrepR) 20

maximum number of generations 200

Fig. 2. Classification rate progress for different classes of intrusion
detection problem during several iterations of CID-IRL

300 600 900 1200 1500 1800



TABLE II
RECALL, PRECISION, AND F-MEASURE FOR DIFFERENT CLASSIFIERS. THE BESTS ARE BOLD-UNDERLINED,

THE SECONDS ARE BOLD, AND THE THIRDS ARE UNDERLINED.

Class Algorithm C4.5 NB 5-NN SVM CIRDL-
Recall

NORMAL Precision
F-measure

PRB

DOS

U2R

R2L

Recall
Precision
F-measure

Recall
Precision
F-measure

Recall
Precision
F-measure

Recall
Precision
F-measure

98.3 55.4
74.7 43.3
84.9 48.6

81.8
52.2
63.7

96.9
99.6
98.3

14.4
9.3
11.3

1.4
30.3
2.7
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