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Abstract

The generation of e1ective feature pattern-based classi$cation rules is essential to the development of any intelligent
classi$er which is readily comprehensible to the user. This paper presents an approach that integrates a potentially powerful
fuzzy rule induction algorithm with a rough set-assisted feature reduction method. The integrated rule generation mechanism
maintains the underlying semantics of the feature set. Through the proposed integration, the original rule induction algorithm
(or any other similar technique that generates descriptive fuzzy rules), which is sensitive to the dimensionality of the dataset,
becomes usable on classifying patterns composed of a moderately large number of features. The resulting learned ruleset
becomes manageable and may outperform rules learned using more features. This, as demonstrated with successful realistic
applications, makes the present approach e1ective in handling real world problems. ? 2002 Pattern Recognition Society.
Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Intelligent pattern recognition systems have been success-
ful in many application areas. However, complex applica-
tion problems, such as reliable monitoring and diagnosis of
industrial plants and rapid detection and estimation of en-
vironmental changes, have emphasised the issue of knowl-
edge acquisition and modelling. These problems are likely
to present large numbers of features, not all of which will
be essential for the task at hand. Inaccurate and=or uncertain
values cannot be ruled out, either. Furthermore, such appli-
cations typically require convincing explanations about the
inference performed. A method to allow automated gener-
ation of knowledge models of clear semantics is, therefore,
highly desirable.

The most common approach to developing expressive and
human readable representations of knowledge is the use of
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if-then production rules. Yet, real-life problem domains
usually lack generic and systematic expert rules for map-
ping feature patterns onto their underlying classes. This
paper, based on the novel ideas proposed by the authors
as brie?y summarised in Ref. [1], presents a methodology
to generate classi$cation rules in an automatic, eBcient
and domain-independent manner.

The work aims to induce low-dimensionality rulesets from
historical descriptions of domain features (often of high
dimensionality). In particular, an exhaustive fuzzy rule in-
duction algorithm (RIA), as $rst reported in Ref. [2] is cho-
sen to act as the starting point for this. It should be noted,
however, that the ?exibility of the system discussed here
allows the incorporation of almost any rule induction algo-
rithm that uses descriptive set representation of features [3].
The current RIA, provided with sets of continuous feature
values, induces classi$cation rules to partition the feature
patterns into underlying categories. It is chosen for prop-
erties such as graceful handling of missing and inaccurate
information or vague data, domain independence, incremen-
tal operation [4]. However, as with many RIAs, this al-
gorithm exhibits high computational complexity due to its
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generate-and-test nature. The e1ects of this become evident
where patterns of high dimensionality need to be processed.

In order to speed up the RIA, a preprocessing step is
required. This is particularly important for tasks where
learned rulesets need regular updating to re?ect the
changes in the description of domain features. This step,
herein implemented using rough set theory [5], reduces
the dimensionality of potentially very large feature sets
without losing information needed for rule induction,
insofar as this is possible in the domain at hand. It
has an advantageous side-e1ect in that it removes re-
dundancy from the historical data. This also helps sim-
plify the design and implementation of the actual pattern
classi$er itself, by determining what features should be
made available to the system. In addition, the reduced
input dimensionality increases the processing speed of
the classi$er, leading to better response times. Most sig-
ni$cant, however, is the fact that rough set feature re-
duction (RSFR) preserves the semantics of the surviv-
ing features after removing any redundant ones. This is
essential in satisfying the requirement of user readabil-
ity of the generated knowledge model, as well as en-
suring the understandability of the pattern classi$cation
process.

There are several existing approaches relevant to the
task at hand, both from the point of view of applica-
tions and that of computational methods. For example, the
FAPACS 1 algorithm documented in Refs. [6,7] is able
to discover fuzzy association rules in relational databases.
It works by locating pairs of attributes that satisfy an
‘interestingness’ measure that is de$ned in terms of an
adjusted di1erence between the observed and expected
values of relations. This algorithm is capable of express-
ing linguistically both the regularities and the exceptions
discovered within the data. Romahi and Shen [8] have ap-
plied this approach to $nancial forecasting with promising
results. Hayashi et al. [9] have documented modi$cations
to the Fuzzy ID3 (itself an augmentation of Quinlan’s
original ID3 [10]) rule induction algorithm to better sup-
port fuzzy learning. In a similar attempt, Janikow [11]
has proposed modi$cations to decision trees to combine
traditional symbolic decision trees with approximate rea-
soning, o1ered by fuzzy representation. This approach
rede$nes the methodology for knowledge inference, re-
sulting in a method best suited to relatively stationary
problems.

A common disadvantage of these techniques is their
sensitivity to high dimensionality. This may be remedied
using Principal Components Analysis (PCA), a well-known
tool for data analysis and transformation [12,13]. However,
although PCA is an eBcient methodology, it irreversibly
destroys the underlying semantics of the dataset. Fur-
ther reasoning about the data is almost always humanly

1 FAPACS stands for Fuzzy Automatic Pattern Analysis and
Classi5cation System.

impossible, prohibiting the use of PCA as a dataset
pre-processor for symbolic or descriptive fuzzy modelling.
By implication, only purely numerical (non-symbolic)
datasets may be processed by PCA.

Most semantics-preserving dimensionality reduction (fea-
ture selection) approaches tend to be domain speci$c, how-
ever, utilising well-known features of speci$c application
domains. RSFR o1ers an alternative approach that preserves
the underlying semantics of the data while allowing rea-
sonable generality. The theoretical domain independence of
RSFR allows it to be used with di1erent rule induction algo-
rithms as mentioned earlier, in addition to the speci$c RIA
adopted herein. In light of this, the present work is devel-
oped in a highly modular manner.

The rest of this paper is organised as follows. Section 2
describes the proposed methodology that integrates dimen-
sionality reduction and rule induction. It summarises the the-
oretical background of the currently used RIA and RSFR
algorithms, and discusses important design and implemen-
tation issues involved. Section 3 provides in detail two prob-
lem cases, which both justify the need for the present work
and set up the scene for the experimental investigations re-
ported. Note that, to re?ect the generality and utility of the
approach, this paper presents substantial additional exper-
imental results to those presented in Ref. [1]. Section 4
provides the results of applying the methodology to devel-
oping classi$ers for these problems, supported by a compar-
ison to the application of C4.5 to the same domains. Section
5 concludes the paper and proposes further work.

2. Rough-fuzzy rule induction

In essence, the proposed approach deals with patterns in-
volving a large set of features, by applying a dimensionality
reduction algorithm on the feature set to discover a smaller
set of features that convey all the information with as little
redundancy as possible. Patterns formed using the resulting
dimensionally reduced feature set are then extracted from
the original pattern descriptions and fed to a rule induction
algorithm to generate a suitable ruleset. As shown in Fig. 1,
a rough-fuzzy system following this approach integrates the
following modules:

Feature reduction: reads a set of feature patterns and out-
puts another with reduced dimensionality, implemented with
the RSFR algorithm.
Rule induction: reads a sequence of feature patterns and

outputs a set of if-then rules connecting features and their
implied classes, implemented with the RIA algorithm.
Fuzzy reasoner: a standard approximative reasoner that

interprets the induced fuzzy ruleset and uses it to classify
previously unseen feature patterns.

A summary of the RIA and RSFR algorithms is given
below. Details about the fuzzy reasoner module are beyond
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Fig. 1. Block diagram of the dimensionality-reducing rule induction approach.

the scope of this paper but can be easily found in the relevant
literature (e.g. [14]).

2.1. Fuzzy rule induction

As re?ected in Fig. 1, central to the present work is the
creation of descriptive production rules from given feature
patterns. This relies on the use of a data-driven rule induction
method. The fuzzy RIA adopted to implement this task is
described below.

2.1.1. The algorithm
The rule induction algorithm as presented in Ref. [2] ex-

tracts linguistically expressed fuzzy rules from real-valued
examples. Although this RIA was proposed to be used in
conjunction with neural network-based classi$ers, it ap-
pears to be independent of the actual type of classi$er used.
Provided with training data, the RIA induces approximate
relationships between the characteristics of the conditional
attributes (pattern features) and their decision attributes
(underlying classes). The premise attributes of the induced
rules are represented by fuzzy variables, facilitating the
modelling of the inherent uncertainty of the knowledge
domain.

An additional input item needed by this algorithm is the
fuzzi$cation of the conditional attributes as feature patterns
are in general assumed to be available in real numbers
(though these numbers may not be accurately measured).
For presentational simplicity, the terms dataset and set of
historical patterns are hereafter used interchangeably, and
so are the term historical patterns and the term training
data (or examples).

A decision region is a set comprising examples’ row num-
bers, for which a certain decision attribute yi has a certain
value c: Dyi=c = {x: yxi = c ∧ x∈{1; : : : ; k}}, where yxi is
the value of the decision attribute yi as given by the exam-
ple with number x, and k is the total number of examples in
the dataset.

Next, the algorithm generates a set of all the possible
combinations of fuzzy sets de$ned in the underlying ranges
of the n conditional attributes. Each of the n attributes has
its own value range divided up into a number of fuzzy sets.
Such a range is hereafter called a fuzzy region for short. For
a domain with n conditional attributes, each of which is rep-
resented by fx fuzzy sets (16 x6 n), there will be

∏n
i=1 fi

possible combinations, each referred to as a fuzzy set vec-
tor. Each vector represents an emerging pattern of rule con-
ditions that may lead to a fuzzy rule, provided that dataset
examples support it. Note that, in implementing this algo-
rithm, it is infeasible and undesirable to implement directly
this step. Alternative, computationally equivalent methods
are employed to avoid the overhead of generating and stor-
ing this potentially vast set of combinations.

Based on this, it is possible to measure the evi-
dence contributed by an example x towards the estab-
lishment of a fuzzy rule denoted by a fuzzy set vec-
tor p = 〈�1; �2; : : : ; �n〉 (as produced in the previous
step). The t-norm operator is used to this end. Hence,
T p(x)=min(�1(x1); �2(x2); : : : ; �n(xn)) (Fuzzy intersection
or t-norm), where x1; x2; : : : ; xn are conditional attribute
values. Sets of these values are formed for each decision
yi = c: Tpyi=c = {w: w = T p(xj) ∀j∈Dyi=c}.

In a typical fuzzy region, no more than two fuzzy sets
overlap for each underlying real element, while the region
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is split into two or more fuzzy sets. This causes most of the
memberships to evaluate to zero, in turn forcing T p(x) to
also evaluate to zero, due to the use of min(·).

For each decision yi = c, the maximum element
of Tpyi=c is then evaluated (Fuzzy union or s-norm):
Spyi=c = max{x: x∈Tpyi=c}. This results in a multidimen-
sional array of candidate rules describing the mapping
between conditional and decision attributes. There is one ar-
ray for each pair of decision attributes and decision attribute
values (i.e. one for each decision region, as calculated
above).

Fuzzy rules may not be generated directly from these
arrays, as there are candidate rules for each possible de-
cision yi = c and every possible combination of fuzzi$ed
conditional attributes. This implies that the candidate rule-
set may comprise contradicting rules. A means of deciding
which candidate rule best describes a given fuzzy set vector
is needed.

A constant � dubbed the uncertainty margin (or toler-
ance) is used to implement this control. A fuzzy rule con-
cludes that class yi has value c given attribute values match-
ing the fuzzy premises in p, if and only if the corresponding
candidate rule is equal to at least � more than the candi-
date rules supporting any competing classi$cations yi = c′,
where c′ ∈ Yi (the set of possible values for decision class
yi) and c′ 
= c. If no candidate rule can be decided upon (i.e.
all values are within the � neighbourhood), the whole rule
is undecided for the fuzzy set vector in question. That is,

yi =

{
c if (∀c′ ∈ Yi − {c}) ⇒ Spyi=c − Spyi=c′¿�;
– otherwise:

(1)

The uncertainty margin introduces a trade-o1 to the rule
generation step. The higher � is, the less rules are generated.
The accuracy of the generated rules in performing a certain
application task is, of course, expected to be a1ected by
changing �. A careful selection of an appropriate � value is
therefore needed for a given problem at hand.

2.1.2. Algorithm modi5cations
The RIA summarised above is NP-hard and may become

intractable, when inducing rules for datasets with many
conditional attributes [4]. The most important problem both
in terms of memory and runtime is dealing with the large
numbers of combinations of fuzzy values. This may not be
so signi$cant when only a few attributes are involved, but
with real applications such as the water treatment plant mon-
itoring and algae population estimation (see Section 3), the
algorithm may become intractable in terms of both time and
space.

To improve the tractability of the RIA, it is convenient
to treat the creation of fuzzy set vectors as the creation of a
tree. In this context, a leaf node is one combination of mem-
bership functions and each arc represents one evaluation of
a membership function. One branch of the tree from root to
leaf consists of a candidate fuzzy rule’s conditions and each
arc of the tree represents a condition involving one variable.

The following observation is important to modify the al-
gorithm. As the minimum membership is retained when ap-
plying the t-norm operator, any membership function that
evaluates to zero implies immediately that t-norm will ul-
timately yield zero, regardless of the values of any other
membership functions. Such a subtree is therefore useless
and can be pruned if its root node evaluates to zero. This is
shown in Fig. 2, where the leftmost branch of the right tree
represents a membership evaluation yielding zero. The rest
of the sub-tree is ignored. In this illustration, out of nine
combinations in the complete tree, only six are used.

The gains with large numbers of conditional attributes are
much greater. For instance, for the water treatment problem
as reported in Section 3.1, using 38 conditional attributes
and assuming that (for simplicity) each conditional attribute
is broken up into $ve fuzzy sets, the RIA needs to generate
538 combinations. If the pruning algorithm is used instead,
and making the reasonable assumption that any real value
may belong to at most two fuzzy sets, there is a worst case
of 238 combinations evaluated. The time needed is $fteen
orders of magnitude less than that needed for the original
algorithm which relies on full tree traversal. In so doing,
the savings are signi$cant, but the number of combinations
is still far too large—this intractability is the reason for the
most prominent disadvantage of this algorithm and many
other descriptive fuzzy modelling techniques. It is also one
of the motivations behind employing RSFR to remove some
of the problems of rule induction over large datasets.

Additional space and time saving can also be facilitated
by further improving the algorithm such that the generation
of combinations, the evaluation of t-norm and the creation
of candidate rules are merged in one step. This avoids tem-
porary storage required for computing and evaluating fuzzy
set vectors.

2.2. Rough set feature reduction

Although the RIA is potentially very useful, the NP-hard
nature of the exhaustive search, even with tree-pruning im-
provements, prevents it from direct application to complex
domains [4]. This is unfortunately true both in terms of
computation time and the size of the resultant rulesets. The
RSFR technique is thus employed to reduce the complexity
by minimising redundancies contained within the set of fea-
ture patterns. It works by selecting those essential features
that are most signi$cant to the classi$cation represented in
the pattern set.

2.2.1. Basic concepts
The RSFR technique is herein explained in terms of the

following notions: U , the set of all feature patterns in the
dataset, along with their corresponding class labellings; A the
set of all features; and B, the set of feature class labellings.

The value of feature q∈A in pattern x∈U is written as
f(x; q), which de$nes an equivalence relationship over U .
Assume a subset of the set of features, P ⊂ A. Two patterns
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Fig. 2. RIA tree pruning. Arcs represent evaluations of membership functions. Each complete path to a leaf is one combination of fuzzy set
vectors.

numbered x and y in U are indiscernible with respect to P
if and only if f(x; q) =f(y; q) ∀q∈P. The indiscernibility
relation for all P ∈A is written as IND(P).U=IND(P) is used
to denote the partition of U given IND(P) and is calculated
as:

U=IND(P) = ⊗{q∈P: U=IND(q)} (2)

where

I ⊗ J = {X ∩ Y : ∀X ∈ I; ∀Y ∈ J; X ∩ Y 
= ∅}: (3)

A rough set approximates traditional sets using a pair of
sets named the lower and upper approximation of the set
in question. The lower and upper approximations of a set
P ⊆ U (given an equivalence relation IND(P)) are de$ned
as:

PY = ∪{X : X ∈U=IND(P); X ⊆ Y}; (4)

NPY = ∪{X : X ∈U=IND(P); X ∩ Y 
= ∅}: (5)

Assuming P and Q are equivalence relations in U , the
important concept positive region POSP(Q) is de$ned as:

POSP(Q) =
⋃
X∈Q
PX: (6)

A positive region contains all patterns in U that can be
classi$ed in attribute set Q using the information in attribute
set P. From this, the degree of dependency of a set Q of
classi$cation variables, Q ⊆ B on a set of features P, where
P ⊆ A, is de$ned as [5]:

�P(Q) =
||POSP(Q)||

||U || (7)

where ||S|| denotes the cardinality of set S.
The degree of dependency �P(Q) of a set P of condi-

tional attributes (features) with respect to a set Q of deci-
sion attributes (pattern classes) provides a measure of how
important P is in classifying the dataset examples into Q.
If �P(Q) = 0, then classi$cation Q is independent of the
attributes in P, hence the decision attributes are of no use
to this classi$cation. If � = 1, then Q is completely depen-
dent on P, hence the attributes are indispensable. Values
0¡�P(Q)¡ 1 denote partial dependency, which shows that
only some of the attributes in P may be useful, or that the

dataset was ?awed to begin with. In addition, the comple-
ment of � gives a measure of the contradictions in the se-
lected subset of the dataset.

It is now possible to de$ne the signi5cance of a feature.
This is done by calculating the change of dependency when
removing the feature from the set of considered conditional
attributes. Given P, Q and a feature x∈P:
!P(Q; x) = �P(Q) − �P−{x}(Q): (8)

The higher the change in dependency, the more signi$cant
x is. Thus, feature selection involves removing features that
have no signi$cance to the pattern classi$cation task at hand.

Central to the development of the RSFR is the notion of
feature reduct set (or simply reduct). A reduct is de$ned as
a subset R of the set of features C such that �C(D)= �R(D),
for the set of class labellings D. It is obvious that a dataset
may have more than one feature reduct set for a given D.
The set R of all feature reduct sets R is de$ned as:

R = {X : X ⊆ C; �C(D) = �X (D)}: (9)

RSFR always attempts to reduce the feature set while losing
no information signi$cant to the classi$cation at hand. It
searches for the feature reduct sets of least cardinality. That
is, it seeks one or more elements in the set ofminimal reducts
Rmin ⊆ R:

Rmin = {X : X ∈R; ∀Y ∈R; ||X ||6 ||Y ||}: (10)

Clearly, RSFR preprocesses feature patterns without alter-
ing the feature values themselves, thus maintaining the se-
mantics. Unlike statistical correlation-reducing approaches
(e.g. the Principal Components Analysis [12,13]), RSFR di-
mensionality reduction does not require human intervention,
or setting of variance thresholds. This property may also be
a disadvantage however, since other techniques o1er more
aggressive dimensionality reduction, accepting that in some
cases losing a little information may in fact prove to be
advantageous (e.g. in noisy environments). It is, however,
trivial to augment RSFR by adding a threshold to that e1ect.
In terms of feature representation, RSFR is mainly intended
for discrete domains. However, its dependence on nominal
features does not give rise to the present problem of fuzzy
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Fig. 3. The QUICKREDUCT algorithm.

Fig. 4. The QUICKREDUCT II algorithm.

knowledge modelling. This is because the real feature val-
ues are ultimately fuzzi$ed for use by the RIA, becoming
ordered symbolic values anyway.

2.2.2. Quick reduct search algorithm
The calculation of all possible subsets of a given set is an

NP-hard task. In order to reduce computational complexity
and memory requirements, the reduct subset search space is
herein treated as a tree traversal. Each node of the tree repre-
sents the addition of one conditional or feature attribute to an
initially empty reduct. Instead of generating the whole tree
and picking the best path on it, the path is chosen progres-
sively using the following heuristic: the next feature chosen
to be added to the reduct is the feature that adds the most
to the reduct’s dependency. The search ends when the de-
pendency reaches one, or when no more features are left. In
so doing, it converts an otherwise exhaustive evaluation of
all feature combinations into a best-$rst tree search. This is
dubbed the QUICKREDUCT algorithm. For conciseness, this
algorithm is summarised in pseudocode (see Fig. 3).

However, the version of QUICKREDUCT shown here is not
guaranteed to yield a minimal reduct of the dataset provided.
Thus, it has been necessary to update the algorithm, forming
QUICKREDUCT II (see Fig. 4). The second version of the
quick reduct search algorithm works by removing features
from the full set of conditional attributes C, as long as the
value of � does not change. QUICKREDUCT II supersedes
QUICKREDUCT II and is used herein.

Continuous Domain

1 2 3 4 5
Discrete Domain

Fig. 5. Precategorisation of a continuous region into $ve discrete
areas, by exploiting fuzzi$cation information.

2.2.3. Precategorisation
This is required as a preprocessing stage before running

the RSFR, mapping real values of features into ordered dis-
crete symbolic values. The work required here must split the
domain into no less discrete values than needed, as this will
result in too much loss of information, and hence in rule-
sets with reduced accuracy. Splicing the domain into more
values than necessary will, on the other hand, tax the induc-
tion process and is likely to produce less e1ective feature
reductions.

As the rule induction algorithm employed describes pat-
tern features using fuzzy terms (in an e1ort to cope with un-
certainty in given patterns), in principle, any standard fuzzi-
$er may be employed for this task. In practice, for conve-
nience, the method used to implement the real-to-symbolic
value mapping may take advantage of the fuzzi$cation in-
formation used by the induction algorithm itself. It does not
matter to the RIA what actual membership a pattern’s certain
feature has when considered belonging to a certain fuzzy
value, as long as its membership is higher by at least � than
the membership in any of other fuzzy values covering the
underlying value range of that feature. That is, the RIA es-
sentially deals with ranges of values based on which fuzzy
set provides the highest membership for a learning example.

Having taken notice of this, the precategorisation task is
implemented here by partitioning the real-valued domain
into discrete symbolic values (encoded as integers), one for
each range in the domain:

P = {[x0; x1); [x1; x2); : : : ; [xn−1; xn)} so that

∀x; xi6 x¡xi+1; i = 0; 1; : : : ; n− 1 ⇒ ∀k ∃j;
�j(x)¿ �k(x) (11)

where P is the set of all discrete values in ascending order
of the value of feature x, n denotes the number of such
symbolic values and is equal to the cardinality of P, and
j and k indicate membership functions de$ned within the
range [xi; xi+1). The process is illustrated in a simpler manner
in Fig. 5. The required information on fuzzi$cation may be
provided by a human expert, by a clustering method [15], or
by a genetic algorithm to search for the most suitable fuzzy
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set de$nition [3] (though this may alter the semantics of the
resulting fuzzy sets).

3. Problem cases

To emphasise the generality of the presented approach and
its independence from any speci$c domain, two application
case studies will be given later. To ease the presentation of
experimental results, this section provides a brief description
of each the two application problems.

3.1. Urban water treatment plant monitoring

The Water Treatment database, as archived in the UCI
Machine Learning Database Repository [16] comprises a set
of historical data obtained over a period of 521 days, with
one series of measurements per day. Thirty eight di1erent
input attribute (feature) values are measured per day, with
one set of such measurements forming one datum. All mea-
surements are real-valued.

The goal is to implement a fuzzy reasoning system that,
given this dataset of past measurements and without the
bene$t of an expert in the $eld at hand, will monitor the
plant’s status.

The domain was chosen because of its realism. A large
plant is likely to involve a number of similar conditional
attributes, not all of which will be essential in determining
the operational status. Interrelations between attributes are
unavoidable as the plant is a single system with intercon-
nections. Also, unknown values cannot possibly be ruled
out (due to, for instance, instrument failure or other event
hindering the measurement). As such, there is a fair amount
of redundancy in measurements obtained from the plant, as
shown in Fig. 6.

The thirty eight conditional attributes account for the fol-
lowing $ve aspects of the water treatment plant’s operation
(see Fig. 7 for an illustration of this):

(1) Input to plant (9 attributes)
(2) Input to primary settler (6 attributes)
(3) Input to secondary settler (7 attributes)
(4) Output from plant (7 attributes)
(5) Plant performance (9 attributes).

The status of the plant is represented by classifying each
day in one of 13 di1erent categories, some representing nor-
mal operation of varying types, others pointing out faults
in various parts of the plant. The categories are shown in
Fig. 8. Because of the eBciency of the actual plant the mea-
surements were taken from, all faults appear for short pe-
riods (usually single days) and are dealt with immediately.
This does not allow for a lot of training examples of faults,
which is a clear drawback if a monitoring system is to be
produced.

In order to reduce redundancies and increase the number
of examples of faults, it was necessary to collate most of
the fault cases into two major categories, so that each cate-
gory is well represented in the dataset. The result is a binary
monitoring problem: 507 samples for acceptable (OK) per-
formance and the remaining 14 samples for malfunctions.

3.2. Algae population estimation

Concern for environmental issues has increased in recent
years. Waste production in?uences humanity’s future. The
alga, an ubiquitous single-celled plant, can thrive on indus-
trial waste, to the detriment of water clarity and human ac-
tivities. To avoid this, biologists need to isolate the chemical
parameters of these rapid population ?uctuations.

The task of this application problem is to estimate the pop-
ulations of seven di1erent species of alga based on eleven
attributes of the river sample [17]:

• the time of year the sample was taken, given as a season,
• the size of the river,
• the ?ow rate of the water, and
• eight chemical concentrations, including nitrogen in the

form of nitrates, nitrites, ammonia, phosphate, the pH of
the water, oxygen and chloride.

To derive the rules required for estimation, training samples
were taken from di1erent European rivers over the period
of one year. These samples were analysed to quantify the
presence of the chemicals and water pH. The algae popu-
lation distributions for each of the species involved were
determined in the samples.

It is relatively easy to locate relations between one or two
of these quantities and a species of algae. However, the pro-
cess of identifying relations between di1erent chemical ele-
ments and the population of di1erent algae species requires
expertise in chemistry and biology and involves well-trained
personnel and microscopic examination that cannot be auto-
mated given the state of the art. Thus, the process becomes
expensive and slow, even for a subset of the quantities in-
volved here. There are complex relations at work between
the attributes of this application domain, be they conditional
or decision: algae may in?uence one another, as well as be
in?uenced by the concentration of chemicals. As such, there
is expected to be some redundancy in the data. An important
reason for the present development is utilising the RSFR
technique.

The dataset available for training includes 200 instances.
The $rst three features of each instance (season, river size
and ?ow rate) are represented as fuzzy linguistic variables.
Chemical concentrations and algae population estimates are
represented as continuous quantities. The dataset includes a
few samples with missing values. Of the 200 instances, two
exhibiting mostly unknown values were removed from the
dataset because of their extremely low quality.
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Fig. 6. Two groups of attributes, plotted over time. There is an obviously high degree of redundancy in the dataset.
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Fig. 7. Schematic diagram of the water treatment plant, indicating the number of measurements sampled at various points.

Fig. 8. The thirteen possible states of the water treatment plant.

To generalise given training samples, attributes of numer-
ical values are preprocessed to become symbolic. As the
$rst three conditional attributes are already represented in
fuzzy terms, no such preprocessing is required for them.
Matters di1er for the eight chemical concentrations. As with

all concentrations, these exhibit an exponential distribution
(as shown in Fig. 9). To ease processing, samples were con-
verted to a logarithmic scale de$ned by f(x) = log(x + 1),
where x is the numerical measurement of an attribute. 2

As can be expected, the distributions of the algae are
also exponential. This, coupled with the fact that the de-
cision attributes representing algae population counts are
numerical, suggests the use of a similar treatment as above.
The conditional attributes were thus transformed by g(x) =
�log(x + 1)�, where x is the numerical measurement of
the algae community’s population and �·� is the 9oor
operator. 3 This quantisation is required because the pro-
posed approach can only distinguish between discrete
classes.

2 Concentrations are non-negative real numbers, hence it is nec-
essary to add an arbitrary constant to avoid the logarithm of zero.

3 Yielding the maximum integer less than or equal to the ?oor
operator’s operand.
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Fig. 9. Density plots for three of the algae dataset attributes: two of the eight chemical concentration distributions (left and middle), and
the distribution of population values for one species of alga.

4. Experimental results

This section $rst provides separate results for the two
problem cases used. Next, a comparison to the application
of Quinlan’s C4.5 algorithm [10] for both domains follows.
Finally, a discussion on the impact of fuzzi$cation on the
process is given.

The results of a rule induction run are shown below using
a pair of graphs: one shows the classi$cation error plotted
against � (labelled tolerance); the other is a graph of the num-
ber of induced rules against �. As described in Section 2.1,
there is a trade-o1 between the number of generated rules
and the classi$cation error as decided by �, the uncertainty
margin or tolerance. To have an eBcient runtime perfor-
mance, the induced ruleset should be generated as small as
possible (without sacri$cing much classi$cation accuracy).
This makes it important to have a right choice for �. How-
ever, the selection of � is, in general, an application-speci$c
task. A good choice for the uncertainty margin which
provides a balance between a resultant ruleset’s size and
accuracy can be found by experiment. Results provided
throughout this section demonstrate this.

4.1. The urban water treatment plant problem

Running the RSFR algorithm on the water treatment plant
dataset provided a signi$cant reduction, with RSFR select-
ing merely two conditional features from the total of 38,
namely the conductivity of the water in the primary settler
and any other attribute. Input ?ow was arbitrarily chosen
as the second conditional attribute because there is no intu-
itively obvious relation between it, the primary settler con-
ductivity attribute and the operational status of the plant.

The rule induction algorithm was then executed using the
selected attributes to generate a ruleset. The results are il-
lustrated in Fig. 10. The left plot gives the resulting clas-
si$cation error, while the right plot shows the size of the
ruleset generated as a function of the uncertainty margin
(labelled ‘tolerance’). An additional number of rule induc-
tion runs were performed, using randomly selected groups
of eleven conditional attributes each. The minimum, average
and maximum values for the classi$cation error and ruleset
size of these extra runs are shown as the vertical lines on
the graphs, to ease comparison.

Note that in these graphs, ‘undecidable’ answers by the
RIA are considered wrong answers, this giving slightly more
conservative results. In this case, top classi$cation accuracy
is around 96.5% with ‘undecidable’ counted as a wrong an-
swer, or 97.1% with ‘undecidable’ counted as an acceptable
admission of ignorance. These results were obtained using
ten-fold cross-validation of the learned rulesets.

Clearly, the rulesets induced using the set of attributes
chosen by the RSFR method are of better quality than the
average randomly selected ones, which implies that the lat-
ter lose some important information in the course of at-
tribute reduction and rule induction. Detailed investigation
revealed that, on top of information loss incurred by choos-
ing a subset of the original attributes, inexpert fuzzi$cation
is also responsible for the error during the rule induction
phase. The fuzzi$cation of certain conditional attributes is
less successful than others, leading to the further removal of
useful information. The use of a human expert in designing
the fuzzi$cation of the application would prove valuable in
reducing the classi$cation error of the resultant ruleset. Ac-
curacy is also reduced because of the contents of the dataset,
as there is very little information on plant faults present.
Nevertheless, a classi$cation rate of around 97% is very
encouraging.

Even given the reduction in ruleset quality, though, us-
ing the set of attributes discovered by the RSFR algorithm
could be several orders of magnitude faster than generat-
ing numerous rulesets in the hope of $nding the optimum
one. Running the RIA on all 38 conditional attributes would
be computationally prohibitive; the reduced, two-attribute
set requires a fraction of a second per example. This was
timed on a common desktop workstation at the time of writ-
ing. Additionally, it is important to note that this particular
RIA can be trained incrementally. The algorithm o1ers lin-
ear complexity with respect to the number of examples in
the dataset—its NP-hard complexity is only with respect to
the number of attributes.

Although the choice of the RIA used in this application
was partially meant to emphasise the savings of dimension-
ality reduction, even much more eBcient rule induction al-
gorithms would bene$t from this. As stated previously, how-
ever, the bene$ts do not limit themselves to the training
stage; they extend to the runtime use of the system. By re-
ducing the dimensionality of the data, the dimensionality of
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Fig. 10. Impact of dimensionality reduction.

the rule set is also decreased. This results in less measured
features, which is very important for dynamic systems where
observables are often restricted. This in turn leads to less
connections to instrumentation and faster system responses
in emergencies.

4.2. Algae population estimation

For convenience, each of the seven alga species were
processed separately by the RIA in order to provide seven
di1erent rulesets. Each ruleset models the behaviour of one
species. The separate rulesets can be merged trivially, to
form a single ruleset. Alternatively, the RIA can be applied
to all seven to produce directly a single, uni$ed ruleset. This
latter choice is, of course, a more inelegant and in?exible
solution than having separate algae models. Therefore, the
following results are shown with respect to individual algae
species.

It is, $rst of all, interesting to investigate what e1ects
dimensionality reduction may have on the runtime perfor-
mance of this particular application. To show whether fea-
ture reduction has an impact on overall accuracy, the RIA
algorithm was used to induce a ruleset from the entire,
unreduced algae dataset [17]. The results are shown on the
top row of Fig. 11. Then, RSFR was employed to reduce
the dimensionality of the dataset, producing another ruleset
from these reduced patterns. This resulted in a seven-feature
dataset selected from the original, eleven-feature one. The
results of testing the ruleset induced from this dataset are
illustrated on the bottom row of Fig. 11.

The exact selected features were di1erent for each alga
species, although certain ones were present in all seven
reduct sets, namely the Season and Concentrations 1, 4 and
7. There is a certain drop in accuracy (approximately 10%)
after dimensionality reduction, which may indicate that the
attribute reduction process has removed some of the neces-
sary information.

To show that RSFR performs as claimed, it is desirable
to prove two further points: that the RSFR algorithm truly
$nds a minimal reduct of the dataset; and that adding further
attributes to this reduct does not produce better results.

To this end, two further groups of experiments were con-
ducted. In the $rst, numerous datasets of six features each
were randomly generated from the original, eleven-attribute
algae dataset. Rulesets were induced from these, and the av-
erage estimation error of all runs was plotted, as shown on
the right graph of Fig. 12 (where the left graph is the re-
duced dataset error for Fig. 11, copied here to ease compar-
ison). Two empirical conclusions can be drawn from these
results: $rst, not all features contribute the same informa-
tion; second, the results obtained from random sets of fea-
tures are worse than those obtained from the reduct set. The
latter conclusion demonstrates that RSFR does indeed locate
a relatively high-quality reduct.

In the second group of experiments, the four remaining
conditional attributes were added to the seven-feature reduct
one at a time. The aim was to show that more attributes
do not necessarily imply higher accuracy. Rulesets were
induced from these arti$cially produced feature sets, and
the results were averaged. As shown on the right graph of
Fig. 13 (again, the canonical, reduced results from Fig. 11
are shown on the left graph for comparison), error increased
by adding an arbitrary feature to the reduct. This leads to
the conclusion that the reduct indeed leads to an accuracy
loss that is acceptably low.

4.3. Comparison with C4.5

C4.5 [10] is a widely accepted and powerful algorithm
providing a good machine learning benchmark [18]. The
decision trees it generates can be interpreted very quickly
by the monitoring system. However, C4.5’s decision tree for
the Water Treatment Plant problem involves a total of three
features from the dataset, as compared to two chosen by the
RSFR algorithm. The runtime eBciency of the rules induced
by such an approach may therefore be reduced, whilst the
diBculty in performing e1ective monitoring and diagnosis
would be increased due to the requirement of additional
measurements, although, in this example, the di1erence is
not very pronounced.

In terms of classi$cation performance, C4.5 obtains an
accuracy of around 96.8%. For easy comparison, the classi-
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Fig. 11. Algae estimation accuracy before (top) and after (bottom) dimensionality reduction. Note that ruleset size is given on a logarithmic
scale.
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Fig. 12. Comparison of estimation error after training on the reduct set of seven attributes (left), and random sets of six attributes (right).
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Fig. 13. Comparison of estimation error after training on the reduct set of attributes (left), and the reduct set plus one random attribute (right).
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Fig. 14. Comparison of classi$cation accuracies and the number
of features required by the algorithms, in the context of the Water
Treatment Plant problem.

Fig. 15. Comparison with C4.5 in the context of the Algae problem.

$cation performances of the two approaches are summarised
in Fig. 14. Also included in the table are the numbers of
features selected by RSFR and C4.5.

For the Algae Population Estimation problem, the system
described herein is able to provide an estimation accuracy
that clearly surpasses that of C4.5, all the while using a
signi$cantly smaller set of conditional attributes (as shown
in Fig. 15, where undecidables are treated as misclassi$-
cations). Although C4.5 o1ers superior training speed, the
higher number of features involved in the $nal system can
be undesirable, inasmuch as the cost, complexity and time
requirements of obtaining each set of measurements is pro-
portional to the number of measurements in each set.

4.4. Impact of fuzzi5cation

It is clear that the integrated rough-fuzzy approach works
very well. This shows that real-world problems do contain
a lot of redundancy which, once removed, allows highly
accurate rulesets of low-arity rules to be induced.

However, the present work requires good fuzzi$cation. In
running the experiments reported above, no attempt to op-
timise the fuzzi$cation was made, either via an automated
membership function tuning tool [3] or via a domain expert.
The fuzzi$cation was instead performed by a basic statisti-
cal count of the dataset. Yet, better fuzzi$cation generally
leads to better classi$cation. Therefore, with a better parti-
tion of the underlying numerical value range, the integrated
rough-fuzzy learning method should be able to produce a
more accurate ruleset for a given application.

Deviations from the expected results are partially blamed
on inexpert fuzzi$cation of the domain. This is because the
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Fig. 16. Implications of shifting membership functions to the left
or right along the x-axis. Note: classi$cation accuracy is shown
here rather than classi$cation error.

rulesets induced by the integrated rule induction system are,
as with the original RIA, based on the evaluation of fuzzy
set membership functions. This makes the choice and con-
$guration of these functions crucial for correct results. The
fuzzi$cation used, for instance, for the monitoring task at
hand was performed using statistical analysis and intuition
rather than human expertise in the speci$c domain. How-
ever, the system produces acceptable rulesets quickly, even
with inexpertly fuzzi$ed datasets.

To demonstrate the importance of correct fuzzi$cation,
the rough-fuzzy approach was also applied to a simple do-
main, the Iris dataset [19]. Numerous rule induction runs
were performed and the rulesets were evaluated. For each
run, the entire group of fuzzy set membership functions was
shifted to the left or right along the x-axis. The results were
plotted as a three-dimensional graph (see Fig. 16). This is
essentially a family of accuracy=tolerance graphs. Classi$-
cation accuracy is shown, rather than classi$cation error, in
an e1ort to demonstrate the e1ects of correct fuzzi$cation as
a hill. The third axis is the shift factor of the fuzzy member-
ship functions. The dashed line marks the original, unshifted
fuzzi$cation information from the work of Lozowski [2].
The highest point in the graph is very close to that fuzzi$ca-
tion. Shifting the membership functions to the left or right
produces less accurate rulesets.

Finally, it is worth indicating that there are various ap-
proaches to optimising fuzzy rule sets automatically. A few
aim at optimising the de$nition of the membership functions
rather than the product ruleset [20]. Such systems could be
applied here to improve fuzzi$cation information.

5. Conclusion

Feature pattern-based if-then rules o1er an expressive
and human readable form of modelling knowledge e1ective
for classi$cation. Automated generation of such rules is
essential to the practical success of most intelligent pattern
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classi$ers that rely on the use of such rules. This paper has
presented an approach which integrates a potentially power-
ful fuzzy rule induction algorithm with a rough set-assisted
feature reduction method. Unlike transformation-based
techniques, this approach maintains the underlying seman-
tics of the feature set. This is very important to ensure the
resulting models are readily interpretable by the user and
the inference performed explainable to the user. Through
the integration, the original rule induction algorithm (or any
other similar technique that generates fuzzy rules), which is
sensitive to the dimensionality of the set of feature patterns,
becomes usable on patterns involving a moderately large
number of features.

The work has been applied to several real problem-solving
tasks. In addition to the application results on monitoring of
an industrial water treatment plant, as reported in Ref. [1]
where the initial ideas of this research were $rst described,
this paper has provided the results of utilising the approach
for algae population estimation. Although the application
problems encountered are complex, the resulting learned
rulesets are manageable and may outperform rules learned
using more features.

The performance of the present approach can be improved
further. In particular, as indicated previously, fuzzi$cation
plays a very signi$cant role in obtaining high quality rule-
sets. An optimising pre-processor for domain fuzzi$cation
would be very helpful. Techniques for fuzzy set optimisa-
tion, typically by the use of a genetic algorithm, to search
for the most suitable fuzzy set de$nitions, have been pro-
posed [3]. Investigation into the addition of such a technique
to the rough-fuzzy learning mechanism, whilst minimising
the loss of descriptiveness of the learned rules, is currently
on-going at Edinburgh [3]. This can be especially bene$-
cial in situations where no human experts are available to
provide initial categorisation of the domain.

The ruleset generated by the RIA was not processed by
any post-processing tools so as to allow its behaviour and
capabilities to be revealed fully. By enhancing the induced
ruleset through post-processing, performance can be ex-
pected to improve. This conjecture is supported by existing
work in processing various types of learned ruleset, as re-
ported in the literature [20–22]. Finally, it is also very inter-
esting to modify the QuickReduct algorithm by allowing the
inclusion of more than one feature at a time in the emerging
minimal reduct. This will help boost the eBciency of the
rule generation process.
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