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A Neurofuzzy Network Knowledge Extraction and
Extended Gram—Schmidt Algorithm for
Model Subspace Decomposition

Xia Hong Senior Member, IEEEand Chris J. Harris

Abstract—This paper introduces a new neurofuzzy model con- While common with other neural networks, they can approx-
struction and parameter estimation algorithm from observedfinite  imate with arbitrary accuracy complex nonlinear systems,
data sets, based on a Takagi and Sugeno (T-S) inference mechagnay gre additionally linear in their adjustable parameters

nism and a new extended Gram—Schmidt orthogonal decomposi- ight ffering. th tential f i | - ith
tion algorithm, for the modeling of a priori unknown dynamical or weignts, ofiering the potental for oniine learning wi

systems in the form of a set of fuzzy rules. The first contribution Provable convergence and stability properties [1], [2]. Most
of the paper is the introduction of a one to one mapping between conventional neural networks lead only to “black box” model

a fuzzy rule-base and a model matrix feature subspace using the representation. For problems which require insight into the

T-S inference mechanism. This link enables the numerical proper- ; ; "
. i X . ! " underlying phenomenology, model transparency is critical,
ties associated with a rule-based matrix subspace, the relationships . ying p 9y P y

amongst these matrix subspaces, and the correlation between the!-€- internal SyStem behavior interpr_etability and/or k”OW'edge
output vector and a rule-base matrix subspace, to be investigated (rule) representation of the underlying process. A model with
and extracted as rule-based knowledge to enhance model trans-good transparency properties helps users to understand the
parency. The matrix subspace spanned by a fuzzy rule is initially system behaviors, oversee critical system operating regions,
derived as the input regression matrix multiplied by a weighting  54/0r extract physical laws or relationships that underpin

matrix that consists of the corresponding fuzzy membership func- th t E fi I f twork t h
tions over the training data set. Model transparency is explored by € system. Exceptionally a neurofuzzy network system has

the derivation of an equivalence between an A-optimality exper- the desirable properties of a compact support, a partition of
imental design criterion of the weighting matrix and the average unity, locality, logicality, and transparency via fuzzy rules. The

model output sensitivity to the fuzzy rule, so that rule-bases can be transparency property of a neurofuzzy system is essential for
effectively measured by their identifiability via the A-optimality o fuzzy rule extraction capabilities of the derived process

experimental design criterion. The A-optimality experimental de- del. The inh tt f i t K li
sign criterion of the weighting matrices of fuzzy rules is used to MOodel. The inherent transparency or a neuroiuzzy Network lies

construct an initial model rule-base. An extended Gram-Schmidt in the property of unity of support, i.e., the model output can
algorithm is then developed to estimate the parameter vector for be decomposed into a convex combination of the outputs of

each rule. This new algorithm decomposes the model rule-bases viaindividual rules, so that the basis function can be interpreted
an orthogonal subspace decomposition approach, so as to enhanceyg 5 fuzzy membership function of individual rules. Based on

model transparency with the capability of interpreting the derived - . .
rule-base energy level. This new approach is computationally sim- the fuzzy rules inference and model representation of Takagi

pler than the conventional Gram—Schmidt algorithm for resolving @nd Sugeno (T-S) [5], a neurofuzzy model can be functionally
high dimensional regression problems, whereby it is computation- expressed as an operating point dependent fuzzy model with a
ally desirable to decompose complex models into a few submodels|ocal linear description that lends itself directly to conventional
rather than a _smgle model Wlth Iarge nl_meer of input varlables estimation and control synthesis [1], [6], [7]. The model
and the asso_mated curse of dimensionality prob!em. Numerical ex- function bases in a neurofuzzy system can be directly related
amples are included to demonstrate the effectiveness of the pro- '~ " oo . e o
posed new algorithm. to linguistic fuzzy logic rules under limited conditions, so that
any model based on numerical information can be equivalently
related to an associated set of fuzzy logic rules.

The problem ofthe curse of dimensionalit8] has been a
main obstacle in nonlinear modeling using associative memory

. INTRODUCTION networks or fuzzy logic. Networks or knowledge representa-

SSOCIATIVE memory networks [such as B-splindions that suffer from the curse of dimensionality include all
A networks, radial basis functions (RBFs), support vectéttice based networks such as fuzzy logic (FL), RBF, Karneva
machines (SVM)] have been extensively developed [1]-[4Jistributed memory maps, and all neurofuzzy networks (e.g.,

adaptive network based fuzzy inference system (ANFIS) [9],
T-S model [5], etc.). This problem also mitigates against
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ctober 9, .

X. Hong is with the Department of Cybernetics, University of Readinggenerate massive rule sets, or require too many parameters,

Reading RG6 6AY, U.K. (e-mail: x.hong@reading.ac.uk). making it impossible for a human to comprehend the resultant
C. J. Harris is with the Image, Speech and Intelligent Systems Group, Qgjle set. Consequently, the major purpose of neurofuzzy model

partment of Electronics and Computer Science, University of Southamptono . | ith . | . . del

Southampton SO17 1BJ, U.K. (e-mail: cjh@ecs.soton.ac.uk). construction algorithms Is to select a parsimonious mode

Digital Object Identifier 10.1109/TFUZZ.2003.814842 structure that resolves the bias/variance dilemma (for finite

Index Terms—teast squares, mixtures of experts, neurofuzzy
networks, orthogonal decomposition, subspace.

1063-6706/03$17.00 © 2003 IEEE



HONG AND HARRIS: NEUROFUZZY NETWORK KNOWLEDGE EXTRACTION 529

training data), has a smooth prediction surface (e.g., parameterd parameter vector. The subspace matrix of a fuzzy rule is
control via regularization), produces good generalization (foerived as the input regression matrix weighted by a weighting
unseen data), and with an interpretable representation—ofteatrix consisting of the corresponding fuzzy membership func-
in the form of (fuzzy) rules. For general linear in the parametéions over the data set. Here, model transparency is explored by
systems, an orthogonal least squares (OLS) algorithm basedtmnderivation of an equivalence between an A-optimality exper-
Gram-Schmidt orthogonal decomposition can be used to detienental design criterion of this weighting matrix and the average
mine the models significant elements and associated parametedel output sensitivity to the fuzzy rule, so that extracted rule-
estimates, and the overall model structure [10]. To enable thases can be effectively measured by their identifiability via the
applicability of the OLS algorithm in neurofuzzy systems, &-optimality design criterion. The A-optimality experimental
NeuDec algorithm has been developed to incorporate the Od&sign criterion of the weighting matrices of fuzzy rules is used
algorithm with an experimental design optimality criteria foto construct an initial model base, i.e., any model base not sat-
the efficient model structure determination and estimation [11§fying an identifiability condition is excluded. This is advanta-
[12]. geous in increasing model transparency during the initial model
In practice, data based neurofuzzy model constructionle-base construction stage. An extended Gram—Schmidt algo-
algorithms have to utilize finite data sets to generate parsithm is then developed and applied to estimate the parameter
monious models, such that the final model parameterizatigactor for each derived rule. The proposed new algorithm de-
is adequately based on the amount of data, its distributicmgmposes the model bases via an orthogonal subspace decom-
and associated model identifiability. Due to the inherent trangesition approach, with the advantage of relating rule-bases di-
parency properties of a neurofuzzy network, a parsimoniotgctly to the matrix feature subspaces so as to enhance model
model construction approach should lead also to a logidsdnsparency with the capability of interpreting the rule-base
rule extraction process that increases model transparerioyterms of its energy level. The computed output variance ex-
as simpler models inherently involve fewer rules which arglained by the associated rules (the associated energy level) can
in turn easier to interpret. One drawback of most curreatso used as model final structure determination, as well as ex-
neurofuzzy learning algorithms is that learning is based uptnacted as rule-based knowledge transparent to users.
a set of one-dimensional regressors, or basis functions (sucfhis paper is organized as follows. Section Il introduces a
as B-splines, Gaussians, etc.), but not upon a set of fuzggneral class of neurofuzzy systems as a modeling approach.
rules (usually in the form of multidimensional input variables)Section 1l introduces the proposed modeling approach, with
resulting in opaque models during the learning process. Sirfbeoretic analysis into the associated model transparency.
modeling is inevitably iterative it can be greatly enhanced Numerical examples are provided in Section IV to illustrate
the modeler can interpret or interrogate the derived rule-bdbe effectiveness of the approach and Section V is devoted to
during learning itself, allowing him/her to terminate the proces®nclusions.
when his/her objectives are achieved. There are valuable recent
developments on rule-based learning and model construction, Il. PRELIMINARIES
including a linear approximation approach combined with

) . . S This section briefly presents a general class of neurofuzzy
uncertainty modeling [13], various fuzzy similarity measures . o< a nonlinear data modeling approach within a
combined with genetic algorithms [14], [15]. y 9 app

. . coherent framework of both mathematical representation for
In this paper, a new neurofuzzy model construction aqé)

. . . ) arning and linguistic logic rule representation for model
parameter estimation algorithm in the form of fuzzy rules, ansngrency g g P
introduced based on the T-S inference mechanism and a NeW.on a finite data seDy = {x(t), y(t)}¥ , of observed

extended Grgm—SchmdF orthogonal deco'mposmon algorith put—output data pairs, consider the/ identification of a general
for the modeling o& priori unknown dynamical systems base

- ) : onlinear system that generates this data
on finite data sets. A functional inference of a fuzzy rule as a y g

matrix featurg subspace is intrqduced basr—_:d on an extension y(t) = f(x(t), ©) + e(t) (1)
of the T-S inference mechanism to achieve a rule-based
neurofuzzy system with exceptional rule extraction capabilitigghere
throughout the modeling process. Model transparency during
learning is achieved because the proposed algorithm is a x(t) = [z1, T2, ..., 2,]T €EX ER® (2)
rule-based learning approach, based on the matrix feature
subspace that is uniquely related to a fuzzy rule, enablifggan observed system input vectgte) is a priori unknown.
the numerical properties associated with a rule-based matffike observation noise(t) is assumed uncorrelated with vari-
subspace, the relationships between these matrix subspaarses?. ® is an unknown parameter vector associated with an
and the associated correlation between the output vector arep@ropriate but yet to be determined model structure.
rule-base matrix subspace, to be investigated and extracted astilizing the principle of divide and conquer, model (1) can
rule-based knowledge. be simplified by decomposing it into a set &f local models

In optimum experimental design, the A-optimality experif;(x((t), ®;),i = 1, ..., K, whereK is to be determined,
mental design criteria is usually a function of the eigenvalues efch of which operates on a local region depending on the sub-
the model regression matrix, which in turn reflects the varianceeasurement vecter'’ € R"¢, a subset of the input vectar,
of parameter estimates [16] or the identifiability of an assodie.,x() € &; € R™, (n; < n), Xy U---U X = X.
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Fig. 1. Two views on a neurofuzzy network. (a) Baseddrasis functions. (b) Based dii fuzzy rules consisting of; input variables.

Each of the local modelg;(x(¥)(¢), ®;) can be represented w
by a set of linguistic rules (et }— 0 =
Az A w Ak g
IF x@ is A® D g
i <8
THEN y(t) = fi(x(1), ©) 3) v Ve :
. i i [ ::'%s"g
where the fuzzy set® = [4{", ..., AY]T denotes a fuzzy (e /) e wo g= y
set in then;-dimensional input spacé&™: and is given as an 8
array of linguistic values, based on a predetermined input space £ | System output
partition into fuzzy sets via some prior system knowledge of the i ’g
operating range of the data set. Usuallyif) = x(*) for j # (mek) w™ g

k, thenA() 0 A®) = ¢, wherel) denotes empty seti’ , A®)
defines a complete fuzzy partition of the input spakeFor
an appropriate input space decomposition, the local models Elh
have essentially local linear behavior. In this case, using the well @ ) ) ) 0
known TS fuzzy inference mechanism [5], the output of (1) canerefi(x'(¢), ®;) is a linear function ok of
be represented by f; (x(i)(t)7 91:) _ X(i)(t)T@i (5)
K
f(x(t), ©) = N;(xD@®)) f; (xD), ©; 4) and®; ¢ R denotes parameter vector of thik fuzzy rule or
(x(t), ©) =3 ( ( )> ( () ) ( local model V; (x(") is a fuzzy membership function of the rule

[

2. Orthogonal subspaces based on fuzzy rule-bases.

i=1
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Fig. 3. Fuzzy membership functions ferin Example 1.

(3), subject to a unity of support conditiof:< N;(x(") <1, the number of B-spline basis functions definedrﬁﬁ), the jth

S, Ni(x®) = 1. Each of the linguistic rules (3) can be evalcomponent ok ().

uated via the known fuzzy membership functisin(x(9)(t)). Note that for a complete model base, the number of rules
Consider a neurofuzzy network using B-spline function$/ > K increases exponentially as the input dimension in-

[17] as membership functions. A general one-dimension@eases, (which is commonly known as the curse of dimen-

B-spline modelf’(x) can be formed as a linear combination o§ionality). To alleviate this disadvantage, input dimension or

L B-spline basis functions}, (z), as variable reduction can be used. Notably an analysis of vari-
L ance (ANOVA) representation of multivariable functions uses
fl(z) = Z 91'33;1(37)- (6) lower dimensional tensor products of models inputs, such that
i=1 the fuzzy membership functions (8) is replaced by

The coefficients;s represent the set of adjustable parameters @\ _ k, ()
associated with the set of basis functiof¥, (z)s, which are N (X ) - H Bj'm (m )
polynomials of a given degree and are uniquely defined by
an ordered sequence of real values denoted as a knot veetor yith the number of multiplication terms limited in practice to a
{71, 72, ..., TL4m+1}. The knot sequence forms a partitioningow number (e.g., lower than three). For practical application,
of the input domain intdZ + m) disjoint intervals. The basis ot only is the ANOVA approach effective in overcoming the
functions set can be defined by the recursive equation [17] ¢yrse of dimensionality, because the resultant rule-bases based
T — on ANOVA is significant lower if the input dimension is high, it

©)

JEL n;

j _ Tj J Tjtm41 — T j
Bha(w) = Titm — Tj Bina(@) + Tjtm41 — Tj+1 B () has additional advantage of model transparency because a lower
(7) input dimension than three can be visualized and interpreted
with [18].

1, 5,<z<1i4 Substitute (5) and (4) into (1)

J(0) —
By(w) = {0./ otherwise.

. T
Multidimensional B-spline basis functions are formed by a di- y(t) = Z Pi (X(l)(t)) ©; +e(?)
rect multiplication of univariate basis functions via =t T
= $(x(1))7O + e(t) (10)
()Y kj (@) )
= bin, (1)]T = Ni(xD(1))xD € R p(x(t)) = [p2(x(2))7,

S
for i = 1,...,M, where M = [, L, x99 = _  ¢xx@1)7]" € ®». 0 = [O7, ..., OL]T ¢ %¥,

[a:gi)./ a:gi Y, a:,(f)]T € . k; = 1,2,...,L;, L; is wherep = Zf‘:l n;.
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Fig. 4. Modeling processes as a forward selection of rule-bases in Example 1.

For the finite data seDy = {x(¢), y(¢)}L,, (10) can be TABLE |
Written in a matriX form as Fuzzy RULES IDENTIFIABILITIES IN EXAMPLE 1
K D) Rule Index i 1 2 3 4 5 6
_ 7 7
y = Z‘I’ ©" +e LN Ni(t) | 0.0983 | 0.1839 | 0.1704 | 0.2150 | 0.2221 | 0.1104
i=1
. YO (11)
TABLE I
wherey = [y(1), y(2), ..., y(N)]T c RN is the output SYSTEM ERRORREDUCTION RATIO BY THE SELECTED RULES IN EXAMPLE 1
vector, 8 = [4;(x(1)), ..., di(x(N))]T € RN*™ is -
the regression matrix associated with tiih fuzzy rule,  RuleIndexi| 5 4 3 6 2 1
e = [e(l), ..., e(N)]T € RN is the model residual vector.  [ERRi(t) | 0.5596 | 0.2622 | 0.0984 | 0.0645 | 0.0149 | 0.0003
® = [0 . )] ¢ RV*P is the full regression matrix.

An effective way of overcoming the curse of dimensionalit

is to start with a moderate sized rule-base according to the )ée_nstructlon is introduced based on the A-optimality experi-

tual data distribution. This strategy is the normal basis ofawi(%emal design criterion that measures the identifiability of the
stem rule-base. This is based on the construction of an ap-

range of algorithms such as clustering, kernel methods, and fRyotem ruie- T : .
ward regression. In clustering and kernel methods, the data S%;Q_pnate initial rule-base which is persistently excited by data.

ples are themselves a potential model rule-base, and often u ggause a per;isterlnl ex_citation by dat?‘ s a prereq.uis'ite co'ndi—
as the centers of a radial basis function. In this paper, the %%_n of system |dent|f|(_:a_t|_on, rules lacking data excitation will
lection of K local models as an initial model base is base excluded from the initial model base.

on model identifiability via the A-optimality design criterion
with the advantage of enhanced model transparency to quan-
tify and interpret fuzzy rules and their identifiability. Compared
to conventional clustering, kernel methods, the proposed apWhile the object of a neurofuzzy network is to model and
proach is based on a submatrix that is uniquely linked to fuzzgpresent processes linguistically, the learning or training of
rule. This is advantageous in increasing model transparency e model is often carried out by conventional neural networks
cause the numerical information associated with the submattigining algorithms, and in particular, linear learning algorithms

is subsequently rule-based knowledge. In the following sesdch as least squares. Typically associative neural networks
tion, it will be shown that an A-optimality design criterion assuch as RBF, B-splines networks construction algorithm
sociated with a submatrix based on a fuzzy rule itself providesnsists of two stages, an unsupervised stage (uses only system
identifiability of the fuzzy rule. Then an initial model rule-basenput but not output information) of an initial model base

Ill. RULE-BASED MODEL CONSTRUCTION AND
LEARNING ALGORITHMS
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Fig. 5. Univariate fuzzy membership functions. (a) Horsepower. (b) Weight. (c) Year.

construction, followed by a supervised stage (use both systgmirements. The model construction algorithm developed in the
input and output information) for refined model structuréollowing is also composed of two stages, an unsupervised stage
detection, (with the approximation of system output as the maii an initial model base construction followed by a supervised
objective, together with a minimal model complexity). For gerstage of fine model structure detection based on an extension
eral linear in the parameter systems, a forward orthogonal leaéforward OLS algorithm, with both stages using rule-based
squares (OLS) algorithm based on Gram—-Schmidt orthogomedrning in order to maintain the model transparency during the
decomposition can be used to determine the significant terfearning phase. In Section II-B, it is shown that each fuzzy rule
and parameter estimates, and the model structure [10]. Tdz be mapped into a submatrix within the full regression ma-
mechanism underpinning the OLS method is to decompose thg. The identifiability of a fuzzy rule is discussed in associated
correlations amongst regressors in a linear regression equatiotih the nonsingularity condition of the associated submatrix,
in a forward manner, to achieve a minimal model structusnd then used in the initial model construction via the A-op-
whilst maximizing model approximation or generalizatiotimality design criteria. Compared to the conventional forward
ability. The OLS algorithm potentially has an inherent modéDLS algorithm based on Gram—-Schmidt orthogonal decompo-
transparency in extracting energy levels in the selected modeitson, the extended Gram—Schmidt algorithm developed in Sec-
regressors, if only the regressors can be associated with mdam I11-B extends the orthogonalization of regressors to the or-
ingful system variables. thogonalization of subspaces spanned by submatrices which in
However, conventional least squares including the forwatdrn have a one-to-one mapping with fuzzy rules. The model
OLS algorithm, if applied to a neurofuzzy model based on theansparency can be achieved by extracting energy level asso-
T-S inference mechanism, loses its model transparency duraigted fuzzy rule-bases. Note that all the advantages of linear
learning. This is due to the fact that learning is based uporiearning are maintained because the proposed method is still es-
set of one-dimensional regressors, or basis functions (suchsastially a linear learning approach.
B-splines, Gaussians, etc.), and not upon a set of fuzzy rules
(usually in the form of multidimensional input variables). Sinc&- Rule-Based Learning and Initial Model Base Construction
modeling is inevitably iterative it can be greatly enhanced if the Rule-based knowledge, i.e., information associated with a
modeler can interpret or interrogate the derived rule-base duriagzy rule, is highly appropriate for users to understand a de-
learning itself, allowing the injecting of user knowledge as wetlved data based model. Most current learning algorithms in
as premature cessation when the model satisfies the usersmegirofuzzy model are based on an ordinadimensional linear
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TABLE 1lI
Fuzzy RULES IDENTIFIABILITIES IN EXAMPLE 2. () RULES ABOUT HORSEPOWER (b) RULES ABOUT WEIGHT. (€) RULES ABOUT YEAR. (d) RULES ABOUT HORSE
POWER AND WEIGHT. (€) RULES ABOUT HORSEPOWER AND YEAR. (f) RULES ABOUT WEIGHT AND Y EAR. (THE BRACKET INDICATES RULES REMOVED FROM THE
RULE BASE DUE TO LOW IDENTIFIABILITIES SHOWN BY THE A-OPTIMALITY CRITERIA; AND THE STAR “*” | NDICATES RULES INCLUDED IN THE FINAL MODEL)

Rules (Horse Power) | Small | Medium | Large  Rules (Weight) | Small | Medium | Large
LYV N 0.4119* | 0.5315* | 0.0566* & SN, Ni(t) | 0.3303 | 0.5457 | 0.1241

(@) (b)

L3N Nyt Rules (Horse Power)
Small Medium  Large
Rules Small 0.2066 0.1234  (0.0003)
Medium | 0.0983  0.1999  (0.0258)
(weight) | Large | (0.0054) 0.0882  0.0305

Rules (Year) | Early | Medium | Late
Ly Ni(t) | 0.1987 | 0.6052 | 0.1961

(c) (d)

x Zf;l N;(t) Rules (Horse Power) ¥ Eivzl N;(t) Rules (Weight)
Small Medium  Large _ Small Medium  Large
Rules Early 0.0596  0.1113 0.0277  Rules Early 0.0537  0.1042 0.0407
Medium | 0.2468 0.1839*  0.0280 Medium | 0.1911  0.3367  0.0774
(Year) Late 0.1055*  0.0897  (0.0009) (Year) Late 0.0854*  0.1048  (0.0059)

(e) ®

in the parameter model, as shown in Fig. 1(a). Model tranBy using T-S fuzzy inference mechanism with a unique label

parency during learning cannot be automatically achieved ui;(-). S is defined as a fuzzy rule subspace of ittefuzzy

less these regressors have a clear physical interpretation, orate.

directly associated with physical variables. Under a neurofuzzyNote that model transparency is inherent in the above neuro-

model based on the T-S mechanism, the regressors in an ofalzzy model representation due to a one-to-one link between

nary p-dimensional linear in the parameter model as shown fuazzy membership functions and fuzzy linguistic rules, with

Fig. 1(a) are not based upon a set of fuzzy rules, therefore, thigzzy membership providing an indication of the importance

is unhelpful in extracting rule-based knowledge. (confidence) of the derived linguistic rule, afid-) is the output
Alternatively, a neurofuzzy network is inherently transpareif subsystem (fuzzy rule) which is appropriate for transparent

for rule-based model construction. In (11), eaclbé? is con- model construction. The part in the fuzzy rule (3) forms the

structed based on a unique fuzzy membership funcNgn), fuzzy rule basis consisting ofra-dimensional input vector. For

providing a link between a fuzzy rule-base and a matrix featuaedata seDy = {x(t), y(t)},, theIF part of (3) can be ex-

subspace spanned B . Rule-based knowledge can be easilpressed as & x n; matrix, whose components are in the form

extracted by exploring this link. Numerical properties assoadf a linguistic variable

ated with a rule-based matrix subspace, the relationships among

these matrix subspaces, and the correlation between the outpw; (¢): (xgi)(t) is A;)} , ji=1,...,n,t=1,...,N

vector and a rule-base matrix subspace, are easy to investigate (12)

and be extracted as rule-based knowledge. Fig. 1(b) providegigere v, () is the confidence level of fuzzy rule (3). The T-S

Visual i||ustrati0n Of a rule'based SyStem in Wh|Ch the Systemﬂ§zzy inference mechanism S|mp|y numerica”y expresses the

a linear combination of fuzzy rules system, with each rule cogpove linguistic variable matrix as the regression matrix of the

sisting ofn; regressors. , ith local modekd ("), which is also one of th& submatrices of
Definition 1: Basis of a Subspacef n; VeCt0f5¢§'l) € RN, the regression matri@. Itis clear from Definitions 1 and 2 that
j=1,2,..., n, satisfy the nonsingular condition thet” = & spans a,-dimensional feature subspace within in thei-
[¢§’L>, ‘/’S}] € RV>"i has a full rank ofn,;, they span a mensional feature space spannediBy considering that the
n;-dimensional subspac¥”, then®(® s the basis of the sub- matrix ®(*), representing an individual rule, spansa,adimen-
spaceS (", sional feature subspace within thedimensional feature space

Definition 2: Fuzzy Rule Subspac&uppose thé(®) isnon- as spanned b, representing the full rule-base consisting of
singular, clearlyd(® is the basis of a,;-dimensional subspace K rules, conventional learning algorithm can be extended as
S which is a functional representation of the fuzzy rule (Jule-based learning algorithm in which model transparency can
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Fig. 6. Modeling of MPG data; solid line: actual MPG data; diamond: Model predictions;

be maintained during learning. This is achieved via extending

1
300 350

and dotted line: model residual.

TABLE IV

535

400

linear in the parameter Iearning methods in a manner so as %STEM ERRORREDUCTION RATIO BY THE SELECTED RULES IN EXAMPLE 2

extend scalar (an individual input variable) to multidimensional
(a fuzzy rule consisting of,; variables). This is also the main Selected Rules [ERR]i(?)
basis of Section IlI-B that extends variable regression to sub- Horse Power is Small 0.8918
space regression, or fuzzy rule-base regressional construction
based on functional subspace inference of the fuzzy rules.

(), the submatrix associated with thi rule, can be ex- Horse Power is Medium 0.0900
panded as

o — NG x @) (13) Horse Power is Large 0.0045

Wh.ere N@ = ‘diag{Ni(l) o Ni(N)} e RV, (Horse Power is Small) 0.0018
X0 = [x®(1), xO(2), ..., x(”(N)] € RNVxn: Equation )
(13) shows that each rule-base is simply constructed by a And (Year is Late)
weighting matrix multiplied to the regression matrix of original ( Weight is Small) 0.0011
input variables. Th_e Weig_hting matriX () can be regarded_ as And (Year is Late)
a data based spatial prefiltering over the input region. Without
loss of generality, it is assumed th&t® is nonsingular, and ( Horse power is Medium) | 0.0005
N > n;, aSrank(X(i’)) =n;. As And (Year is Medium)

rank(@(i)) = min [rank(N(i)) , rank(X(i))} . (19
For () to be nonsingular, therank(N() > n;, this means
that for the input region denoted by;(-), its basis function
needs to be excited by at leagtdata points.

As the numerical properties D¥ () reflects the identifiability
of the relevant fuzzy rule. By taking account the identifiability of
afuzzy rule into an initial model base construction is an effective

N which

is given by [16]

Ja (N< )

ZN

rule-base with low identifiability (due to lack of data excitation)
are excluded from the complete rule-base.
The A-optimality design criteria for the weighting matrix

(15)

weapon in overcoming the curse of dimensionality, as the mogebvides an indication for each fuzzy rule on its identifiability.
size can be automatically reduced by the number of data pointsAlternatively, consider the neurofuzzy system given by (4),
but not exponentially increasing with input dimension, if thand assumes that each submodel (riyflels independent, the
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Fig. 7. Univariate fuzzy membership functions for all inputs in Example 3.

system output sensitivity of the composite model outf)(ut) TABLE V
2 H N H R ILLUSTRATION OF SOME FUZZY RULES IDENTIFIABLITIES IN EXAMPLE 3.
with respect to associated submodel (rylgk) is given by (8) RULES ABOUT (7 — 1). (b) RULES ABOUT (7 — 1) AND (7 — 2).
5f(x) (THE BRACKET INDICATES RULES REMOVED FROM THE RULE BASE DUE TO
- = N;i(t). (16) Low IDENTIFIABLITIES SHOWN BY THE A-OPTIMALITY CRITERIA)
o fi(x)
For a given data samplgx(t), y(t)}, t = 1,2, ..., N, the Rules (y(t — 1)) | Small | Medium | Large
average mode_I output sensitivities to submodels (representing LN N(t) | 01589 | 06937 | 0.1414
fuzzy rules), given by
N (@
89(x) 1
- =— N;(t) (a7)
64;(x) ~ N ; & i Ni(t) Rules (y(t — 1))
which by (15) provides a metric for selecting appropriate model Small ~ Medium Large
rules. The derived model rules can then be rearranged in de- Rules Small 0.0234  0.1187 0.0164

scending order of average output sensitivity, followed by uti-
lizing only the first K experts with greatest average sensitivity
to construct a model rule-base set. (y(t—2)) | Large | (0.0135) 0.1054 0.0225

Notes: i) Comparing (15) and (17), it shows that the A-opti-
mality design criteria of the weighting matd () measures the ®)
average model output sensitivity over the input data set. Because
parameters for a rule with near zero value of (17) (due to lack &ibset of input variables of those containestjsubsequently a
data excitation) cannot be reliably estimated, the A-optimalifVUCh smaller network can be constructed to overcome the curse
design criteria for the weighting matriX( can be interpreted Of dimensionality as well as provide model transparency.
as the fuzzy rule identifiability.

ii) Note that for this rule, its input vector(*)
vector of the input vectax(t), that is, its input vector is a;-di-
mensional subset within the-dimensional input space, called Analogous to conventional two-stage learning procedures for
fuzzy partitioned input space [as spanxéd(t),t = 1, ..., N  associative neural networks such as RBF model construction
within then-dimensional input space]. Usually each subsystefh0], the proposed rule-based model construction approach also
(fuzzy rule) has a defined specific operating region dependiognsists of two stage learning, but is rule-based. This section
on a subset of input variables, partitioning a specific operatimgtroduces the second stage of fine model structure detection
region within the whole input space. Consequently, each suhat has a model transparency property during learning. The
system usually is customized as a smaller sized model usingamstruction of the initial rule-base introduced in previous sec-

Medium | 0.1221 0.4695  0.1025

is simply a sub- B. Ngw Extended Gram-Schmidt Orthogonal Decomposition
Algorithm
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Fig. 8. Results of example 3; solid line: actual system output; diamond: model predictions; and dotted line: model residual.

tion is an unsupervised procedure without utilizing information

TABLE VI

from the System Output, nor correlations between these deriv&STEM ERRORREDUCTION RATIO BY THE SELECTED RULES IN EXAMPLE 3

rules. From a model with a structure of the initial rule-base,
the system output information can then be utilized as model
identification including parameter estimation that optimizes the
model in its capacity to capture the system dynamics. Usually, if
these fuzzy rules coexist in the model they are competitive such
that some rules can become insignificant if some other rules are
already in the model. Therefore in the second stage the model
structure should be minimized but still maintains its modeling
capability. Parsimonious model construction process is also
a natural logical rule extraction process that increase model
transparency simultaneously, because simpler models involve
less rules and are easier to interpret. For general linear in the
parameter systems, an OLS algorithm based on Gram—Schmidt
orthogonal decomposition can be used to determine the model
structure, its significant terms and associated parameter esti-
mates [10]. Note that the forward OLS is inherently transparent
in retrieving the energy levels associated with the selected
regressors. One drawback of most current learning algorithms
including the direct application of OLS to neurofuzzy systems
is that the learning is based upon a set of basis functions and
not upon a set of fuzzy rules, resulting in obscuring model

Selected Rules

[ERR];(?)

(y(t —2) is Medium )
And (y(t — 3) is Medium)

0.9275

(y(t—1)is Small )
And ( y(t — 3) is Small )

0.0352

(y(t—1)is Large )
And (y(t — 3) is Small )

0.0202

u(t — 2) is Medium

0.0023

(y(t —3) is Medium )
And (u(t — 2) is Medium )

0.0015

(y(t—2)is Small )
and ((u(t — 2) is Medium )

0.0016

y(t — 1) is Medium

0.0010

transparency during the learning stage. Model transparemoje-base matrix subspace can be computed so as to enhance
during the modeling process can be enhanced if the learnimgdel transparency with the capability of interpreting the

is rule-based. In the following a new extended Gram—Schmidtle-base energy level. The significance of a new rule to an
orthogonal decomposition algorithm is introduced that extendsisting model can be effectively measured and extracted as
variable regression to subspace regression, which correspondis-based knowledge; this is a direct extension of forward OLS
to fuzzy rule-base regressional construction due to the fuzalgorithm that projects the output vector onto a regressor (basis
rules functional subspace inference relationship. By explorifignction) so that any new regressor (basis function) significance
the one to one mapping between a fuzzy rule-base and a matiax be readily evaluated relative the existing model basis, by
feature subspace, the projection of the output vector ontaredifying the conventional one dimensional regressor (basis
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function) into submatrix spanned by linguistic fuzzy rule) A® =[c], ..., ck]? € ®?, wherec; = [ci 1, ..., ¢in;)T €
in (12)]. R™ . A is a block upper triangular matrix

For ease of exposition, we initially introduce some notations Ay, ALy - AL g
and definitions that are used in the development of the new ex- 0 Ago - Ay g
tended Gram—-Schmidt orthogonal decomposition algorithm. ... ... ’

Definition 3: Orthogonal Subspaceg=or a p-dimensional A=1| o o4 L |ew (23)
matrix spaces € RV*?, two of its subspaced() ¢ RN *n: ¢ v
S andW0) € RVX" C S, (n; < p,n; < p) are orthogonal if 0 Ax x

and only if any two vectorsy(¥ andw(?) that are located in the

two subspaces respectively, . @) andw () (), Inwhich4; ; € ",
are orthogonal thaF: iw(i)]%“w(j) :EOV\;O” ) ;N ew The extended Gram—-Schmidt orthogonal decomposition al-

gorithm is as follows.

Thep-dimensional spac§, (p = K i), can be decom-
P P (p =3 imy 1) SetW) = oM A; | =1, ,«n,,and, forj =2, ..., K,

posed byK orthogonal subspacé¥”), i = 1, ..., K, given

as [19], [20] setd; ;j = In;xn,
j—1
WD g ... WE) = § ¢ gpxN (18) WO = () _ Zw(i) « A; (24)
where® denotes sum of orthogonal sets. From Definition 1, if i=1

there are any linear uncorrelategvectors located im@, de- where
noted asw'” c W, i=1,..., n; then the matriW ) =
[w§’)7 - wﬁfi)], forms a basis ofV(). Note that these, vec-

RCT N T
A= Hw@] Wﬂ [WW} o) € jrexns (25)
tors need not to be mutually orthogonal, iBN D]TW ) =

. . : ! fori=1,...,5—1.

D e g, whergD(” is not required to be diagonal. Note D) = fW(i)]TW<i), the least squares solution of (22)

Clearly if two matrix subspaced’(), W) have the basis of is given b
full rank matricesW ) ¢ RVxm W) ¢ RV*7; then they 9 y
are orthogonal if and only if o — [D(i)} ~1 [W(i)} T v (26)

O] W) —
[W ] W= Onicns (19) which follows from the fact thaW®),i = 1, ..., K are mu-
whereo,,, x,,, € R" X" is a zero matrix. tually orthogonal subspaces basis.

Definition 4: Veector Decomposition to Subspace BadisK’ From (20), if the system output vectgris decomposed as
orthogonal subspaces®, i = 1, ..., K, are defined by a a termy by projecting onto orthogonal subspadd&”), i =
series of K matricesW(®, i = 1, ..., K as subspace basisl; ---, K, and an uncorrelated teraft) that is unexplained by
based on Definition 1, then an arbitrary vecfore ®Y ¢ § the model, such that the projection onto each subspace basis (or
can be uniquely decomposed as a percentage energy contribution of these subspaces toward the

construction ofy) can be readily calculated via
2

K n; )
y= Z Z Ci,jW;'z) (20)

o

: (%)
> Ci W
=1

i=1 j=1
wherec; ;s are combination coefficients. [ERR]; = = 5 27)
As the result of the orthogonality ¢fv(®]"w) = 0, (for Iyl
i # j), from (20) The output variance projected onto each subspace can be inter-
9 preted as the contribution of each fuzzy rule in the fuzzy system,
K || 2 : subject to the existence of previous fuzzy rules. To include the
1317 =>_1> ciwi|l (21)  most significant subspace basis with the larde&R]; as a for-
=1 ||5=1 ward regression procedure is a direct extension of conventional

Clearly, the variance of the vectoy projected into each forward OLS algorithm [10]. The output variance projected into
subspace can be computed &>, c; jW(_vi)Hz for €achsubspace can be interpreted as the output energy contribu-
Jj= 2, 7 ’

i=1,..., K. B tion explained by a new rule demonstrating the significance of

Consider the nonlinear system (1) given as a vector forte new rule toward the model. At each regression step, a new
by (11). By introducing an orthogonal subspace decompositi§ffhogonal subspace basis is formed by using a new fuzzy rule

& = WA, (11) can be written as and the existing fuzzy rules in the model, as shown in Fig. 2,
with the rule basis with the largeldt R R]; to be included in the
y=Wc+te final model until
K
. ns
= z; Wi, +e (22) 1— Y [ERR]; < p (28)

i=1
whereW = [W® . 'W&)] spans g-dimensional space satisfies for an error tolerangeto construct a model with; <
S with W i = 1, ..., K spanning its subspacé¥¥), as K rules. The parameter vectd®s, i = 1, ..., n; can be com-
defined via Definition 3. The auxiliary parameter vecto= puted by the following back substitution procedure.
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Set®,,, =c,,,and, fori=ny —1,...,1 Gram-Schmidt orthogonal decomposition algorithm reduces to
ny the conventional OLS algorithm, with each rule subspace being

® =c — Z Ai ;% ©;. (29) spanned by a one-dimensional rule basis. The forward selec-

i1 tion procedure produces rule-based information of percentage

nergy increment (or the model error reduction ratio) by the se-

classical Gram—Schmidt method construct orthogonal vect (;%ted rule to the model, as shown in Table Il (in the order of

as basis based on regression vectors (one-dimensional), bufsﬁ‘]SCted rules). Each rule contribution in reducing model error

new algorithm extends the classical Gram—-Schmidt orthogor<8[ Increasing the model energy level) provides model trans-

decomposition scheme to the orthogonalization of Subsp&';érencyforthefuzzyrulesinterpretability. The modeling results

bases (multidimensional). The extended Gram-Schmidt gy givenin Fig. 4, n which, t_he mean squares error (NEE) by
iflng the model [Fig. 4(c)] with all six basis 8924 x 107°.

Notes: iii) Well-known orthogonal schemes such as th

thogonal decomposition algorithm is not only an extensio le1i luded. th del dicted outout is sh .
from classical Gram—Schmidt orthogonal axis decompositi rule 1 1s excluded, the model predicled output 1S Shown In

. . 5 :
to orthogonal subspace decomposition, but also as an exten i%h 4(c), with an MSE i2.64 x 10~%, demonstrating excellent

from basis function regression to matrix subspace regressi Rproxlllmat(ljon. f:learly thg p_r:pqsei.mo?elmg alptproach s ad-
introducing a significant advantage of model transparen ronaly advantageous via Iis sighilicant modet transparency
ring the modeling process.

to interpret fuzzy rule energy level. Because of the one ) . . L
one mapping of a fuzzy rule to a matrix subspace, a seri SExample 2: Automobile Miles Per Gallon (MPG) Dat&his

of orthogonal subspace basis are formed by using fuzzy r gtg concerns C|ty.cycle fueI. consumption n P&d its po-
{en'ual causal relation to various observed inputs. The original

subspace basis(®) in a forward regression manner, such tha . . .
WO g W@ g ..o WOy = (5O U 5@ U ... 501, Vi, data set of 398 data points contains 392 complete data points.
whilst maximizing the output variance of the model at eathere_ are six 'F‘p“ts of various manufacturer§ cars; the ”“”_‘ber
regression step of cylinders, displacement, horsepower, weight, acceleration,
and model year. In a previous study by ISIS [18], it has been

iv) For a high-dimensiom, the proposed algorithm decom-

poses the system into a féw ) submodels rather than a singleShOWn that three inputs (horse power, weight and model year)

model with a significant large number §F", n; orthogonal are significant in modeling MPG. These three inputs are used

basis if conventional Gram-Schmidt method were applied. TH&the initial rule-base construction for this study. By predeter-

is computationally simpler because each orthogonal subspg?:'gmg knot vectors for ea_ch O.f these var_|ab|es over their dat_a
basisW (*) is not required to be a diagonal matrix. The algorithrff- 9’ and using a piecewise linear B-spline fuzzy membership

. : : : o ction, three univariate fuzzy membership functions are gen-

is also useful in many signal processing applications whereby"l'{] A .

is often more desirable to decompose single model into a f ted, as shown in Fig. 5. Then, the ANOVA.‘ approgch Is used

submodels. to construct fuzzy rule-bases based on the interaction of these

membership functions. The univariate and bivariate member-
ship functions (interaction between any two univariate member-
_ _ _ _ _ ship function via tensor product) used, are shown in Table Ill, in
Example 1: We start with a simple illustrative mapping ex-which, the identifiability of fuzzy rules are listed based on (15)
ample. Consider a nonlinear functional approximation of  [or, equivalently, (17)]. From Table IIl, it is seen that some of
y(z) = (sin(rz) + 1)z. (30) the rules haye poor identifiability due to lack of data excitation.
) ) After removing these redundant rules from the rule-base, there
500 data pairgz, y} are generated via (30), where the systemye 31 initial rules.
inputz is generated as a uniformly distributed random number By using the fuzzy model (4) for the modeling of MPG data,
1, 1.2], and use a piecewise linear B-spline fuzzy membership
function to build a one-dimensional model, resultihg = 6 o
basis functions. These basis functions, as shown in Fig. 3, corre- y(t) = Z Ni(x(1))x(t)©; (32)
spond to 6 fuzzy rules: 1% (z = 0) (very small); 2)F (z = 0.2)
(small); 3)IF (z = 0.4) (medium-small); 4) IF£ = 0.6) wheret denotes the data label, and?) is given by the data
(medium-large); 5)F (z = 0.8) (large), and 6)F (z = 1) (very values of [horsepower, weight, year]. Hence, each of the fuzzy

IV. NUMERICAL EXAMPLES

large). rule ®) = N;(x(t))x(t) spans a three-dimensional space, i.e.,
By using the fuzzy model (4) for the approximation of (30)p; = 3, Vi. The extended Gram—Schmidt orthogonal decompo-
the neurofuzzy model is simply given as sition algorithm decomposes each rule subspace being spanned

6 by a three-dimensional rule basis into orthogonal matrix sub-
g(t) = ZNi(w(t))w(t)ﬁi (31) spaces. The forward selection procedure produces rule-based
P information of percentage energy increment (or the model error

wheret denotes the data label, with each of the fuzzy fffé = reduction ratio) by the selected rule to the model, as.shown in
N,(x(t))z(¢) spanning a one dimensional space, ie.~ 1 Table IV. In T_able IV, the selected rul_es are ordered in the se-
: A, Jyence of being selected, together with each rules contribution

V1. The identifiability of these fuzzy rules are computed bas i reducing model error (or increasing the model energy level)
on (15) [or, equivalently, (17)] and are listed in Table I. Because 9 9 9y '

this example only involves a scalar input variable, the extendedAvailable online at ftp.ics.uci.edu/pub/machine-learning-databases
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providing natural model transparency via the fuzzy rules. Thieis nonlinear system demonstrate that the proposed approach

final model has six fuzzy rules produces a MSE of 6.31; itsas significant model transparency during the modeling process,

model prediction result is shown in Fig. 6. It is clear that thas well as the capability to construct a parsimonious rule-based

proposed modeling approach can reveal significant model trasgstem with excellent approximation capability.

parency during the modeling process, also it can construct a par-

simonious set of rules with excellent model transparency and V. CONCLUSION

excellent approximation capability. ) ) )
Example 3: A nonlinear dynamic system. Consider the fol- This paper has introduced a new neurofuzzy construction

lowing benchmark dynamic system given by [21], [22]: and_ p_arameter estima_tion algorithm for the modeling of
a priori unknown dynamical system from data. Based on a T-S

y(t) = inference mechanism, the first contribution of this paper is the
y(t — Dy(t — 2)y(t — 3)u(t — 2)[y(t —3) — 1]+ u(t — 1)  introduction of a one to one mapping between a fuzzy rule-base
14 92(t — 2) + 32(t — 3) and a matrix feature subspace. The second contribution of the

(33) Paper is the introduction of an extended Gram-Schmidt algo-
rithm that decomposes the model rule-bases via an orthogonal
where the system inpui(t) is given as a uniformly distributed subspace decomposition approach. In consequence, the pro-
random signal in the range-R, 2]. 500 data points were gen-posed approach greatly has enhanced the model transparency
erated. The input vector is predetermined as a five-input vectliring the modeling process as well as in the resultant model.
asx(t) = [y(t — 1), y(t — 2), y(t = 3), u(t — 1), u(t = 2)]".  Numerical examples have demonstrated the effectiveness of
According to the data distribution and using apiecewise lineffe new algorithm. The proposed algorithm is applicable to a
B-spline fuzzy membership function, three univariate fuzzyjide range of signal processing problems for both dynamic and
membership functions are generated based on a knot veg{ehdynamic nonlinear processes where there is a requirement
[-3,-2, 0, 2, 3] for all of the five inputs, as shown in Fig. 7 for the evolution of an explanatory fuzzy rule-base and a final

The ANOVA approach is used to construct fuzzy rule-basggrsimonious rule-base that offers high approximation and
based on the interaction of these membership functions. Thgod generalization capability.

univariate and bivariate membership functions (interaction
between any two different univariate membership function via
tensor product) are used. The identifiability of fuzzy rules are _ _ _ .
computed based on (15) for equivalently (17)]. Alhough 5 1 & F, X, ong, wud 0, carsdanive Modelng et
univariate input variables produce>5 3 univariate rule-bases Springer-Verlag, 2002.

and 10x 9 bivariate bases, for simplicity of presentation, an [2] M. Brown and C. J. HarrisNeurofuzzy Adaptive Modeling and Con-
example of univariate _rme,_bases (based on an input With. thre 3 :(rOIM ggsi?éf?l(\jlgfrglgzezr&I?ﬁ](:)dpxerl?r?gca(;[})-irigcﬁgeﬁﬁ system identifica-
rules) and that of a bivariate rule-bases (based on two inputs ~ tion,” Ph.D. dissertation, Dept. ECS, Univ. Southampton, Southampton,
with nine rules) are shown in Table V. From Table V, some of UK., 1997. _

the rules are of poor identifiability due to lack of data excitation 4 R- Murray-Smith and T. A. JohanseMultiple Model Approaches to

A o Modeling and Contral New York: Taylor and Francis, 1997.
and are removed from the rule-base, to give an initial rule-basgs) T. Takagi and M. Sugeno, “Fuzzy identification of systems and its ap-

of 102 rules. plications to modeling and control|EEE Trans. Syst., Man, Cybern.
vol. SMC-15, pp. 116-132, Jan. 1985.
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