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A Neurofuzzy Network Knowledge Extraction and
Extended Gram–Schmidt Algorithm for

Model Subspace Decomposition
Xia Hong, Senior Member, IEEE,and Chris J. Harris

Abstract—This paper introduces a new neurofuzzy model con-
struction and parameter estimation algorithm from observed finite
data sets, based on a Takagi and Sugeno (T–S) inference mecha-
nism and a new extended Gram–Schmidt orthogonal decomposi-
tion algorithm, for the modeling of a priori unknown dynamical
systems in the form of a set of fuzzy rules. The first contribution
of the paper is the introduction of a one to one mapping between
a fuzzy rule-base and a model matrix feature subspace using the
T–S inference mechanism. This link enables the numerical proper-
ties associated with a rule-based matrix subspace, the relationships
amongst these matrix subspaces, and the correlation between the
output vector and a rule-base matrix subspace, to be investigated
and extracted as rule-based knowledge to enhance model trans-
parency. The matrix subspace spanned by a fuzzy rule is initially
derived as the input regression matrix multiplied by a weighting
matrix that consists of the corresponding fuzzy membership func-
tions over the training data set. Model transparency is explored by
the derivation of an equivalence between an A-optimality exper-
imental design criterion of the weighting matrix and the average
model output sensitivity to the fuzzy rule, so that rule-bases can be
effectively measured by their identifiability via the A-optimality
experimental design criterion. The A-optimality experimental de-
sign criterion of the weighting matrices of fuzzy rules is used to
construct an initial model rule-base. An extended Gram–Schmidt
algorithm is then developed to estimate the parameter vector for
each rule. This new algorithm decomposes the model rule-bases via
an orthogonal subspace decomposition approach, so as to enhance
model transparency with the capability of interpreting the derived
rule-base energy level. This new approach is computationally sim-
pler than the conventional Gram–Schmidt algorithm for resolving
high dimensional regression problems, whereby it is computation-
ally desirable to decompose complex models into a few submodels
rather than a single model with large number of input variables
and the associated curse of dimensionality problem. Numerical ex-
amples are included to demonstrate the effectiveness of the pro-
posed new algorithm.

Index Terms—Least squares, mixtures of experts, neurofuzzy
networks, orthogonal decomposition, subspace.

I. INTRODUCTION

A SSOCIATIVE memory networks [such as B-spline
networks, radial basis functions (RBFs), support vector

machines (SVM)] have been extensively developed [1]–[4].
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While common with other neural networks, they can approx-
imate with arbitrary accuracy complex nonlinear systems,
they are additionally linear in their adjustable parameters
or weights, offering the potential for online learning with
provable convergence and stability properties [1], [2]. Most
conventional neural networks lead only to “black box” model
representation. For problems which require insight into the
underlying phenomenology, model transparency is critical,
i.e., internal system behavior interpretability and/or knowledge
(rule) representation of the underlying process. A model with
good transparency properties helps users to understand the
system behaviors, oversee critical system operating regions,
and/or extract physical laws or relationships that underpin
the system. Exceptionally a neurofuzzy network system has
the desirable properties of a compact support, a partition of
unity, locality, logicality, and transparency via fuzzy rules. The
transparency property of a neurofuzzy system is essential for
the fuzzy rule extraction capabilities of the derived process
model. The inherent transparency of a neurofuzzy network lies
in the property of unity of support, i.e., the model output can
be decomposed into a convex combination of the outputs of
individual rules, so that the basis function can be interpreted
as a fuzzy membership function of individual rules. Based on
the fuzzy rules inference and model representation of Takagi
and Sugeno (T–S) [5], a neurofuzzy model can be functionally
expressed as an operating point dependent fuzzy model with a
local linear description that lends itself directly to conventional
estimation and control synthesis [1], [6], [7]. The model
function bases in a neurofuzzy system can be directly related
to linguistic fuzzy logic rules under limited conditions, so that
any model based on numerical information can be equivalently
related to an associated set of fuzzy logic rules.

The problem ofthe curse of dimensionality[8] has been a
main obstacle in nonlinear modeling using associative memory
networks or fuzzy logic. Networks or knowledge representa-
tions that suffer from the curse of dimensionality include all
lattice based networks such as fuzzy logic (FL), RBF, Karneva
distributed memory maps, and all neurofuzzy networks (e.g.,
adaptive network based fuzzy inference system (ANFIS) [9],
T–S model [5], etc.). This problem also mitigates against
model transparency for high-dimensional systems since they
generate massive rule sets, or require too many parameters,
making it impossible for a human to comprehend the resultant
rule set. Consequently, the major purpose of neurofuzzy model
construction algorithms is to select a parsimonious model
structure that resolves the bias/variance dilemma (for finite
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training data), has a smooth prediction surface (e.g., parameter
control via regularization), produces good generalization (for
unseen data), and with an interpretable representation—often
in the form of (fuzzy) rules. For general linear in the parameter
systems, an orthogonal least squares (OLS) algorithm based on
Gram–Schmidt orthogonal decomposition can be used to deter-
mine the models significant elements and associated parameter
estimates, and the overall model structure [10]. To enable the
applicability of the OLS algorithm in neurofuzzy systems, a
NeuDec algorithm has been developed to incorporate the OLS
algorithm with an experimental design optimality criteria for
the efficient model structure determination and estimation [11],
[12].

In practice, data based neurofuzzy model construction
algorithms have to utilize finite data sets to generate parsi-
monious models, such that the final model parameterization
is adequately based on the amount of data, its distribution,
and associated model identifiability. Due to the inherent trans-
parency properties of a neurofuzzy network, a parsimonious
model construction approach should lead also to a logical
rule extraction process that increases model transparency,
as simpler models inherently involve fewer rules which are
in turn easier to interpret. One drawback of most current
neurofuzzy learning algorithms is that learning is based upon
a set of one-dimensional regressors, or basis functions (such
as B-splines, Gaussians, etc.), but not upon a set of fuzzy
rules (usually in the form of multidimensional input variables),
resulting in opaque models during the learning process. Since
modeling is inevitably iterative it can be greatly enhanced if
the modeler can interpret or interrogate the derived rule-base
during learning itself, allowing him/her to terminate the process
when his/her objectives are achieved. There are valuable recent
developments on rule-based learning and model construction,
including a linear approximation approach combined with
uncertainty modeling [13], various fuzzy similarity measures
combined with genetic algorithms [14], [15].

In this paper, a new neurofuzzy model construction and
parameter estimation algorithm in the form of fuzzy rules, is
introduced based on the T–S inference mechanism and a new
extended Gram–Schmidt orthogonal decomposition algorithm,
for the modeling ofa priori unknown dynamical systems based
on finite data sets. A functional inference of a fuzzy rule as a
matrix feature subspace is introduced based on an extension
of the T–S inference mechanism to achieve a rule-based
neurofuzzy system with exceptional rule extraction capabilities
throughout the modeling process. Model transparency during
learning is achieved because the proposed algorithm is a
rule-based learning approach, based on the matrix feature
subspace that is uniquely related to a fuzzy rule, enabling
the numerical properties associated with a rule-based matrix
subspace, the relationships between these matrix subspaces,
and the associated correlation between the output vector and a
rule-base matrix subspace, to be investigated and extracted as
rule-based knowledge.

In optimum experimental design, the A-optimality experi-
mental design criteria is usually a function of the eigenvalues of
the model regression matrix, which in turn reflects the variance
of parameter estimates [16] or the identifiability of an associ-

ated parameter vector. The subspace matrix of a fuzzy rule is
derived as the input regression matrix weighted by a weighting
matrix consisting of the corresponding fuzzy membership func-
tions over the data set. Here, model transparency is explored by
the derivation of an equivalence between an A-optimality exper-
imental design criterion of this weighting matrix and the average
model output sensitivity to the fuzzy rule, so that extracted rule-
bases can be effectively measured by their identifiability via the
A-optimality design criterion. The A-optimality experimental
design criterion of the weighting matrices of fuzzy rules is used
to construct an initial model base, i.e., any model base not sat-
isfying an identifiability condition is excluded. This is advanta-
geous in increasing model transparency during the initial model
rule-base construction stage. An extended Gram–Schmidt algo-
rithm is then developed and applied to estimate the parameter
vector for each derived rule. The proposed new algorithm de-
composes the model bases via an orthogonal subspace decom-
position approach, with the advantage of relating rule-bases di-
rectly to the matrix feature subspaces so as to enhance model
transparency with the capability of interpreting the rule-base
in terms of its energy level. The computed output variance ex-
plained by the associated rules (the associated energy level) can
also used as model final structure determination, as well as ex-
tracted as rule-based knowledge transparent to users.

This paper is organized as follows. Section II introduces a
general class of neurofuzzy systems as a modeling approach.
Section III introduces the proposed modeling approach, with
theoretic analysis into the associated model transparency.
Numerical examples are provided in Section IV to illustrate
the effectiveness of the approach and Section V is devoted to
conclusions.

II. PRELIMINARIES

This section briefly presents a general class of neurofuzzy
systems as a nonlinear data modeling approach within a
coherent framework of both mathematical representation for
learning and linguistic logic rule representation for model
transparency.

Given a finite data set of observed
input–output data pairs, consider the identification of a general
nonlinear system that generates this data

(1)

where

(2)

is an observed system input vector, is a priori unknown.
The observation noise is assumed uncorrelated with vari-
ance . is an unknown parameter vector associated with an
appropriate but yet to be determined model structure.

Utilizing the principle of divide and conquer, model (1) can
be simplified by decomposing it into a set of local models

, , where is to be determined,
each of which operates on a local region depending on the sub-
measurement vector , a subset of the input vector,
i.e., , , .
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(a)

(b)

Fig. 1. Two views on a neurofuzzy network. (a) Based onp basis functions. (b) Based onK fuzzy rules consisting ofn input variables.

Each of the local models can be represented
by a set of linguistic rules

(3)

where the fuzzy set denotes a fuzzy
set in the -dimensional input space, and is given as an
array of linguistic values, based on a predetermined input spaces
partition into fuzzy sets via some prior system knowledge of the
operating range of the data set. Usually, if , for

, then , where denotes empty set.
defines a complete fuzzy partition of the input space. For
an appropriate input space decomposition, the local models can
have essentially local linear behavior. In this case, using the well
known T–S fuzzy inference mechanism [5], the output of (1) can
be represented by

(4)

Fig. 2. Orthogonal subspaces based on fuzzy rule-bases.

where is a linear function of of

(5)

and denotes parameter vector of theth fuzzy rule or
local model. is a fuzzy membership function of the rule
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Fig. 3. Fuzzy membership functions forx in Example 1.

(3), subject to a unity of support condition: ,
. Each of the linguistic rules (3) can be eval-

uated via the known fuzzy membership function .
Consider a neurofuzzy network using B-spline functions

[17] as membership functions. A general one-dimensional
B-spline model can be formed as a linear combination of

B-spline basis functions, , as

(6)

The coefficients s represent the set of adjustable parameters
associated with the set of basis functions. s, which are
polynomials of a given degree and are uniquely defined by
an ordered sequence of real values denoted as a knot vector

. The knot sequence forms a partitioning
of the input domain into disjoint intervals. The basis
functions set can be defined by the recursive equation [17]

(7)
with

otherwise.

Multidimensional B-spline basis functions are formed by a di-
rect multiplication of univariate basis functions via

(8)

for , where ,
. , is

the number of B-spline basis functions defined in , the th
component of .

Note that for a complete model base, the number of rules
increases exponentially as the input dimension in-

creases, (which is commonly known as the curse of dimen-
sionality). To alleviate this disadvantage, input dimension or
variable reduction can be used. Notably an analysis of vari-
ance (ANOVA) representation of multivariable functions uses
lower dimensional tensor products of models inputs, such that
the fuzzy membership functions (8) is replaced by

(9)

with the number of multiplication terms limited in practice to a
low number (e.g., lower than three). For practical application,
not only is the ANOVA approach effective in overcoming the
curse of dimensionality, because the resultant rule-bases based
on ANOVA is significant lower if the input dimension is high, it
has additional advantage of model transparency because a lower
input dimension than three can be visualized and interpreted
[18].

Substitute (5) and (4) into (1)

(10)

where ,
. ,

, . , , ,
where .



532 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

Fig. 4. Modeling processes as a forward selection of rule-bases in Example 1.

For the finite data set , (10) can be
written in a matrix form as

(11)

where , , is the output
vector, , is
the regression matrix associated with theth fuzzy rule,

is the model residual vector.
, is the full regression matrix.

An effective way of overcoming the curse of dimensionality
is to start with a moderate sized rule-base according to the ac-
tual data distribution. This strategy is the normal basis of a wide
range of algorithms such as clustering, kernel methods, and for-
ward regression. In clustering and kernel methods, the data sam-
ples are themselves a potential model rule-base, and often used
as the centers of a radial basis function. In this paper, the se-
lection of local models as an initial model base is based
on model identifiability via the A-optimality design criterion
with the advantage of enhanced model transparency to quan-
tify and interpret fuzzy rules and their identifiability. Compared
to conventional clustering, kernel methods, the proposed ap-
proach is based on a submatrix that is uniquely linked to fuzzy
rule. This is advantageous in increasing model transparency be-
cause the numerical information associated with the submatrix
is subsequently rule-based knowledge. In the following sec-
tion, it will be shown that an A-optimality design criterion as-
sociated with a submatrix based on a fuzzy rule itself provides
identifiability of the fuzzy rule. Then an initial model rule-base

TABLE I
FUZZY RULES IDENTIFIABILITIES IN EXAMPLE 1

TABLE II
SYSTEM ERRORREDUCTION RATIO BY THE SELECTEDRULES IN EXAMPLE 1

construction is introduced based on the A-optimality experi-
mental design criterion that measures the identifiability of the
system rule-base. This is based on the construction of an ap-
propriate initial rule-base which is persistently excited by data.
Because a persistent excitation by data is a prerequisite condi-
tion of system identification, rules lacking data excitation will
be excluded from the initial model base.

III. RULE-BASED MODEL CONSTRUCTION AND

LEARNING ALGORITHMS

While the object of a neurofuzzy network is to model and
represent processes linguistically, the learning or training of
the model is often carried out by conventional neural networks
training algorithms, and in particular, linear learning algorithms
such as least squares. Typically associative neural networks
such as RBF, B-splines networks construction algorithm
consists of two stages, an unsupervised stage (uses only system
input but not output information) of an initial model base
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(a) (b)

(c)

Fig. 5. Univariate fuzzy membership functions. (a) Horsepower. (b) Weight. (c) Year.

construction, followed by a supervised stage (use both system
input and output information) for refined model structure
detection, (with the approximation of system output as the main
objective, together with a minimal model complexity). For gen-
eral linear in the parameter systems, a forward orthogonal least
squares (OLS) algorithm based on Gram–Schmidt orthogonal
decomposition can be used to determine the significant terms
and parameter estimates, and the model structure [10]. The
mechanism underpinning the OLS method is to decompose the
correlations amongst regressors in a linear regression equation
in a forward manner, to achieve a minimal model structure
whilst maximizing model approximation or generalization
ability. The OLS algorithm potentially has an inherent model
transparency in extracting energy levels in the selected models
regressors, if only the regressors can be associated with mean-
ingful system variables.

However, conventional least squares including the forward
OLS algorithm, if applied to a neurofuzzy model based on the
T–S inference mechanism, loses its model transparency during
learning. This is due to the fact that learning is based upon a
set of one-dimensional regressors, or basis functions (such as
B-splines, Gaussians, etc.), and not upon a set of fuzzy rules
(usually in the form of multidimensional input variables). Since
modeling is inevitably iterative it can be greatly enhanced if the
modeler can interpret or interrogate the derived rule-base during
learning itself, allowing the injecting of user knowledge as well
as premature cessation when the model satisfies the users re-

quirements. The model construction algorithm developed in the
following is also composed of two stages, an unsupervised stage
of an initial model base construction followed by a supervised
stage of fine model structure detection based on an extension
of forward OLS algorithm, with both stages using rule-based
learning in order to maintain the model transparency during the
learning phase. In Section III-B, it is shown that each fuzzy rule
can be mapped into a submatrix within the full regression ma-
trix. The identifiability of a fuzzy rule is discussed in associated
with the nonsingularity condition of the associated submatrix,
and then used in the initial model construction via the A-op-
timality design criteria. Compared to the conventional forward
OLS algorithm based on Gram–Schmidt orthogonal decompo-
sition, the extended Gram–Schmidt algorithm developed in Sec-
tion III-B extends the orthogonalization of regressors to the or-
thogonalization of subspaces spanned by submatrices which in
turn have a one-to-one mapping with fuzzy rules. The model
transparency can be achieved by extracting energy level asso-
ciated fuzzy rule-bases. Note that all the advantages of linear
learning are maintained because the proposed method is still es-
sentially a linear learning approach.

A. Rule-Based Learning and Initial Model Base Construction

Rule-based knowledge, i.e., information associated with a
fuzzy rule, is highly appropriate for users to understand a de-
rived data based model. Most current learning algorithms in
neurofuzzy model are based on an ordinary-dimensional linear



534 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

TABLE III
FUZZY RULES IDENTIFIABILITIES IN EXAMPLE 2. (a) RULES ABOUT HORSEPOWER. (b) RULES ABOUT WEIGHT. (c) RULES ABOUT YEAR. (d) RULES ABOUT HORSE

POWER AND WEIGHT. (e) RULES ABOUT HORSEPOWER AND YEAR. (f) RULES ABOUT WEIGHT AND YEAR. (THE BRACKET INDICATES RULES REMOVED FROM THE

RULE BASE DUE TO LOW IDENTIFIABILITIES SHOWN BY THE A-OPTIMALITY CRITERIA; AND THE STAR “ ” I NDICATES RULES INCLUDED IN THE FINAL MODEL)

(a) (b)

(c) (d)

(e) (f)

in the parameter model, as shown in Fig. 1(a). Model trans-
parency during learning cannot be automatically achieved un-
less these regressors have a clear physical interpretation, or are
directly associated with physical variables. Under a neurofuzzy
model based on the T–S mechanism, the regressors in an ordi-
nary -dimensional linear in the parameter model as shown in
Fig. 1(a) are not based upon a set of fuzzy rules, therefore, this
is unhelpful in extracting rule-based knowledge.

Alternatively, a neurofuzzy network is inherently transparent
for rule-based model construction. In (11), each of is con-
structed based on a unique fuzzy membership function ,
providing a link between a fuzzy rule-base and a matrix feature
subspace spanned by . Rule-based knowledge can be easily
extracted by exploring this link. Numerical properties associ-
ated with a rule-based matrix subspace, the relationships among
these matrix subspaces, and the correlation between the output
vector and a rule-base matrix subspace, are easy to investigate
and be extracted as rule-based knowledge. Fig. 1(b) provides a
visual illustration of a rule-based system in which the system is
a linear combination of fuzzy rules system, with each rule con-
sisting of regressors.

Definition 1: Basis of a Subspace:If vectors ,
, satisfy the nonsingular condition that

has a full rank of , they span a
-dimensional subspace , then is the basis of the sub-

space .
Definition 2: Fuzzy Rule Subspace:Suppose the is non-

singular, clearly is the basis of a -dimensional subspace
, which is a functional representation of the fuzzy rule (3)

by using T–S fuzzy inference mechanism with a unique label
. is defined as a fuzzy rule subspace of theth fuzzy

rule.
Note that model transparency is inherent in the above neuro-

fuzzy model representation due to a one-to-one link between
fuzzy membership functions and fuzzy linguistic rules, with
fuzzy membership providing an indication of the importance
(confidence) of the derived linguistic rule, and is the output
of subsystem (fuzzy rule) which is appropriate for transparent
model construction. TheIF part in the fuzzy rule (3) forms the
fuzzy rule basis consisting of a-dimensional input vector. For
a data set , theIF part of (3) can be ex-
pressed as a matrix, whose components are in the form
of a linguistic variable

(12)
where is the confidence level of fuzzy rule (3). The T–S
fuzzy inference mechanism simply numerically expresses the
above linguistic variable matrix as the regression matrix of the
th local model , which is also one of the submatrices of

the regression matrix . It is clear from Definitions 1 and 2 that
spans a -dimensional feature subspace within in the-di-

mensional feature space spanned by. By considering that the
matrix , representing an individual rule, spans a-dimen-
sional feature subspace within the-dimensional feature space
as spanned by , representing the full rule-base consisting of

rules, conventional learning algorithm can be extended as
rule-based learning algorithm in which model transparency can
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Fig. 6. Modeling of MPG data; solid line: actual MPG data; diamond: Model predictions; and dotted line: model residual.

be maintained during learning. This is achieved via extending
linear in the parameter learning methods in a manner so as to
extend scalar (an individual input variable) to multidimensional
(a fuzzy rule consisting of variables). This is also the main
basis of Section III-B that extends variable regression to sub-
space regression, or fuzzy rule-base regressional construction
based on functional subspace inference of the fuzzy rules.

, the submatrix associated with theth rule, can be ex-
panded as

(13)

where ,
. Equation

(13) shows that each rule-base is simply constructed by a
weighting matrix multiplied to the regression matrix of original
input variables. The weighting matrix can be regarded as
a data based spatial prefiltering over the input region. Without
loss of generality, it is assumed that is nonsingular, and

, as . As

(14)

For to be nonsingular, then , this means
that for the input region denoted by , its basis function
needs to be excited by at leastdata points.

As the numerical properties of reflects the identifiability
of the relevant fuzzy rule. By taking account the identifiability of
a fuzzy rule into an initial model base construction is an effective
weapon in overcoming the curse of dimensionality, as the model
size can be automatically reduced by the number of data points,
but not exponentially increasing with input dimension, if the

TABLE IV
SYSTEM ERRORREDUCTION RATIO BY THE SELECTEDRULES IN EXAMPLE 2

rule-base with low identifiability (due to lack of data excitation)
are excluded from the complete rule-base.

The A-optimality design criteria for the weighting matrix
which is given by [16]

(15)

provides an indication for each fuzzy rule on its identifiability.
Alternatively, consider the neurofuzzy system given by (4),

and assumes that each submodel (rule)is independent, the
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Fig. 7. Univariate fuzzy membership functions for all inputs in Example 3.

system output sensitivity of the composite model output
with respect to associated submodel (rule) is given by

(16)

For a given data sample , , the
average model output sensitivities to submodels (representing
fuzzy rules), given by

(17)

which by (15) provides a metric for selecting appropriate model
rules. The derived model rules can then be rearranged in de-
scending order of average output sensitivity, followed by uti-
lizing only the first experts with greatest average sensitivity
to construct a model rule-base set.

Notes: i) Comparing (15) and (17), it shows that the A-opti-
mality design criteria of the weighting matrix measures the
average model output sensitivity over the input data set. Because
parameters for a rule with near zero value of (17) (due to lack of
data excitation) cannot be reliably estimated, the A-optimality
design criteria for the weighting matrix can be interpreted
as the fuzzy rule identifiability.

ii) Note that for this rule, its input vector is simply a sub-
vector of the input vector , that is, its input vector is a -di-
mensional subset within the-dimensional input space, called
fuzzy partitioned input space [as spanned ,
within the -dimensional input space]. Usually each subsystem
(fuzzy rule) has a defined specific operating region depending
on a subset of input variables, partitioning a specific operating
region within the whole input space. Consequently, each sub-
system usually is customized as a smaller sized model using a

TABLE V
ILLUSTRATION OF SOME FUZZY RULES IDENTIFIABLITIES IN EXAMPLE 3.
(a) RULES ABOUT y(t � 1). (b) RULES ABOUT y(t � 1) AND y(t � 2).

(THE BRACKET INDICATES RULES REMOVED FROM THE RULE BASE DUE TO

LOW IDENTIFIABLITIES SHOWN BY THE A-OPTIMALITY CRITERIA)

(a)

(b)

subset of input variables of those contained in, subsequently a
much smaller network can be constructed to overcome the curse
of dimensionality as well as provide model transparency.

B. New Extended Gram–Schmidt Orthogonal Decomposition
Algorithm

Analogous to conventional two-stage learning procedures for
associative neural networks such as RBF model construction
[10], the proposed rule-based model construction approach also
consists of two stage learning, but is rule-based. This section
introduces the second stage of fine model structure detection
that has a model transparency property during learning. The
construction of the initial rule-base introduced in previous sec-
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Fig. 8. Results of example 3; solid line: actual system output; diamond: model predictions; and dotted line: model residual.

tion is an unsupervised procedure without utilizing information
from the system output, nor correlations between these derived
rules. From a model with a structure of the initial rule-base,
the system output information can then be utilized as model
identification including parameter estimation that optimizes the
model in its capacity to capture the system dynamics. Usually, if
these fuzzy rules coexist in the model they are competitive such
that some rules can become insignificant if some other rules are
already in the model. Therefore in the second stage the model
structure should be minimized but still maintains its modeling
capability. Parsimonious model construction process is also
a natural logical rule extraction process that increase model
transparency simultaneously, because simpler models involve
less rules and are easier to interpret. For general linear in the
parameter systems, an OLS algorithm based on Gram–Schmidt
orthogonal decomposition can be used to determine the model
structure, its significant terms and associated parameter esti-
mates [10]. Note that the forward OLS is inherently transparent
in retrieving the energy levels associated with the selected
regressors. One drawback of most current learning algorithms
including the direct application of OLS to neurofuzzy systems
is that the learning is based upon a set of basis functions and
not upon a set of fuzzy rules, resulting in obscuring model
transparency during the learning stage. Model transparency
during the modeling process can be enhanced if the learning
is rule-based. In the following a new extended Gram–Schmidt
orthogonal decomposition algorithm is introduced that extends
variable regression to subspace regression, which corresponds
to fuzzy rule-base regressional construction due to the fuzzy
rules functional subspace inference relationship. By exploring
the one to one mapping between a fuzzy rule-base and a matrix
feature subspace, the projection of the output vector onto a

TABLE VI
SYSTEM ERRORREDUCTION RATIO BY THE SELECTEDRULES IN EXAMPLE 3

rule-base matrix subspace can be computed so as to enhance
model transparency with the capability of interpreting the
rule-base energy level. The significance of a new rule to an
existing model can be effectively measured and extracted as
rule-based knowledge; this is a direct extension of forward OLS
algorithm that projects the output vector onto a regressor (basis
function) so that any new regressor (basis function) significance
can be readily evaluated relative the existing model basis, by
modifying the conventional one dimensional regressor (basis
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function) into submatrix spanned by linguistic fuzzy rule [
in (11)].

For ease of exposition, we initially introduce some notations
and definitions that are used in the development of the new ex-
tended Gram–Schmidt orthogonal decomposition algorithm.

Definition 3: Orthogonal Subspaces:For a -dimensional
matrix space , two of its subspaces

and , ( , ) are orthogonal if
and only if any two vectors and that are located in the
two subspaces respectively, i.e., and ,
are orthogonal, that is, , for .

The -dimensional space, , can be decom-
posed by orthogonal subspaces , , given
as [19], [20]

(18)

where denotes sum of orthogonal sets. From Definition 1, if
there are any linear uncorrelatedvectors located in , de-
noted as , , then the matrix

, forms a basis of . Note that these vec-
tors need not to be mutually orthogonal, i.e.,

, where is not required to be diagonal.
Clearly if two matrix subspaces , have the basis of

full rank matrices , , then they
are orthogonal if and only if

(19)

where is a zero matrix.
Definition 4: Vector Decomposition to Subspace Basis:If

orthogonal subspaces , , are defined by a
series of matrices , as subspace basis
based on Definition 1, then an arbitrary vector
can be uniquely decomposed as

(20)

where s are combination coefficients.
As the result of the orthogonality of , (for

), from (20)

(21)

Clearly, the variance of the vector projected into each
subspace can be computed as , for

.
Consider the nonlinear system (1) given as a vector form

by (11). By introducing an orthogonal subspace decomposition
, (11) can be written as

(22)

where spans a -dimensional space
with , spanning its subspaces , as

defined via Definition 3. The auxiliary parameter vector

, where
. is a block upper triangular matrix

(23)

in which .
The extended Gram–Schmidt orthogonal decomposition al-

gorithm is as follows.
Set , , and, for ,

set

(24)

where

(25)

for .
Note , the least squares solution of (22)

is given by

(26)

which follows from the fact that , are mu-
tually orthogonal subspaces basis.

From (20), if the system output vector is decomposed as
a term by projecting onto orthogonal subspaces ,

, and an uncorrelated term that is unexplained by
the model, such that the projection onto each subspace basis (or
a percentage energy contribution of these subspaces toward the
construction of ) can be readily calculated via

(27)

The output variance projected onto each subspace can be inter-
preted as the contribution of each fuzzy rule in the fuzzy system,
subject to the existence of previous fuzzy rules. To include the
most significant subspace basis with the largest as a for-
ward regression procedure is a direct extension of conventional
forward OLS algorithm [10]. The output variance projected into
each subspace can be interpreted as the output energy contribu-
tion explained by a new rule demonstrating the significance of
the new rule toward the model. At each regression step, a new
orthogonal subspace basis is formed by using a new fuzzy rule
and the existing fuzzy rules in the model, as shown in Fig. 2,
with the rule basis with the largest to be included in the
final model until

(28)

satisfies for an error toleranceto construct a model with
rules. The parameter vectors , can be com-

puted by the following back substitution procedure.
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Set , and, for

(29)

Notes: iii) Well-known orthogonal schemes such as the
classical Gram–Schmidt method construct orthogonal vectors
as basis based on regression vectors (one-dimensional), but the
new algorithm extends the classical Gram–Schmidt orthogonal
decomposition scheme to the orthogonalization of subspace
bases (multidimensional). The extended Gram–Schmidt or-
thogonal decomposition algorithm is not only an extension
from classical Gram–Schmidt orthogonal axis decomposition
to orthogonal subspace decomposition, but also as an extension
from basis function regression to matrix subspace regression,
introducing a significant advantage of model transparency
to interpret fuzzy rule energy level. Because of the one to
one mapping of a fuzzy rule to a matrix subspace, a series
of orthogonal subspace basis are formed by using fuzzy rule
subspace basis in a forward regression manner, such that,

= , ,
whilst maximizing the output variance of the model at each
regression step.

iv) For a high-dimension , the proposed algorithm decom-
poses the system into a few submodels rather than a single
model with a significant large number of orthogonal
basis if conventional Gram–Schmidt method were applied. This
is computationally simpler because each orthogonal subspace
basis is not required to be a diagonal matrix. The algorithm
is also useful in many signal processing applications whereby it
is often more desirable to decompose single model into a few
submodels.

IV. NUMERICAL EXAMPLES

Example 1: We start with a simple illustrative mapping ex-
ample. Consider a nonlinear functional approximation of

(30)

500 data pairs are generated via (30), where the system
input is generated as a uniformly distributed random number
ranged in [0,1]. Define a knot vector [0.2, 0, 0.2, 0.4, 0.6, 0.8,
1, 1.2], and use a piecewise linear B-spline fuzzy membership
function to build a one-dimensional model, resulting
basis functions. These basis functions, as shown in Fig. 3, corre-
spond to 6 fuzzy rules: 1)IF ( ) (very small); 2)IF ( )
(small); 3) IF ( ) (medium-small); 4) IF ( )
(medium-large); 5)IF ( ) (large), and 6)IF ( ) (very
large).

By using the fuzzy model (4) for the approximation of (30),
the neurofuzzy model is simply given as

(31)

where denotes the data label, with each of the fuzzy rule
spanning a one dimensional space, i.e., ,

. The identifiability of these fuzzy rules are computed based
on (15) [or, equivalently, (17)] and are listed in Table I. Because
this example only involves a scalar input variable, the extended

Gram–Schmidt orthogonal decomposition algorithm reduces to
the conventional OLS algorithm, with each rule subspace being
spanned by a one-dimensional rule basis. The forward selec-
tion procedure produces rule-based information of percentage
energy increment (or the model error reduction ratio) by the se-
lected rule to the model, as shown in Table II (in the order of
selected rules). Each rule contribution in reducing model error
(or increasing the model energy level) provides model trans-
parency for the fuzzy rules interpretability. The modeling results
are given in Fig. 4, in which, the mean squares error (MSE) by
using the model [Fig. 4(c)] with all six basis as .
If rule 1 is excluded, the model predicted output is shown in
Fig. 4(c), with an MSE is , demonstrating excellent
approximation. Clearly the proposed modeling approach is ad-
ditionally advantageous via its significant model transparency
during the modeling process.

Example 2: Automobile Miles Per Gallon (MPG) Data:This
data concerns city cycle fuel consumption in MPG1 and its po-
tential causal relation to various observed inputs. The original
data set of 398 data points contains 392 complete data points.
There are six inputs of various manufacturers cars; the number
of cylinders, displacement, horsepower, weight, acceleration,
and model year. In a previous study by ISIS [18], it has been
shown that three inputs (horse power, weight and model year)
are significant in modeling MPG. These three inputs are used
in the initial rule-base construction for this study. By predeter-
mining knot vectors for each of these variables over their data
range, and using a piecewise linear B-spline fuzzy membership
function, three univariate fuzzy membership functions are gen-
erated, as shown in Fig. 5. Then, the ANOVA approach is used
to construct fuzzy rule-bases based on the interaction of these
membership functions. The univariate and bivariate member-
ship functions (interaction between any two univariate member-
ship function via tensor product) used, are shown in Table III, in
which, the identifiability of fuzzy rules are listed based on (15)
[or, equivalently, (17)]. From Table III, it is seen that some of
the rules have poor identifiability due to lack of data excitation.
After removing these redundant rules from the rule-base, there
are 31 initial rules.

By using the fuzzy model (4) for the modeling of MPG data,
the neurofuzzy model is simply given as

(32)

where denotes the data label, and is given by the data
values of [horsepower, weight, year]. Hence, each of the fuzzy
rule spans a three-dimensional space, i.e.,

, . The extended Gram–Schmidt orthogonal decompo-
sition algorithm decomposes each rule subspace being spanned
by a three-dimensional rule basis into orthogonal matrix sub-
spaces. The forward selection procedure produces rule-based
information of percentage energy increment (or the model error
reduction ratio) by the selected rule to the model, as shown in
Table IV. In Table IV, the selected rules are ordered in the se-
quence of being selected, together with each rules contribution
in reducing model error (or increasing the model energy level),

1Available online at ftp.ics.uci.edu/pub/machine-learning-databases
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providing natural model transparency via the fuzzy rules. The
final model has six fuzzy rules produces a MSE of 6.31; its
model prediction result is shown in Fig. 6. It is clear that the
proposed modeling approach can reveal significant model trans-
parency during the modeling process, also it can construct a par-
simonious set of rules with excellent model transparency and
excellent approximation capability.

Example 3: A nonlinear dynamic system. Consider the fol-
lowing benchmark dynamic system given by [21], [22]:

(33)

where the system input is given as a uniformly distributed
random signal in the range [2, 2]. 500 data points were gen-
erated. The input vector is predetermined as a five-input vector
as .
According to the data distribution and using apiecewise linear
B-spline fuzzy membership function, three univariate fuzzy
membership functions are generated based on a knot vector
[ 3, 2, 0, 2, 3] for all of the five inputs, as shown in Fig. 7.
The ANOVA approach is used to construct fuzzy rule-bases
based on the interaction of these membership functions. The
univariate and bivariate membership functions (interaction
between any two different univariate membership function via
tensor product) are used. The identifiability of fuzzy rules are
computed based on (15) [or equivalently (17)]. Although 5
univariate input variables produce 5 3 univariate rule-bases
and 10 9 bivariate bases, for simplicity of presentation, an
example of univariate rule-bases (based on an input with three
rules) and that of a bivariate rule-bases (based on two inputs
with nine rules) are shown in Table V. From Table V, some of
the rules are of poor identifiability due to lack of data excitation
and are removed from the rule-base, to give an initial rule-base
of 102 rules.

By using the fuzzy model (4) for the modeling this nonlinear
dynamical system, the neurofuzzy model is simply given as

(34)

where denotes the time index. Hence, each of the fuzzy rule
spans a five-dimensional space, i.e.,

, . The extended Gram–Schmidt orthogonal decomposition
algorithm decomposes each rule subspace being spanned by a
five-dimensional rule basis into orthogonal matrix subspaces.
The forward selection procedure produces rule-based informa-
tion of percentage energy increment (or the model error re-
duction ratio) by the selected rule to the model, as shown in
Table VI. In Table VI, the selected rules which are ordered in
the selection sequence, and their contribution in reducing model
error (or increasing the model energy level), and provide appro-
priate model transparency for the derived fuzzy rules set. The
model with six fuzzy rules explains 99% of system output vari-
ance and produces a MSE of 0.006. The model prediction results
are shown in Fig. 8 (for visual clarity only a section of data typ-
ical of the remaining data is shown). Again the results based on

this nonlinear system demonstrate that the proposed approach
has significant model transparency during the modeling process,
as well as the capability to construct a parsimonious rule-based
system with excellent approximation capability.

V. CONCLUSION

This paper has introduced a new neurofuzzy construction
and parameter estimation algorithm for the modeling of
a priori unknown dynamical system from data. Based on a T–S
inference mechanism, the first contribution of this paper is the
introduction of a one to one mapping between a fuzzy rule-base
and a matrix feature subspace. The second contribution of the
paper is the introduction of an extended Gram–Schmidt algo-
rithm that decomposes the model rule-bases via an orthogonal
subspace decomposition approach. In consequence, the pro-
posed approach greatly has enhanced the model transparency
during the modeling process as well as in the resultant model.
Numerical examples have demonstrated the effectiveness of
the new algorithm. The proposed algorithm is applicable to a
wide range of signal processing problems for both dynamic and
nondynamic nonlinear processes where there is a requirement
for the evolution of an explanatory fuzzy rule-base and a final
parsimonious rule-base that offers high approximation and
good generalization capability.
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