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Abstract

The relationship between support vector machines (SVMs) and Takagi–Sugeno–Kang (TSK) fuzzy systems is shown. An exact
representation of SVMs as TSK fuzzy systems is given for every used kernel function. Restricted methods to extract rules from
SVMs have been previously published. Their limitations are surpassed with the presented extraction method. The behavior of SVMs
is explained by means of fuzzy logic and the interpretability of the system is improved by introducing the �-fuzzy rule-based system
(�-FRBS). The �-FRBS exactly approximates the SVM’s decision boundary and its rules and membership functions are very simple,
aggregating the antecedents with uninorms as compensation operators. The rules of the �-FRBS are limited to two and the number of
fuzzy propositions in each rule only depends on the cardinality of the set of support vectors. For that reason, the �-FRBS overcomes
the course of dimensionality and problems with high-dimensional data sets are easily solved with the �-FRBS.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Support vector machines (SVMs) are learning systems which solve two-class classification problems. They are based
on statistical learning theory and have attracted increasing attention because of their optimal applications in speaker
verification and identification [38], face detection [30] or text categorization [16] among others.

A problem of the SVMs is their limitation of being Black Boxes. It cannot be explained, in a comprehensible way,
how a SVM works. A similar issue happens with the artificial neural networks. Many papers have been published about
bringing that problem off in the neural networks case, a review can be found in [2,14,21,28,37]. However, only a few
papers have been presented in this matter concerning SVMs [3,11,12,29].

In the field of neural networks, the Black Box problem has been solved by finding a comprehensible representation
for the network, usually a rule-based system. We mention two approaches:

(a) Obtaining an understandable system which approximates the neural network behavior. Examples of this approach
can be found in [1,18,35].
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(b) Describing the ANN action as comprehensible as possible. Usually, these systems use fuzzy rules to achieve this
equivalence. The methods presented in [4,9,25] are examples of this orientation.

Papers conceived to solve the Black Box problem of the SVMs, also present these two approaches:

(a) Some of them show a comprehensible system with an input–output mapping different from the mapping produced
by the SVM [3,29].
In [29], a clustering algorithm and the output decision function of the SVM are used for determining prototype
vectors of each class. Then, these vectors are combined with the support vectors (SVs) to define ellipsoids in the
input space, which are then mapped to if-then rules.
In [3], the classes of the data set are labeled by using a trained SVM. Then, that data set is used with a machine
learning technique with explanation capability. In this paper, a standard decision tree is used.

(b) Other papers [11,12] obtain a fuzzy rule-based system (FRBS) with an input–output mapping equivalent to the
decision function of the SVM. They obtain an additive fuzzy system [27] from a SVM. However, the fuzzy system is
only conceived for translation invariant kernel functions, for example, Gaussian. In the present paper, this constraint
is avoided.

Our proposal solves the Black Box problem of the SVMs by considering each SVM as a fuzzy rule-based model.
The current issue has been previously faced with another Black Box models [22,31]. The presented method can be
considered a method of interpretability improvement in fuzzy modeling [7]. It will be shown that it is possible to obtain
a �-FRBS provided any SVM. This �-FRBS will have the following properties:

• The equivalence between SVM and �-FRBS is theoretically demonstrated.
• For every SVM there is a �-FRBS, it is not restricted by the type of kernel. The extraction method can be used for

every widely used kernel: hyperbolic tangent, polynomial and Gaussian.
• It avoids the “curse of dimensionality’’, which shows up when high-dimensional data problem is intended to be

solved by using a standard fuzzy system. In this work, the number of rules in the �-FRBS is limited (just two rules)
and the number of fuzzy propositions in each rule only depends on the cardinality of the set of SVs.

The paper is structured as follows: in the first sections several useful concepts necessary to describe the �-FRBS are
introduced: SVMs (Section 2), Takagi–Sugeno–Kang (TSK) FRBSs (Section 3) and the uninorms (Section 4). The
equivalence between SVMs and �-FRBSs is shown in Section 5 and the extraction of comprehensible fuzzy rules from
SVMs is presented as well. Finally, some examples are studied and proofs of theorems are found in the Appendix.

2. Support vector machines

Let us consider a two-class classification task with the training data set (�xi , yi) i = 1, . . . , m, where �xi ∈ �n and
yi = {−1, +1}. Let the decision function be

f (�x) = sign(〈�x, �w〉 + b).

A good generalization is achieved by maximizing the margin between the separating hyperplane

〈�x, �w〉 + b = 0

and the closest data points in the input space. This optimal hyperplane can be determined as follows:
Minimize 〈 �w, �w〉
Subject to yi(〈 �w, �xi〉 + b)�1 ∀i.

Introducing Lagrange multipliers to solve this optimization problem and making some substitutions, we arrive to the
Wolfe dual of the optimization problem:

Maximize

Q(�) =
m∑

i,k=1

�i − 1

2
�iyi�kyk〈�xi �xk〉
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subject to

C��i �0 ∀i,

m∑
i=1

�iyi = 0.

The hyperplane decision function can thus be written as

f (�x) = sign

(
m∑

i=1

�iyi〈�x, �xi〉 + b

)
.

In order to use the method to produce nonlinear decision functions, the input space is projected to a higher-dimensional
inner product space F, called feature space, using a nonlinear map

�(�x) : �n → �d.

In the feature space the optimal hyperplane is derived. Nevertheless, by using kernels which satisfy the Mercer’s
theorem, it is possible to make all the necessary operations in the input space by using

〈�(�xi), �(�xj )〉 = K(�xi, �xj ),

as K(�xi ,�xj ) is an inner product in the feature space. The decision function can be written in terms of these kernels:

f (�x) = sign

(
m∑

i=1

�iyiK(�x, �xi) + b

)
.

Just a few of the training patterns have a weight �i non-zero in the previous equation. These elements are the closest to
the boundary and they are known as SVs. These SVs optimize the procedure in the classification task. We recommend
[6,32] for an extensive explanation of learning (training) for SVMs.

The equivalence between SVMs and �-FRBSs proposed in this paper holds for all the most commonly used kernels.
These functions are:

• Hyperbolic tangent kernel: K(�x, �xi) = tanh(a · 〈�x, �xi〉 + c), a · c�0, c�0.
• Polynomial kernel with odd exponent: K(�x, �xi) = (〈�x, �xi〉 + s)d , d is odd.
• Polynomial kernel with even exponent: K(�x, �xi) = (〈�x, �xi〉 + s)d , d is even.
• Gaussian kernel: K(�x, �xi) = e−(‖�x−�xi‖2/2�2).

3. TSK fuzzy rule-based systems

The rules of the TSK FRBSs [36] usually have the following form:

Rk: If x1 is A1 ∗ x2 is A2 ∗ · · · ∗ xn is An then Yk = pn · xn + pn−1 · xn−1 + · · · + p1 · x1 + p0,

where xi are the system input variables, Ai are labels with associated fuzzy sets and Y is the output variable. The output
Y of a FRBS with m TSK rules is computed as the weighted average of the individual rule outputs Yi (i = 1, . . . , m)

as follows:

Y =
∑m

i=1 Yi · gi∑m
i=1 gi

,

where gi = ∗(�A1
(x1), . . . , �An

(xn)) is the matching degree between the antecedent part of the rule and the current
system inputs, ∗ is usually a t-norm and �x = (x1, x2, . . . , xn) is the system input.

4. Uninorms

Normally, connectives used in fuzzy rules for aggregating propositions are t-norms (fuzzy intersection, and con-
nective) or t-conorms (fuzzy union, or connective) [24,42]. However, when these operators are used, no compensation
between small and large degrees of membership takes place [23,41,43].
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Fig. 1. Behavior of the uninorm operators.

t-Norms do not allow low values to be compensated by high values and t-conorms do not allow high values to be
compensated by low values [13]. To show this problem, we can suppose the following example:

When evaluating n features of a car (security, comfort, acceleration . . .) it is obtained n values xi ∈ [0, 1]. Each
value indicates the quality of the feature evaluated (0 is bad quality—0.5 neuter quality—1 is good quality). We
need to aggregate these values xi to come to a global conclusion (y ∈ [0, 1]) about the car quality.

Let us choose the minimum operator as a t-norm (x1 AND x2 . . . AND xn) to aggregate the features of the car: even
though the characteristics were good (high values), only one low value will produce a low final conclusion about the
car quality.

In the same way, if we take the maximum operator as a t-conorm (x1 OR x2 . . . OR xn): disregarding the character-
istics were bad (low values), only one high value will produce a good final conclusion.

Uninorms operators were defined to solve this problem. Formally, an uninorm is a function

U : [0, 1] × [0, 1] → [0, 1]

that has the following properties:

• commutability, U(x, y) = U(y, x);
• monotonic (increasing), if a�b and c�d then U(a, c)�U(b, d);
• associativity U(x, U(y, z)) = U(U(x, y), z);
• it has a neuter element e ∈ [0, 1] such as U(x, e) = x.

The most interesting property of uninorms is its different behavior on particular sub-domains (Fig. 1):

• They behave as t-norm on the interval ([0, e] × [0, e]).
• They behave as t-conorm on ([e, 1] × [e, 1]).
• They have a compensation behavior on ([0, e) × (e, 1] ∪ (e, 1] × [0, e)).

In simple words, if an uninorm operator is implemented on [0, 1]× [0, 1], two small degrees of membership are scaled
down, two large degrees are graded up, and some compensation takes place if small and large degrees are aggregated
[23].

This behavior is coherent with some real situations. For example, if we aggregate the n values xi about the car quality
with an uninorm, the following reasoning can be carried out:

• The car problems (values xi ∈ [0, 0.5)) are aggregated with a t-norm, obtaining only one low value ydisadvantages.
• The advantages of the car (values xi ∈ (0.5, 1]) are aggregated with a t-conorm, obtaining only one high value

yadvantages.
• The neuter features (xi = 0.5) do not influence on the conclusion.
• Finally, a compensation between disadvantages (ydisadvantages ∈ [0, 0.5)) and advantages (yadvantages ∈ (0.5, 1]) of

the car takes place and a final value y is obtained.
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A particular uninorm is the symmetric sum [34] defined as follows:

a ∗ b = a · b

a · b + (1 − a) · (1 − b)
.

Its domain is the unit square with the exception of the points (0,1) and (1,0). The neuter element of this operator is 0.5
(e = 0.5).

As illustrative example, the symmetric sum has the following behavior when combining the values �, � ∈ (0.0, 0.5),
�, 	 ∈ (0.5, 1.0) and 
 = 0.5:

� ∗ � ∗ � ∗ 	 ∗ 
 = � ∗ � ∗ � ∗ 	 =
(� OR 	)

compensation
(� AND �)

=
(� OR 	)

comp
(� AND �)

where:

• The AND operator behaves on (0,0.5) as t-norm with neuter element equal to 0.5 instead of 1.0.
• The OR operator behaves on (0.5,1.0) as t-conorm with neuter element equal to 0.5 instead of 0.0.
• The comp operator carries out a compensation between a low value � = (� AND �), � ∈ (0.0, 0.5) and a high value

� = (� OR 	), � ∈ (0.5, 1.0), that is:

• (� comp �) is lower than 0.5 if “(0.5 – �) > (� – 0.5)”.
• (� comp �) is greater than 0.5 if “(0.5 – �) < (� – 0.5)”.
• (� comp �) is equal to 0.5 if “(0.5 – �) = (� – 0.5)”.

The symmetric sum operator will be used for combining the fuzzy propositions in the antecedents of the rules obtained
from SVMs.

5. SVMs are fuzzy rule-based systems

Let f be the decision function of a trained SVM. The set of SVs {�x1, �x2, . . . , �xm}, the parameters �i (for 1� i�m)
and b are fixed after the training of the SVM and we have, then, the following decision function:

f (�x) = sign(h(�x)),

where

h(�x) =
m∑

i=1

�iyiK(�x, �xi) + b.

Theorem 1. Every SVM with decision function f defined by

f (�x) = sign

(
m∑

i=1

�iyiK(�x, �xi) + b

)
= sign(h(�x))

is equivalent to the following TSK FRBS:

R1: If h(�x) is I(0,∞)(x) then Y1 = 1,
R2: If h(�x) is I ∗

(0,∞)(x) then Y2 = −1,

where

I(0,∞)(x) =
{

1 if x ∈ (0, ∞)

0 if x ∈ (−∞, 0)
and I ∗

(0,∞)(x) = 1 − I(0,∞)(x).

In order to improve interpretability, it is defined another FRBS which approximates SVMs and allows us to find a FRBS
with simple propositions in the antecedents.
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Theorem 2. Every SVM with decision function f defined by

f (�x) = sign

(
m∑

i=1

�iyiK(�x, �xi) + b

)
= sign(h(�x))

is equivalent to the following FRBS:

R1: If h(�x) is Sigm(� · x) then Y1 = 1,
R2: If h(�x) is Sigm∗(� · x) then Y2 = −1,

when � → ∞, where Sigm(� · x) = 1/(1 + e−�·x) and Sigm∗(� · x) = 1 − Sigm (� · x) = Sigm (−� · x).

Definition 1. The FRBS given in Theorem 2 is called �-FRBS.

When the �-FRBS is implemented in the experiments, the value � is moderately high. Thus, the sigmoid function is
not quickly saturated to one or zero according to the limited precision of the computer.

We have obtained a �-FRBS from a SVM with only one proposition in the antecedent of the fuzzy rules. To improve
its interpretability, the antecedent of each fuzzy rule will be transformed to get several simple propositions.

5.1. Several simple fuzzy propositions in the antecedents

To get several fuzzy propositions in the antecedents of the rules from a �-FRBS, we need the following result.

Proposition 1. Let ∗ be the operator

a ∗ b = a · b

a · b + (1 − a) · (1 − b)

and � ∈ �. The following equality holds:

Sigm(� · (x + y)) = Sigm(� · x) ∗ Sigm(� · y).

The operator ∗ is the uninorm “symmetric sum” aforementioned in Section 4 [34,40],

a ∗ b = a · b

a · b + (1 − a) · (1 − b)
.

This result holds to the function Sigm∗(x) because of:

Sigm∗(� · (x + y)) = Sigm((−�) · (x + y))

= Sigm((−�) · x) ∗ Sigm((−�) · y) = Sigm∗(� · x) ∗ Sigm∗(� · y).

If one considers the nature of h(�x) in Theorem 2 we have:

R1: If
m∑

i=1
�iyiK(�x, �xi) + b is Sigm(� · x) then Y1 = 1,

R2: If
m∑

i=1
�iyiK(�x, �xi) + b is Sigm∗(� · x) then Y2 = −1.

According to Proposition 1, this �-FRBS can be transformed into:

R1: If �1y1K(�x, �x1) is Sigm(� · x) ∗ �2y2K(�x, �x2) is Sigm(� · x) ∗ · · ·∗
�mymK(�x, �xm) is Sigm(� · x) ∗ b is Sigm(� · x)

then Y1 = 1,

R2: If �1y1K(�x, �x1) is Sigm∗ (� · x) ∗ �2y2K(�x, �x2) is Sigm∗ (� · x) ∗ · · ·∗
�mymK(�x, �xm) is Sigm∗ (� · x) ∗ b is Sigm∗ (� · x)

then Y2 = −1
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which is equivalent to:

R1: If K(�x, �x1) is Sigm(� · x · �1 · y1) ∗ K(�x, �x2) is Sigm(� · x · �2 · y2) ∗ · · ·∗
K(�x, �xm) is Sigm(� · x · �m · ym) ∗ b is Sigm(� · x)

then Y1 = 1,

R2: If K(�x, �x1) is Sigm∗ (� · x · �1 · y1) ∗ K(�x, �x2) is Sigm∗ (� · x · �2 · y2) ∗ · · ·∗
K(�x, �xm) is Sigm∗ (� · x · �m · ym) ∗ b is Sigm∗ (� · x)

then Y2 = −1.

On the other hand, K(�x, �xj ) can be seen as K(O(�x, �xj )) where O(�x, �xj ) is a function as:

• 〈�x, �xj 〉 for a polynomial or hyperbolic tangent kernel.
• ‖�x − �xj‖ for a Gaussian kernel.
So, the �-FRBS is:

R1: If K(O(�x, �x1)) is Sigm(� · x · �1 · y1) ∗ K(O(�x, �x2)) is Sigm(� · x · �2 · y2) ∗ · · ·∗
K(O(�x, �xm)) is Sigm(� · x · �m · ym) ∗ b is Sigm(� · x)

then Y1 = 1,

R2: If K(O(�x, �x1)) is Sigm∗ (� · x · �1 · y1) ∗ K(O(�x, �x2)) is Sigm∗ (� · x · �2 · y2) ∗ · · ·∗
K(O(�x, �xm)) is Sigm∗ (� · x · �m · ym) ∗ b is Sigm∗ (� · x)

then Y2 = −1

and finally we arrive to:

R1: If O(�x, �x1) is Sigm(� · K(x) · �1 · y1) ∗ O(�x, �x2) is Sigm(� · K(x) · �2 · y2) ∗ · · ·∗
O(�x, �xm) is Sigm(� · K(x) · �m · ym) ∗ b is Sigm(� · x)

then Y1 = 1,

R2: If O(�x, �x1) is Sigm∗(� · K(x) · �1 · y1) ∗ O(�x, �x2) is Sigm∗ (� · K(x) · �2 · y2) ∗ · · ·∗
O(�x, �xm) is Sigm∗ (� · K(x) · �m · ym) ∗ b is Sigm∗ (� · x)

then Y2 = −1.

The function O(�x,�xj ) can be directly considered a similarity measure between the vectors �x and �xj when the Gaussian
kernel is used. For other kernels, this reasoning is correct if the vectors are normalized to have unit length. Such
normalization can collapse two vectors having the same direction but different magnitude. To avoid this, we can
augment the vectors with a feature of magnitude 1.0, making it (d+1)-dimensional, and then normalize them [15].

This rule set of a �-FRBS, which represents a SVM, offers the knowledge that we were looking for. In the following
section, the linguistic interpretation of the expression Sigm(� · �i · yi · K(x)) is explained for each type of kernel.

5.2. Linguistic interpretation of Sigm(� · �i · yi · K(x))

Before studying the interpretation of the expression for each type of kernel, several comments are necessary:

(1) Once the linguistic interpretation of Sigm(� · �i · yi · K(x)) is achieved, we have the interpretation for Sigm∗(� ·
�i · yi · K(x)) because

Sigm∗(� · �i · yi · K(x)) = 1 − Sigm(� · �i · yi · K(x)) ≡ “Not [Sigm(� · �i · yi · K(x))]”.
(2) The linguistic interpretation of the expression Sigm(b) is “b is approximately larger than 0”.
(3) As � and �i are greater than zero, we can study the linguistic interpretation of the expression Sigm(i · yi · K(x))

where i = � · �i ∈ R+.

In the following items we study the interpretation of Sigm(i · yi · K0(x)) for different types of kernel functions
classified into four groups:

(a) Hyperbolic tangent kernel (K1(x) = tanh(a · x + c), a · c�0, c�0).



2064 J.L. Castro et al. / Fuzzy Sets and Systems 158 (2007) 2057–2077

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 1 2 3 4-1

Fig. 2. Sigm(i · yi · K1(x)) with i = 20, a = 1, c = (−2) and yi = (+1).

In this case, the expression “x is Sigm(i · yi · K1(x))” can be interpreted as:

• “x is approximately larger than (−c/a)”, when yi = (+1)

(Fig. 2 with i = 20, a = 1 and c = (−2)).
• “x is approximately smaller (not larger) than (−c/a)”, when yi = (−1), because

Sigm(−x) = 1 − Sigm(x) ≡ Not [Sigm(x)].

The magnitude of the slope of this fuzzy set depends on the parameters i and a.
(b) Polynomial kernel with odd exponent (K2(x) = (x + s)d with d odd).
In this case, the expression “x is Sigm(i · yi · K2(x))” can be interpreted as follows:

• “x is approximately larger than about (−s)”, when yi = (+1)

(Fig. 3 with s = (−1), i = 20 and d = 5).
• “x is approximately smaller than about (−s)”, when yi = (−1).

The magnitude of the slope and the width of the term “about (−s)” depend on the parameter i and the exponent d.
(c) Polynomial kernel with even exponent (K3(x) = (x + s)d with d even).
In this case, the expression “x is Sigm(i · yi · K3(x))” returns:

• Membership Degrees in [0.5,1) for all x, when yi = (+1) (Fig. 4a with s = (−1), i = 20 and d = 4).
• Membership Degrees in (0,0.5] for all x, when yi = (−1) (Fig. 4b with s = (−1), i = 20 and d = 4).

On the other hand, the operator ∗ (symmetric sum) behaves as:

• t-Conorm with neuter element equal to 0.5 instead of 0, in the interval [0.5,1).
• t-Norm with neuter element equal to 0.5 instead of 1, in the interval (0,0.5].

Thus, supposing, without loss of generality:

• yi = (+1) (i = 1, . . . , p).
• yi = (−1)(i = (p + 1), . . . , m).
• b < 0.

Then the following expression:

m∗
i=1

(Sigm (i · yi · K3(x))) ∗ Sigm (b)
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Fig. 3. Sigm(i · yi · K2(x)) with s = (−1), i = 20, d = 5 and yi = (+1).
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Fig. 4. (a) Sigm(i · yi · K3(x)) with s = (−1), i = 20, d = 4 and yi = (+1). (b) Sigm(i · yi · K3(x)) with s = (−1), i = 20, d = 4 and
yi = (−1).

can be modified as[
p

OR
i=1

(Sigm (i · yi · K3(x)))

]
comp

[
m

AND
i=p+1

(Sigm (i · yi · K3(x))) AND Sigm (b)

]
.

It can be interpreted as [
p

OR
i=1

(
“x is not approximatelyOR about (−s)’’

)]

comp

[
m

AND
i=p+1

(
“x is approximatelyAND about (−s)’’

)
AND “b is approximately larger than 0’’

]
.
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Fig. 5. (a) Sigm(i · yi · K4(x)) with i = 20, � = 0.2 and yi = (+1). (b) Sigm(i · yi · K4(x)) with i = 20, � = 0.2 and yi = (−1).

The magnitude of the slope of the fuzzy sets “is [not] approximately[OR|AND] about (−s)” and the width of the term
“about (−s)” depends on the parameter i and the exponent d.

The words approximatelyOR and approximatelyAND are used in this expression because they only have a valid mean-
ing in the aggregation of fuzzy propositions with the t-conorm or t-norm provided by the symmetric sum, respectively.

(d) Gaussian kernel (K4(x) = e−(x2/2�2)).
In this case, the expression “x is Sigm(i · yi · K4(x))” also returns:

• Membership Degrees in [0.5,1) for all x, when yi = (+1) (Fig. 5a with i = 20 and � = 0.2).
• Membership Degrees in (0,0.5] for all x, when yi = (−1) (Fig. 5b with i = 20 and � = 0.2).

If the same assumptions made for K3(x) are supposed now, the following expression:

m∗
i=1

(Sigm (i · yi · K4(x))) ∗ Sigm (b)

can be modified as[
p

OR
i=1

(Sigm (i · yi · K4(x)))

]
comp

[
m

AND
i=p+1

(Sigm (i · yi · K4(x))) AND Sigm (b)

]
.

It can be interpreted as [
p

OR
i=1

(
“x is approximatelyOR 0’’

)]

comp

[
m

AND
i=p+1

(
“x is not approximatelyAND 0’’

)
AND “b is approximately larger than 0’’

]
.

The magnitude of the slope of the fuzzy sets “is [not] approximately[OR|AND]0” is determined by the parameter i . The
width of these fuzzy sets is determined by the parameter � in K4(x).

6. Examples

The main aim of the present section is to illustrate the advantages and disadvantages of the �-FRBS with respect to
the “course of dimensionality”. As the reader has seen the �-FRBS’ number of fuzzy rules is fixed to only two. The
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number of propositions of each rule varies depending on the set of SVs selected by the SVM’s learning algorithm. For
that reason, the number of atoms in each rule increases with the complexity of the problem.

Clarifying the last idea, we can suppose a very high-dimensional (?50 000) classification problem. If classes are
linearly separable, just a few SVs will be provided by the learning algorithm and in consequence just a few antecedents
will be obtained in the two rules of the �-FRBS.

Three classification problems have been used for illustrating the presented extraction method:

1. The comprehension of the rules extracted from a SVM is shown with the X-or problem.
2. The fuzzy rules extracted from several SVMs that solve a multicategory classification problem are illustrated with

Iris problem.
3. USPS problem is used for indicating that high-dimensional data sets can be modeled with �-FRBSs.

6.1. X-Or problem

The X-Or problem has been selected to show the construction of a �-FRBS that extracts knowledge from a SVM
which solves the X-Or. This problem is two-class classification problem and it is composed by the following training
examples:

{[�x1 = (−1, −1), y1 = −1], [�x2 = (−1, 1), y2 = 1], [�x3 = (1, −1), y3 = 1], [�x4 = (1, 1), y4 = −1]}.

This classification problem has been solved with SVMs by choosing four different kernels. Fuzzy rules have been
extracted from these trained SVMs. The value � has been established to 20 in all the experiments.

6.1.1. �-FRBS from SVM with hyperbolic tangent kernel
In this case, the used kernel is K1(x) = tanh (x − 1), b = 0 and the values �i · yi are

{�1 · y1 = −0.775, �2 · y2 = 0.775, �3 · y3 = 0.775, �4 · y4 = −0.775}.

Thus, the �-FRBS extracted from a SVM that solves the X-Or problem is:

R1: If 〈�x, �x1〉 is Sigm(−15.5 · K1(x)) ∗ 〈�x, �x2〉 is Sigm(15.5 · K1(x))∗
〈�x, �x3〉 is Sigm(15.5 · K1(x)) ∗ 〈�x, �x4〉 is Sigm(−15.5 · K1(x))

then Y1 = 1,

R2: If 〈�x, �x1〉 is Sigm∗(−15.5 · K1(x)) ∗ 〈�x, �x2〉 is Sigm∗(15.5 · K1(x))∗
〈�x, �x3〉 is Sigm∗(15.5 · K1(x)) ∗ 〈�x, �x4〉 is Sigm∗(−15.5 · K1(x))

then Y2 = −1.

It can be interpreted as:

R1: If 〈�x, �x1〉 is approximately smaller than 1 ∗
〈�x, �x2〉 is approximately larger than 1 ∗
〈�x, �x3〉 is approximately larger than 1 ∗
〈�x, �x4〉 is approximately smaller than 1

then Y1 = 1,

R2: If 〈�x, �x1〉 is approximately larger than 1 ∗
〈�x, �x2〉 is approximately smaller than 1 ∗
〈�x, �x3〉 is approximately smaller than 1 ∗
〈�x, �x4〉 is approximately larger than 1

then Y2 = −1.

To understand this �-FRBS, we must analyze the information provided by the fuzzy propositions. They offer us a
comparison of the similarity that exists between �x and each SV �xi . For example, if the following propositions are true
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for the example �x (with i0 �= j0):

• “〈�x, �xi0〉 is approximately larger than 1”.
• “〈�x, �xj0〉 is approximately smaller than 1”.

We can deduce that the similarity between �x and �xi0 (similarity (�x, �xi0)) is greater than similarity (�x, �xj0). Because:

• 〈�x, �xi0〉 = ‖�x‖ · ∥∥�xi0

∥∥ · cos �i0 �1 ⇒ cos �i0 �1/ ‖�x‖ · ∥∥�xi0

∥∥.
• 〈�x, �xj0〉 = ‖�x‖ · ∥∥�xj0

∥∥ · cos �j0 �1 ⇒ cos �j0 �1/ ‖�x‖ · ∥∥�xj0

∥∥.
• As ‖�x1‖ = ‖�x2‖ = ‖�x3‖ = ‖�x4‖, we have cos �i0 � cos �j0 .
• As cos �i can be considered a similarity measure between �x and �xi , we obtain

similarity (�x, �xi0)�similarity(�x, �xj0).

Once the information provided by the fuzzy propositions is understood, the action of the �-FRBS is comprehensible:

• Rule R1: If the degree of “similarity (�x, �x2) or similarity (�x, �x3)” is higher than the one of “similarity (�x, �x1) or
similarity (�x, �x4)” then the output is equal to 1.

• Rule R2: Otherwise, the output is equal to (−1).

6.1.2. �-FRBS from SVM with polynomial kernel with odd exponent
In this case, the used kernel is K2(x) = (x + 1)3, b = 0 and the values �i · yi are

{�1 · y1 = −0.0417, �2 · y2 = 0.0417, �3 · y3 = 0.0417, �4 · y4 = −0.0417}.

Thus, the �-FRBS extracted from a SVM that solves the X-Or problem is:

R1: If 〈�x, �x1〉 is Sigm(−0.834 · K2(x)) ∗〈�x, �x2〉 is Sigm(0.834 · K2(x)) ∗
〈�x, �x3〉 is Sigm(0.834 · K2(x)) ∗〈�x, �x4〉 is Sigm(−0.834 · K2(x))

then Y1 = 1,

R2: If 〈�x, �x1〉 is Sigm∗(−0.834 · K2(x)) ∗〈�x, �x2〉 is Sigm∗(0.834 · K2(x)) ∗
〈�x, �x3〉 is Sigm∗(0.834 · K2(x)) ∗〈�x, �x4〉 is Sigm∗(−0.834 · K2(x))

then Y2 = −1.

It can be interpreted as:

R1: If 〈�x, �x1〉 is approximately smaller than about (−1) ∗
〈�x, �x2〉 is approximately larger than about (−1) ∗
〈�x, �x3〉 is approximately larger than about (−1) ∗
〈�x, �x4〉 is approximately smaller than about (−1)

then Y1 = 1,

R2: If 〈�x, �x1〉 is approximately larger than about (−1) ∗
〈�x, �x2〉 is approximately smaller than about (−1) ∗
〈�x, �x3〉 is approximately smaller than about (−1) ∗
〈�x, �x4〉 is approximately larger than about (−1)

then Y2 = −1.

These fuzzy propositions and the ones of the �-FRBS obtained with the kernel K1(x) provide the same information. They
offer a comparison of the similarity that exists between �x and each SV �xi . For example, if the following propositions
are true for the example �x (with i0 �= j0):

• “〈�x, �xi0〉 is smaller than about (−1)” .
• “〈�x, �xj0〉 larger than about (−1)”.
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We can deduce that the similarity between �x and �xi0 (similarity (�x, �xi0)) is lower than similarity (�x, �xj0), because:

• 〈�x, �xi0〉 = ‖�x‖ · ∥∥�xi0

∥∥ · cos �i0 �(−1) ⇒ cos �i0 �(−1)/ ‖�x‖ · ∥∥�xi0

∥∥.
• 〈�x, �xj0〉 = ‖�x‖ · ∥∥�xj0

∥∥ · cos �j0 �(−1) ⇒ cos �j0 �(−1)/ ‖�x‖ · ∥∥�xj0

∥∥.
• As ‖�x1‖ = ‖�x2‖ = ‖�x3‖ = ‖�x4‖, we have cos �i0 � cos �j0 .
• As cos �i can be considered a similarity measure between �x and �xi , we obtain

similarity (�x, �xi0)�similarity(�x, �xj0).

Thus, the information of the fuzzy propositions and the action of this �-FRBS is understood. It has the same explanation
as the action of the �-FRBS obtained with the kernel K1(x).

6.1.3. �-FRBS from SVM with polynomial kernel with even exponent
In this case, the used kernel is K3(x) = (x)2, b = 0 and the values �i · yi are

{�1 · y1 = 0.0, �2 · y2 = 0.25, �3 · y3 = 0.0, �4 · y4 = −0.25}.

Thus, the �-FRBS extracted from a SVM that solves the X-Or problem is:

R1: If 〈�x, �x2〉 is Sigm(5 · K3(x)) ∗〈�x, �x4〉 is Sigm(−5 · K3(x))

then Y1 = 1,

R2: If 〈�x, �x2〉 is Sigm∗(5 · K3(x)) ∗ 〈�x, �x4〉 is Sigm∗(−5 · K3(x))

then Y2 = −1.

It can be interpreted as:

R1: If 〈�x, �x2〉 is not approximatelyOR about 0
comp

〈�x, �x4〉 is approximatelyAND about 0
then Y1 = 1,

R2: If 〈�x, �x4〉 is not approximatelyOR about 0
comp

〈�x, �x2〉 is approximatelyAND about 0
then Y2 = −1.

The fuzzy propositions of this �-FRBS use localized fuzzy sets. This fact facilitates the comprehension of these
propositions. For example, the following proposition:

“〈�x, �xi〉 is approximately about 0”

is true when �x and �xi are approximately perpendicular.

Therefore, we can easily deduce the action of this �-FRBS:

• Rule R1: If (�x is not approximately perpendicular to �x2) and (�x is approximately perpendicular to �x4) then the output
is equal to 1.
The second condition is necessary to avoid the compensation in rule R1 that would decrease the Y1 output degree.
For example, this condition is fulfilled by �x2 = (−1, 1) and �x3 = (1, −1).

• Rule R2: If (�x is not approximately perpendicular to �x4) and (�x is approximately perpendicular to �x2) then the output
is equal to (−1).
In this case, like above, the second condition is necessary to avoid the compensation in rule R2 that would decrease
the Y2 output degree. For example, this condition is fulfilled by �x1 = (−1, −1) and �x4 = (1, 1).



2070 J.L. Castro et al. / Fuzzy Sets and Systems 158 (2007) 2057–2077

6.1.4. �-FRBS from SVM with Gaussian kernel
Now, the used kernel is K4(x) = e−(x2/2(0.341)2), b = 0 and the values �i · yi are

{�1 · y1 = −1.0, �2 · y2 = 1.0, �3 · y3 = 1.0, �4 · y4 = −1.0}.
Thus, the �-FRBS extracted from a SVM that solves the X-Or problem is:

R1: If ‖�x − �x1‖ is Sigm(−20 · K4(x)) ∗ ‖�x − �x2‖ is Sigm(20 · K4(x)) ∗
‖�x − �x3‖ is Sigm(20 · K4(x)) ∗ ‖�x − �x4‖ is Sigm(−20 · K4(x))

then Y1 = 1,

R2: If ‖�x − �x1‖ is Sigm∗(−20 · K4(x)) ∗ ‖�x − �x2‖ is Sigm∗(20 · K4(x)) ∗
‖�x − �x3‖ is Sigm∗(20 · K4(x)) ∗ ‖�x − �x4‖ is Sigm∗(−20 · K4(x))

then Y2 = −1.

It can be interpreted as:

R1: If ‖�x − �x2‖ is approximatelyOR 0 OR ‖�x − �x3‖ is approximatelyOR 0
comp

‖�x − �x1‖ is not approximatelyAND 0 AND ‖�x − �x4‖ is not approximatelyAND 0
then Y1 = 1,

R2: If ‖�x − �x1‖ is approximatelyOR 0 OR ‖�x − �x4‖ is approximatelyOR 0
comp

‖�x − �x2‖ is not approximatelyAND 0 AND ‖�x − �x3‖ is not approximatelyAND 0
then Y2 = −1.

The fuzzy propositions of this �-FRBS use localized fuzzy sets and Euclidean distances as variables. This fact facilitates
the comprehension of these propositions. For example, the following proposition:

“‖�x − �xi‖ is approximately 0”

is true when �x and �xi are similar, according to Euclidean distance.
The action of this �-FRBS can be easily understood:

• Rule R1: The output is equal to 1 when (�x is similar to �x2 or �x is similar to �x3).
This fact implies that (�x is not similar to �x1 and �x is not similar to �x4). Thus the compensation is avoided in this rule.

• Rule R2: The output is equal to (−1) when (�x is similar to �x1 or �x is similar to �x4).
This fact implies that (�x is not similar to �x2 = (−1, 1) and �x is not similar to �x3). Thus the compensation is avoided
in this rule.

6.2. Iris classification problem

The Iris data set of Fisher [17] is a standard workbench in the machine learning community and it can be found out
in the online UCI repository [5].

The data set is the description of 150 flowers as vectors in the form (x1, x2, x3, x4, y). The input features xis are
the size (in centimeters) of the following four attributes: Petal width, Petal length, Sepal width and Sepal length,
respectively. The output y means the class (Setosa, Versicolor or Virginica). Each class has 50 instances. The first one
is linearly separable from the other two, which are not linearly separable from each other.

We extract fuzzy rules from a trained SVM that uses a RBF kernel. The parameter selection process of our model is
similar to the one used in [19]. The steps have been:

1. We have scaled the data in the interval [−1, 1].
2. We have conducted directly a fivefold cross validation to obtain the best (C, �) model parameters using all available

data. This space is explored on a two-dimensional grid with the following values C = {2−5, 2−3, . . . , 215} and
� = {23, 21, . . . , 2−15} where � = 1/(2 · �2).
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3. We have trained SVMs with the best obtained (C, �) parameters by the fivefold cross validation.
4. Finally, we extract fuzzy rules by means of our method from a SVM.

Three two-class SVMs have been designed in this experiment:

• SVM12: To separate classes 1 and 2.

Class 1 (Setosa) ⇒ y = (+1), Class 2 (Versicolor) ⇒ y = (−1).

• SVM13: To distinguish between classes 1 and 3.

Class 1 (Setosa) ⇒ y = (+1), Class 3 (Virginica) ⇒ y = (−1).

• SVM23: To classify between classes 2 and 3.

Class 2 (Versicolor) ⇒ y = (+1), Class 3 (Virginica) ⇒ y = (−1).

To solve the multicategory problem that appears when the output of these two-class SVMs is added, we use the
OvO standard method. The final class for each input is obtained using the standard technique called Vote Count or
Winner-Take-All [26].

Experiments have been ran on a Pentium IV 3.20 GHz with 1 GB of main memory. It runs with Fedora Core 5
operating system. We use the LIBSVM [10] version 2.82 to train the SVMs.

The resulting fivefold cross validation rate was 97.3%. We obtained 17 SVs. The best parameter set was C = 2048
and � = 8. So, the Gaussian kernel used in these experiments was K(x) = e−(x2/128).

Next, the �-FRBS extracted from each two-class SVM is described where the value � has been established to 20.
SVM12: In this case, b = (−0.308) and the values (�i · y) together with the SVs are:

(�1 · y) = 96.121, �x1 = [x11 = (−0.55), x12 = 0.083, x13 = (−0.76), x14 = (−0.66)].
(�2 · y) = 90.283, �x2 = [x21 = (−0.88), x22 = (−0.75), x23 = (−0.89), x24 = (−0.83)].
(�3 · y) = (−186.4), �x3 = [x31 = (−0.55), x32 = (−0.58), x33 = (−0.32), x34 = (−0.16)].

Thus, the �-FRBS extracted from SVM12 is:

R1: If ‖�x − �x1‖ is Sigm(1922.42 · K(x)) ∗ ‖�x − �x2‖ is Sigm(1805.66 · K(x)) ∗
‖�x − �x3‖ is Sigm((−3728) · K(x)) ∗ (−0.308) is Sigm(x)

then Y1 = 1 (Setosa),

R2: If ‖�x − �x1‖ is Sigm∗(1922.42 · K(x)) ∗ ‖�x − �x2‖ is Sigm∗(1805.66 · K(x)) ∗
‖�x − �x3‖ is Sigm∗(−3728 · K(x)) ∗ (−0.308) is Sigm∗ (x)

then Y2 = (−1) (Versicolor).

It can be interpreted as:

R1: If ‖�x − �x1‖ is approximatelyOR 0 OR ‖�x − �x2‖ is approximatelyOR 0
comp

‖�x − �x3‖ is not approximatelyAND 0 AND (−0.308) is approximately larger than 0
then Y1 = 1 (Setosa),

R2: If ‖�x − �x3‖ is approximatelyOR 0 OR (−0.308) is not approximately larger than 0
comp

‖�x − �x1‖ is not approximatelyAND 0 AND ‖�x − �x2‖ is not approximatelyAND 0
then Y2 = (−1) (Versicolor).

SVM13: In this case, b = (−0.03) and the values �i together with the SVs are:

(�1 · y) = 41.568, �x1 = [x11 = (−0.55), x12 = 0.083, x13 = (−0.76), x14 = (−0.66)].
(�2 · y) = 16.027, �x2 = [x21 = (−0.88), x22 = (−0.75), x23 = (−0.89), x24 = (−0.83)].
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(�3 · y) = (−49.633), �x3 = [x31 = (−0.66), x32 = (−0.58), x33 = 0.18, x34 = 0.33].
(�4 · y) = (−7.962), �x4 = [x41 = 0.11, x42 = (−0.33), x43 = 0.38, x44 = 0.16].

Thus, the �-FRBS extracted from SVM13 is:

R1: If ‖�x − �x1‖ is Sigm(831.36 · K(x)) ∗ ‖�x − �x2‖ is Sigm(320.54 · K(x)) ∗
‖�x − �x3‖ is Sigm((−99.66) · K(x)) ∗ ‖�x − �x4‖ is Sigm((−159.24) · K(x)) ∗
(−0.03) is Sigm(x)

then Y1 = 1 (Setosa),

R2: If ‖�x − �x1‖ is Sigm∗ (831.36 · K(x)) ∗ ‖�x − �x2‖ is Sigm∗ (320.54 · K(x)) ∗
‖�x − �x3‖ is Sigm∗ ((−99.66) · K(x)) ∗ ‖�x − �x4‖ is Sigm∗ ((−159.24) · K(x)) ∗
(−0.03) is Sigm∗ (x)

then Y2 = (−1) (Virginica).

It can be interpreted as:

R1: If ‖�x − �x1‖ is approximatelyOR 0 OR ‖�x − �x2‖ is approximatelyOR 0
comp

‖�x − �x3‖ is not approximatelyAND 0 AND ‖�x − �x4‖ is not approximatelyAND 0 AND
(−0.03) is approximately larger than 0

then Y1 = 1 (Setosa),

R2: If ‖�x − �x3‖ is approximatelyOR 0 OR ‖�x − �x4‖ is approximatelyOR 0 OR
(−0.03) is not approximately larger than 0

comp
‖�x − �x1‖ is not approximatelyAND 0 AND ‖�x − �x2‖ is not approximatelyAND 0

then Y2 = (−1) (Virginica).

SVM23: In this case, b = (−3.82) and the values �i together with the SVs are:

(�1 · y) = 1763.8, �x1 = [x11 = 0.05, x12 = (−0.83), x13 = 0.18, x14 = 0.16].
(�2 · y) = 2048, �x2 = [x21 = (−0.11), x22 = 0.00, x23 = 0.28, x24 = 0.41].
(�3 · y) = 2048, �x3 = [x31 = 0.11, x32 = (−0.58), x33 = 0.32, x34 = 0.16].
(�4 · y) = 2048, �x4 = [x41 = 0.33), x42 = (−0.16), x43 = 0.35, x44 = 0.33].
(�5 · y) = 2048, �x5 = [x51 = (−0.05), x52 = (−0.41), x53 = 0.39, x54 = 0.25].
(�6 · y) = 972.98, �x6 = [x61 = (−0.38), x62 = (−0.16), x63 = 0.18, x64 = 0.16].
(�7 · y) = (−2048), �x7 = [x71 = (−0.05), x72 = (−0.83), x73 = 0.35, x74 = 0.16].
(�8 · y) = (−2048), �x8 = [x81 = 0.05, x82 = (−0.33), x83 = 0.28, x84 = 0.41].
(�9 · y) = (−1946.61), �x9 = [x91 = 0.0, x92 = (−0.16), x93 = 0.32, x94 = 0.41].
(�10 · y) = (−81.763), �x10 = [x10,1 = 0.61, x10,2 = (−0.16), x10,3 = 0.62, x10,4 = 0.25].
(�11 · y) = (−2048), �x11 = [x11,1 = 0.11, x11,2 = (−0.33), x11,3 = 0.39, x11,4 = 0.16].
(�12 · y) = (−708.41), �x12 = [x12,1 = 0.0, x12,2 = (−0.5), x12,3 = 0.56, x12,4 = 0.08].
(�13 · y) = (−2048), �x13 = [x13,1 = (−0.05), x13,2 = (−0.16), x13,3 = 0.28, x13,4 = 0.41].

Thus, the �-FRBS extracted from SVM23 is:

R1: If ‖�x − �x1‖ is Sigm(35276 · K(x)) ∗ ‖�x − �x2‖ is Sigm(40960 · K(x)) ∗
‖�x − �x3‖ is Sigm(40960 · K(x)) ∗ ‖�x − �x4‖ is Sigm(40960 · K(x)) ∗
‖�x − �x5‖ is Sigm(40960 · K(x)) ∗ ‖�x − �x6‖ is Sigm(19459.6 · K(x)) ∗
‖�x − �x7‖ is Sigm((−40960) · K(x)) ∗ ‖�x − �x8‖ is Sigm((−40960) · K(x)) ∗
‖�x − �x9‖ is Sigm((−38932.2) · K(x)) ∗ ‖�x − �x10‖ is Sigm((−1635.26) · K(x)) ∗
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‖�x − �x11‖ is Sigm((−40960) · K(x)) ∗ ‖�x − �x12‖ is Sigm((−14168.2) · K(x)) ∗
‖�x − �x13‖ is Sigm((−40960) · K(x)) ∗ (-3.82) is Sigm(x)

then Y1 = 1 (Versicolor),

R2: If ‖�x − �x1‖ is Sigm∗(35276 · K(x)) ∗ ‖�x − �x2‖ is Sigm∗ (40960 · K(x)) ∗
‖�x − �x3‖ is Sigm∗ (40960 · K(x)) ∗ ‖�x − �x4‖ is Sigm∗ (40960 · K(x)) ∗
‖�x − �x5‖ is Sigm∗ (40960 · K(x)) ∗ ‖�x − �x6‖ is Sigm∗ (19459.6 · K(x)) ∗
‖�x − �x7‖ is Sigm∗ ((−40960) · K(x)) ∗ ‖�x − �x8‖ is Sigm∗ ((−40960) · K(x)) ∗
‖�x − �x9‖ is Sigm∗ ((−38932.2) · K(x)) ∗ ‖�x − �x10‖ is Sigm∗ ((−1635.26) · K(x)) ∗
‖�x − �x11‖ is Sigm∗ ((−40960) · K(x)) ∗ ‖�x − �x12‖ is Sigm∗ ((−14168.2) · K(x)) ∗
‖�x − �x13‖ is Sigm∗ ((−40960) · K(x)) ∗ (−3.82) is Sigm∗ (x)

then Y2 = (−1) (Virginica).

It can be interpreted as:

R1: If ‖�x − �x1‖ is approximatelyOR 0 OR ‖�x − �x2‖ is approximatelyOR 0 OR
‖�x − �x3‖ is approximatelyOR 0 OR ‖�x − �x4‖ is approximatelyOR 0 OR
‖�x − �x5‖ is approximatelyOR 0 OR ‖�x − �x6‖ is approximatelyOR 0

comp
‖�x − �x7‖ is not approximatelyAND 0 AND ‖�x − �x8‖ is not approximatelyAND 0 AND
‖�x − �x9‖ is not approximatelyAND 0 AND ‖�x − �x10‖ is not approximatelyAND 0 AND
‖�x − �x11‖ is not approximatelyAND 0 AND ‖�x − �x12‖ is not approximatelyAND 0 AND
‖�x − �x13‖ is not approximatelyAND 0 AND (−3.82) is approximately larger than 0

then Y1 = 1 (Versicolor),

R2: If ‖�x − �x7‖ is approximatelyOR 0 OR ‖�x − �x8‖ is approximatelyOR 0 OR
‖�x − �x9‖ is approximatelyOR 0 OR ‖�x − �x10‖ is approximatelyOR 0 OR
‖�x − �x11‖ is approximatelyOR 0 OR ‖�x − �x12‖ is approximatelyOR 0 OR
‖�x − �x13‖ is approximatelyOR 0 OR (−3.82) is not approximately larger than 0

comp
‖�x − �x1‖ is not approximatelyAND 0 AND ‖�x − �x2‖ is not approximatelyAND 0 AND
‖�x − �x3‖ is not approximatelyAND 0 AND ‖�x − �x4‖ is not approximatelyAND 0 AND
‖�x − �x5‖ is not approximatelyAND 0 AND ‖�x − �x6‖ is not approximatelyAND 0 AND

then Y2 = (−1) (Virginica).

With these �-FRBSs, we can understand the methodology used by the SVMs to solve a problem:

• Several training examples of each class are chosen as prototypes (SVs).
• The similarity between a new example and each prototype is evaluated. It corresponds with the membership degree

of each fuzzy proposition in the rules.
• The similarities with the prototypes of a class are added to obtain a global value. It is the aggregation of propositions

in the antecedent of each rule.
• Finally, the class with the highest global value is selected as output value. It corresponds with the output of the

winner rule.

This philosophy is different from the one used by a standard fuzzy system. This can be summarized so:

• Several prototypes are selected (cluster centers).
• A fuzzy rule is associated with each prototype.
• The output of the fuzzy rule associated with the prototype nearest to a new example is selected as output value.

Due to this fact, the standard fuzzy systems suffer the “curse of dimensionality”. They need a rule to focus on every
portion of the input space. However, SVMs and �-FRBSs only need to select some training examples and to define its
importance when the similarity is calculated.
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6.3. United State Postal Service (USPS) classification problem

The USPS database is a handwritten digits recognition problem [33]. It has 9298 handwritten digits and it is divided
into two different folds: one of them includes the training data and another one the samples to test. The training data
set includes 7291 digits and the test data set has 2007 samples. Each digit image is of size 16 × 16, represented by a
256-dimensional vector with entries in the interval [−1, 1].

This handwritten recognition problem has been successfully solved using SVMs by choosing the different used
kernels in this paper. In all cases, error rates around 4% have been obtained and the average number of SVs is around
250 for each two-class classifier. These experimental results have been obtained from [33].

From the trained SVMs above, �-FRBSs can be found by using the proposed fuzzy-rule extraction method. These
fuzzy systems have the following characteristics:

(a) The number of rules is fixed to two.
(b) The number of fuzzy propositions is determined by the number of SVs. As the average number of SVs is around

250 for each two-class classifier, the fuzzy rules have an average number of propositions equal to 250.
(c) The accuracy is the same as the one of the trained SVM. The �-FRBSs have error rates around 4%.

The traditional fuzzy modeling tools fall through when solving the USPS classification problem as a consequence of
the “curse of the dimensionality” problem [11]. Fortunately, a �-FRBS that solves this classification problem can be
obtained by means of our proposal.

7. Analysis of the extracted rules

In [2], several criteria are presented to measure the quality of the rules extracted from neural networks. These criteria
include:

• Fidelity indicates the extent to which the rules mimic the behavior of the neural network.
• Accuracy measures the correctness of classification of previously unseen examples.
• Consistency is the extent to which the generated rule sets produce the same classification of unseen examples, even

if they are extracted from different neural networks trained on the same problem.
• Comprehensibility is the number of rules plus the number of propositions per rule.

These measures can be used for evaluating the quality of the rules extracted from SVMs:

• Regarding to Fidelity and Accuracy, when the value � is sufficiently high (Theorem 2), the behavior of a �-FRBS
and the one of the original SVM are the same. Therefore, the fuzzy rules of a �-FRBS are correct according to these
measures.

• Regarding to Consistency, the comparison is not evaluated because there is not any type of randomness in the training
algorithm of SVMs or in the extraction method. So, rules extracted under different training sessions will produce
the same classification of unseen examples.

• Regarding to Comprehensibility, the number of rules in the �-FRBS is just two and the number of propositions per
rule is equal to the cardinality of the set of SVs. When the number of SVs is high, the quantity of propositions might
be excessive. It is interesting to find a method to reduce the number of SVs. Thus, the number of propositions is
diminished. On the other hand, when SVM is trained on a high-dimensional data set, the comprehensibility of the
�-FRBS is rather good compared with the rest of standard fuzzy-rule extraction methods that suffer the “curse of
dimensionality” problem.

A future work is to find a compromise between accuracy and interpretability of the �-FRBSs. This can be controlled
by means of the number of SVs:

• Accuracy SVM → High number of SVs → Many propositions per rule → Less interpretable �-FRBS.
• Less accuracy SVM → Low number of SVs → Few propositions per rule → More interpretable �-FRBS.

One approach to reduce the number of SVs is to search for Pareto-optimal solutions along the interpretability–accuracy
tradeoff curve. The multiobjective design of fuzzy rule-based systems has been previously discussed in the literature
[20,39].
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8. Conclusions

It has been proposed the �-FRBS which is a fuzzy system constructed from a trained SVM. As main advantages
of the �-FRBS we outline its total independency of the dimension of the problem to solve and the exact coincidence
in approximating the decision function of the SVM. For that reason the �-FRBS is strongly recommended for high-
dimensional classification problems solved by low-medium complexity boundaries, i.e. few number of SVs with respect
to the dimension of the space. Besides,

• The input–output mapping of the extracted .�-FRBS is equivalent to the decision function of the SVM.
• The extraction method is not restricted by the selected kernel. The presented method is valid for every widely used

kernel: hyperbolic tangent, polynomial and Gaussian.
• It is suitable to find a FRBS that model high-dimensional data sets.

On the other hand, the combination of the advantages of two important tools has been achieved:

• SVMs have demonstrated its ability to solve classification problems in an optimal way by using only necessary
resources, with a solid mathematical background.

• Fuzzy Systems have shown their usefulness in function approximation [8] and its capability as mathematical models
in an interpretable way.

This fact involves interesting connections between SVM and fuzzy logic in particular TSK fuzzy systems. We hope
to contribute towards a better understanding on the interpretation of SVMs and the usefulness of fuzzy systems in
machine learning.

Appendix A. Proof of results

Proof of Theorem 1. Let �x0 be a vector belonging to the input space. It is evaluated into the TSK FRBS announced
above:

• If h(�x0) ∈ (−∞, 0) then the output fired by the FRBS is

Y =
∑m

i=1 Yi · gi∑m
i=1 gi

= Y1 · I(0,∞)(h(�x0)) + Y2 · I ∗
(0,∞)(h(�x0))

I(0,∞)(h(�x0)) + I ∗
(0,∞)(h(�x0))

= Y1 · 0 + Y2 · 1

0 + 1
= Y2 = −1,

which is equal to the output provided by f (�x0), because

f (�x0) = sign(h(�x0)) = −1.

• If h(�x0) ∈(0, ∞) then the output fired by the FRBS is

Y =
∑m

i=1 Yi · gi∑m
i=1 gi

= Y1 · I(0,∞)(h(�x0)) + Y2 · I ∗
(0,∞)(h(�x0))

I(0,∞)(h(�x0)) + I ∗
(0,∞)(h(�x0))

= Y1 · 1 + Y2 · 0

1 + 0
= Y1 = 1,

which is equal to the output provided by f (�x0), because

f (�x0) = sign(h(�x0)) = 1. �

Proof of Theorem 2. As,

lim
�→∞

(Sigm(� · x)) = lim
�→∞

(
1

1 + e−�·x

)
=
{

1 x ∈ (0, ∞)

0 x ∈ (−∞, 0)
that is equivalent to I(0,∞)(x).

And

lim
�→∞

(Sigm∗(� · x)) = lim
�→∞

(1 − Sigm(� · x)) =
{

0 x ∈ (0, ∞)

1 x ∈ (−∞, 0)
that is equivalent to I ∗

(0,∞)(x),
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we have that the following FRBS:

R1: If h(�x) is Sigm(� · x) then Y1 = 1,
R2: If h(�x) is Sigm∗(� · x) then Y2 = −1

is equivalent to the FRBS considered in Theorem 1 when � → ∞.
Thus, as the FRBS of Theorem 1 is equivalent to the decision function f (�x), the FRBS presented in Theorem 2 is

also equivalent to f (�x). �

Proof of Proposition 1.

Sigm(� · x) ∗ Sigm(� · y)

= Sigm(� · x) · Sigm(� · y)

Sigm(� · x) · Sigm(� · y) + (1 − Sigm(� · x)) · (1 − Sigm(� · y))

= 1

1 + (1 − Sigm(� · x)) · (1 − Sigm(� · y))

Sigm(� · x) · Sigm(� · y)

= 1

1 +

(
1 −

(
1

1 + e−�·x

))
·
(

1 −
(

1

1 + e−�·y

))
(

1

1 + e−�·x

)
·
(

1

1 + e−�·y

)

= 1

1 +
(

1 −
(

1

1 + e−�·x

))
·
(

1 −
(

1

1 + e−�·y

))
· (1 + e−�·x) · (1 + e−�·y)

= 1

1 +
(

1 − 1

1 + e−�·x − 1

1 + e−�·y + 1

1 + e−�·x · 1

1 + e−�·y

)
· (1 + e−�·x) · (1 + e−�·y)

= 1

1 + (
(1 + e−�·x) · (1 + e−�·y) − (1 + e−�·y) − (1 + e−�·x) + 1

)
= 1

1 + (
1 + e−�·x + e−�·y + e−�·x · e−�·y − 1 − e−�·y − 1 − e−�·x + 1

)
= 1

1 + (
e−�·x · e−�·y) = 1

1 + e−�·x−�·y = 1

1 + e−�·(x+y)
= Sigm(� · (x + y)). �
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