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Abstract—One of the typical important criteria to be considered
in real-time control applications is the computational complexity
of the controllers, observers, and models applied. In this paper, a
singular value decomposition (SVD)-based complexity reduction
technique is proposed for Takagi Sugeno (TS) fuzzy models. The
main motivation is that the TS fuzzy model has exponentially
growing computational complexity with the improvement of its
approximation property through, as usually practiced, increasing
the density of antecedent terms. The reduction technique proposed
here is capable of defining the contribution of each local linear
model included in the TS fuzzy model, which serves to remove
the weakly contributing ones as according to a given threshold.
Reducing the number of models leads directly to the computa-
tional complexity reduction. This work also includes a number of
numerical and application examples.

Index Terms—Anytime systems, complexity reduction, fuzzy
rule base reduction, singular value decomposition (SVD), TS fuzzy
model.

I. INTRODUCTION

T HE complexity of today’s system embedding control,
measurement, monitoring, and diagnosis techniques

have increased to such a degree that designers and engineers
would have difficulties in the application of “classical” design
methods and tools. On the other hand, growing demands are
arising in the reliability, safety, robustness, adaptability, and
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low-cost operations of this new generation of engineering
systems. To overcome these problems, the experts have turned
their attention from the often used conventional model-based
approaches to the more “nonconventional” types. As a result,
artificial-intelligence-based and soft computing methods have
gained ground in both fundamental research and application
[16]. In this paper, we focus on the complexity problem of
applying fuzzy logic to model-based approaches in fault
diagnosis. However, the validity of the methods presented here
and their consequences are more general. They can be adopted
in more general modeling, diagnosis, and control systems.

System models are aimed at capturing relationships between
measured variables and system component parameters. In
model-based systems, thea priori knowledge is directly
represented as a built-in model capable of following changes
in the supervised system or its environment for optimal per-
formance. Fault Detection and Isolation (FDI) methods often
employ failure models to establish the relationship between
measurements and a preenumerated set of faults [21]. However,
burdened by their limited capability, the identification is
restricted to only the usual and preknown faults. To overcome
this disadvantage, more general observer-based functional
models can be employed to describe the system behavior and
the fault detection or isolation can then be based on the analysis
of the reported deviations in the context of the given model [3].
The signals representing the inconsistencies between the model
and the actual system being monitored are called residuals. The
problem with this method is that any modeling error will affect
the fault diagnosis performance, i.e., performance will depend
not only on the presence of faults but on modeling uncertainty
as well [11]. All these point to the need for more precise and
accurate modeling and robust techniques.

Fuzzy tools has been proven to be advantageous in the above
applications due to their robustness against uncertain and
inaccurate knowledge, shortage of relevant information, lack of
exact mathematical model(s), and errors in the measurements.
Furthermore, they can mimic and implement the actions of
human experts without accurate mathematical models and are
easily interpretable. They seem to result in a real breakthrough
especially in nonlinear problems, but their use is restricted by
their exponential complexity. In this regard, there exist methods
that offer partial solutions to the problem, e.g., the supervisory
control ([8], [15]) approach reduces the models at a lower level
to yield simpler structures for observers and controllers using
Takagi-Sugeno (TS) models. TS fuzzy observers are used par-
ticularly because of their they advantages in making the error
dynamics independent of the parameters of the system. Due to
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their relevancy in the present work as well, a brief discussion on
the TS fuzzy model and its computational complexity problem
is given below.

TS fuzzy models are fuzzy models where multiple models
are applied to the fuzzy inference systems. The inputs of the
inference system coming from the environment (the fuzzy in-
ference variables) are in fact quantitative variables. The qualita-
tive properties of this variable, however, are derived in order to
combine linear models into a new nonlinear dynamic structure
under the multiple-model fuzzy inference modeling strategy of
Takagi-Sugeno [27]. In this way, the TS fuzzy model structure
can be analyzed [29] and designed to closely resemble the true
nonlinear input–output and state variable behavior of the real
process. The TS multiple-model scheme has been used both for
the feedback control [28], [30], [31] and for the design of ob-
servers for FDI [32]. Both are based on the principle ofpar-
allel distributed compensation[33], [34]. By extension, the FDI
structure is also based upon the TS multiple-model system. This
can be viewed as either a nonlinear observer or as a (in a re-
stricted sense) fuzzy observer (because of the use of the fuzzy
inference variable). The use of a TS fuzzy model offers a way
to describe nonlinear dynamics using local linear models [27].
Thus, according to the TS model, a nonlinear dynamic system
can be linearized around a number of operating points. Each
local linear model represents the local system behavior around a
certain operating point. The global system behavior is described
by a fuzzy fusion of all the linear model outputs. The model is
described by fuzzyIF–THEN rules, which represent local linear
relations of the nonlinear system. Appropriately chosen oper-
ating points, i.e., the number of local linear models and the size
of the corresponding regions used in the supervision system,
can guarantee the asymptotic stability of the dynamic system
[5]. However, there can be a serious limitation on the applica-
bility of such control schemes because the computational com-
plexity of the system increases exponentially with the number
of models, and finding the minimum number of the necessary
models would be of great importance. In other words, despite
all of the above advantages, applications of TS fuzzy models
are restricted by model complexity. The problem becomes even
more acute because of the contradictory requirements in perfor-
mance. On one hand, there is an effort to use a great number
of fuzzy rules or a great number of local, linear fuzzy models
to ensure a good approximation with enough precision to guar-
antee the observer’s stability. On the other hand, designers and
experts are tempted to reduce the number of the applied models
and rule-bases to keep the complexity of the system and the
costs of the operations as low as possible. Unfortunately, there
is no standardized framework regarding the design, optimality,
reducibility, and partitioning of a fuzzy rule set and thus the suc-
cess of finding the optimal tradeoff is only by chance. Fuzzy
rule bases describing system behavior, which often is the case,
contain redundant, weakly contributing, or outright inconsistent
components [22]. Techniques offering tools to extract the more
pertinent elements and to filter out unnecessary or weakly con-
tributing parts of a given rule set are, hence, highly desirable.
Among the wide variety of known complexity reduction tech-
niques that may contribute in overcoming the above burden, we
focus in this work on the singular value decomposition (SVD)

technique because it also offers an excellent extension for “any-
time” operations [35]. This paper is hence an attempt to inves-
tigate a TS fuzzy observer and model from the complexity and
possible complexity reduction point of view.

In computer-based monitoring and diagnostic systems, oper-
ations should be performed under prescribed response time con-
ditions. Given that sufficient computational power is provided,
the achievable processing speed is highly influenced by the pro-
cedures, timing, and data access conditions of the processing it-
self. It may be inevitable even in the case of extremely careful
design to get into situations where the shortage of necessary data
and/or processing time becomes serious. Such situations may
result in a critical breakdown of the monitoring and/or diag-
nostic systems [25]. The concept of “anytime” processing tries
to handle the case of too many abrupt changes and their conse-
quences in larger scale embedded systems [2]. The idea is that,
if there is a temporal shortage of computational power and/or
there is a loss of some data, the actual operation can be continued
to maintain the overall performance “at a lower price,” i.e., in-
formation processing based on algorithms and/or models of re-
duced complexity should provide outputs of acceptable quality
to continue the operation of the full monitoring system. The ac-
curacy of the process will be temporarily lowered but possibly
still sufficient to produce data for qualitative evaluations and
supporting decisions. Consequently, “anytime” algorithms pro-
vide short response time and are very flexible with respect to the
available input information and computational power.

The TS fuzzy model-based approaches combined with the
SVD technique are excellent tools for “anytime” operations
[35]. By using SVD, not only the “sequence” of the rules is
defined but also the extent to which they contribute to the
mapping. To cope with the limits arising in the system or in
its environment determined by the computational need of the
remaining truncated model, we can appropriately abandon
the less significant parts of the rule base online. This can be
conducted based on the singular values, which also manage to
give the approximation error of the process [4], [22]–[24]. The
key ideas of this paper are based on the SVD fuzzy rule base
reduction technique initialized in [1], [4], and [22]–[24]. The
transformation of the antecedent sets via SVD decomposition,
which is extended here to local linear models, is introduced in
[4], [22], and [23]. Presumably, the SVD technique here can be
replaced by other orthogonal techniques as in [24]. Extension
of [24] to multi-dimensional cases may also be conducted in a
similar fashion as high-order SVD [4], [8], [23].

In the following, we present the exact and nonexact
SVD-based model reduction methods for TS fuzzy models to
decrease model complexity and thus to open up possibility
for their application in extremely large systems or in such
systems where serious temporal limitations may occur in the
computing and/or timing conditions during the operations.
The present work focuses on product-sum-gravity inference.
However, algorithms introduced here can readily be extended
to other fuzzy inference techniques by replacing the product
inference form with generalized tuneable operators introduced
in, for instance, the works of Rudas [17]–[20]. This paper is
organized as follows. Section II gives the definitions of the pa-
rameters adopted for later development. Section III gives a brief
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overview on the TS fuzzy models and observers. Section IV
investigates the computational complexity of such systems.
Section V presents the SVD-based complexity reduction
methods. Section VI presents the performance of the reduction.
Section VII shows the possible extension of the present method
to the multi-dimensional case. Section VIII gives the examples
to illustrate the strength of the present methods and, finally,
Section IX gives the conclusions.

II. DEFINITIONS

This section introduces the elementary definitions and
concepts utilized in later sections. Before starting with the
definitions, we note the following on the notations to be
utilized. To facilitate the distinction between the types of
given quantities, scalar values are denoted by lowercase letters

; column vectors and matrices are given by
bold-face letters as and respectively,
matrix contains zero values only; multi-way matrices corre-
spond to capital letters as . The transpose of matrix

is denoted as . A subscript is consistently used for a
lower order of a given structure, e.g., the elements of matrix
are marked by the row-column number of and symbolized
as . Throughout this work, theth column vector
of is denoted as , i.e., . To enhance the
overall readability, characters denote indices
(counters) and are reserved for the upper
bounds of the indices, unless stated otherwise. is
the vector space of real valued ( ) multi-way
matrices. Fuzzy sets are denoted by capital letters, e.g.,.

Definition 1: ( -mode matrix of ) Assume an -way
matrix . The -mode matrix ,

contains all the vectors in theth dimension of
matrix . The ordering of the vectors is arbitrary; this ordering
shall, however, be consistently used later on. is called
the th -mode vector. Note that any matrix of which the
columns are given by -mode vectors can evidently
be restored to be matrix. The restoring can be executed even
when some rows of are discarded since the value of
has no role in the ordering of .

Definition 2: ( -mode matrix partition )Assume -way
matrix . The n-mode partitions of

are denoted as
, where .

Definition 3: ( -mode matrix product) The -mode
product of by a matrix , de-
noted by , is an ( )
matrix of which the entries are given by , where

. For more explanation of the above definitions,
see [14] and [39].

III. T HE TS FUZZY MODEL

This section discusses the basics of the TS fuzzy model.
Without loss of generality, a fuzzy observer is given as an
example. This exampled observer taken from [5] and [36]–[38]
consists of a number of local linear models designed to estimate
the system state vector and is discussed here from a complexity

Fig. 1. TS fuzzy model utilized to observer and controller.

point of view. Fig. 1 shows the block diagram of a TS fuzzy
observer from [5] and [13], together with a possible TS fuzzy
controller. Since they are the same in the sense of computational
complexity, the reduction technique to be discussed here can
be performed on both the TS fuzzy observer and the controller.

For the fuzzy observer design, it is assumed that the fuzzy
system model is locally observable. Using the idea of parallel
distributed compensation (PDC) [26], a linear time-invariant ob-
server can be associated with each rule of the TS fuzzy model.
Let us suppose that the models are varying with respect to a
fuzzy variable , which yields the following fuzzy rules [5],
[13], [37]:

IF is fuzzy set THEN model (1)

with and is the number of fuzzy terms, namely,
the number of local linear models. Equation (1) involves only
one variable . The case of multi-dimensional parameter space
will be briefly discussed in Section VII. in (2) is defined for
the observers as

(2)

Let us define arbitrary shaped fuzzy sets .
The TS fuzzy model approximation based on the combination
of the local models is then

(3)

The structure of the TS fuzzy model based approximation is
depicted in Fig. 2, which shows that the output of each linear
model is contributed by function to the output. In order
to have general discussion, let us consider the following form:

...
...

. . .
...

(4)
where denotes the number of rows in the model (i.e., the
number of equations describing the model) andindicates how
many terms there are in the rows of the equations (2 and 3, re-
spectively, in the case of (2). Vector consists of the model
inputs and state vectors. Further, in the case of (2), ,
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Fig. 2. Structure of the TS fuzzy model. The number of local linearized models
and functionf (!) is V .

, and , the outputs of theth local
linear model are and . The coef-
ficient matrices of (4) are then: , ,

and , and ,

i.e., some of the matrices contain only zero el-

ements. Let us form the three-way matrices
from . Substituting (4) into (3), the following
is obtained.

Definition 4: General form of the weighted combination of
models:

(5)

Finally, for further notation, let the weighting functions
be contained in row vector .

IV. COMPLEXITY INVESTIGATION

This section investigates the computational complexity of (5).
The investigation considers only the number of multiplication
operations in calculating the output. Let us write (5) in the form
of

(6)

where stands for the ( )th element of matrix

, is the th element of output vector , and,
similarly, is the th element of . According to (6),
we have the following Lemma.

Lemma 1: The computational complexity of (5) grows expo-
nentially with the number of models. Considering the multipli-
cation operation only, the computational requirement is charac-
terized as

(7)

where indicates the number of multiplications during the cal-
culation of an . To arrive at (7), one notes that calculating

needs multiplications. Furthermore, there are
number of terms in the rows of (4) which leads to

the term . This is multiplied by for the cal-
culations of the outputs of the models. Moreover, the output
is given by the linear combination of the outputs of models,

which yields the term . Finally, the term
is the calculation of the ’s. Lemma 1 shows that the com-
putational complexity explodes with the number of local linear
models. As pointed out in the introduction, this gives rise to dif-
ficulties in our pursuit of good approximation and hence system
performance.

V. COMPLEXITY REDUCTION

The main objective of this section is to propose a method
capable of reducing the complexity of the TS fuzzy model ap-
proximation. The aim here is to decrease, namely, to find the
minimal number of local linear models and corresponding an-
tecedents. A subsequent goal is to present a method capable of
decreasing and , which is in the dominant growing part of
(7). Actually, and are the number of elements in the state,
input, and output vectors defined by the application at hand and
hence cannot be reduced directly. However, the TS fuzzy model
approximation can be transformed into a subspace whereand

may become and . Output calculations per-
formed in this subspace (which we will term minimal computa-
tional space) may then require less computational efforts, after
which the result can be projected back to the original space for
the final output. If the transformation is reversible, then the re-
duction is exact in the sense that the output of the original model
is the same as the reduced one, otherwise a reduction error is
produced. This idea is performed in Method 1 of this section.
Method 2 in this section is aimed at finding the minimal number
of models and the corresponding weighting functions. The re-
duction is exact if the original model has redundant local linear
models; if it does not, then the reduction can be increased at
the price of nonexact reduction. The more reduction we aim for,
the larger approximation error may occur. Therefore, the algo-
rithms in this section have an error-controllable property, which
can help us with executing the reduction technique according to
a predefined reduction error tolerance, which safely conserves
the system performance. The main concept of the reduction is
defined in the following theorem.

Theorem 1: Equation (5) can always be transformed into the
following form:

(8)

where “ ” denotes “reduced, the size of , , and are
, , and , respectively. Further,

, and the number of models is reduced to
. The proof can be derived readily from the following Methods

1 and 2. Before starting with the algorithms, let us briefly digress
and represent (4) in different ways. Let the multi-way matrix

be given by the form of -mode matrix
partition as: . This actually fits the
coefficient matrices in the two-dimensional arrangement and, as
a result, (4) can be written as
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where is understood as .

Let multi-way matrix be given as:
. Thus, (4) can also be given in the form

of

...

The reduction is conceptually obtained by the singular value-
based decomposition of (5) and by the truncation of the zero or
smallest singular values with their corresponding decomposed
parts. Hence, we have the following definition.

Definition 5: Singular Value Based Reduction (SVDR). Let
us suppose that matrix is given. Applying
singular value decomposition yields

(9)

Matrices and are orthogonal. Matrix contains the sin-
gular values in decreasing magnitude, as diagonal elements. The
zero or the smallest singular values (smaller than singular value
threshold , say) can be discarded to yield a simpler system.
Let contain the retained and contain the discarded sin-

gular values. Let the result of SVDR be: .
For a more detailed description of SVD, see [6], [9] and [10].

Having defined SVDR, the following reduction techniques can
then be proposed for the TS fuzzy model approximations in
accordance with Theorem 1. First, we discuss the case when
only zero singular values are discarded in SVDR. Then, an
error bound of the more general reduction case is discussed in
Remark 2.

Method 1 (Projection to Minimal Computational Space):

I) Determination of matrices , namely, the reduction
of . Let . Then, applying SVDR to

yields . Matrix

can be restored to multi-way ma-

trix .
II) Determination of matrices , namely, the reduction

of . Let us construct which
is resulted by , where
multi-way matrices are defined by the result
of step I), thus, . Then
let whereupon SVDR is performed:

. Matrix
can be restored according to , in
order to define matrices via

. Let us assume that
the values of and are decreased. Consequently,
matrices and transform the input vectors

Fig. 3. Compressed model structure.

into a subspace as: , then the output
values can be calculated in the reduced space as

...
...

...
...

which requires less computational effort than in the
original case (4) since the size of the coefficient ma-
trices are decreased. The resulting output vector is the
combination of the outputs of the local models (5):

, which also requires less
calculation than the original model because the size of
vector is less than the size of vector , though
in fact this latter reduction is not as significant as the
computational reduction in . Output resulted
by combining the outputs of the local linear models
(5) should be projected back to the original space as:

. The following method serves to pin-
point the minimal number of linearized models.

Method 2 (Determination of the Minimal Number of Linear
Models): Determination of . Let us form matrix

. Then, executing
SVDR on matrix , we obtain: . has
the size of . Matrix can be restored to matrices

according to .
The reduced weighting functions are transformed by matrix
as

(10)

The order of performing Method 1 or 2 is arbitrary. The re-
sults obtained by both methods are matrices, , ,
and in full accordance with Theorem 1. The number of
models is in the reduced form. The reduced form is depicted
in Fig. 3.

Remark 1: Fuzzy logic theory has restrictions to the func-
tions of fuzzy sets. The results of Method 1 and 2 do not guar-
antee that the resulted weighting functions can be interpreted as
fuzzy sets. If the reduced form is not only for saving compu-
tational cost, but for further studies in fuzzy operation as well,
then the reduced weighting functions should accommodate the
pertaining characterizations. Further transformations may hence
be required. For instance, to obtain matrixin such a way
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that the reduced functions are bounded by [0,1]. Some tools,
such asnonnegativeness, sum normalization, andset normal-
ization, have been developed in [22] and [23]. These transfor-
mations are attached to SVDR to ensure that the results are inter-
pretable as fuzzy sets, furthermore to maintain Ruspini-partition
and to have normalized sets according to the concept discussed
by Duboiset al. [7]. For more details about these transforma-
tions, see [4], [22] and [23]. In conclusion, the computational
cost of the algorithm may be reduced in the final implementa-
tion, which serves our main goal, but the price to pay is that
the interpretability of the fuzzy sets may be degraded. This also
makes an interesting point in fuzzy theory—how to represent
and extract a rule-base in different ways. In the worst case, it
may be that the resulted antecedents are very weakly informa-
tive as far as fuzzy linguistic interpretation is concerned.

Remark 2: If not only zero singular values are discarded
then the effectiveness of the reduction is improved, however,
reduction error is obtained. The error resulting from SVDR is
bounded by the sum of the discarded singular values [4], [22],
[23]. The final error of the model approximation depends on
the type of weighting functions applied. In this regard, several
cases of the antecedents are discussed in [4]. Generally, it can
be said that if the weighting functions satisfy the Ruspini-parti-
tions, which is maintained in the above transformations, then the
maximum final error is the sum of the discarded singular values
controllable during the execution of Method 1 and 2. For more
details of SVD reduction error, see preliminary works [4], [22].

VI. I NVESTIGATION OF COMPLEXITY REDUCTION

This section compares the computational complexity of the
original (5) and the reduced (8) forms. The comparison is done
for two cases of the weighting functions . The first case
assumes that the transformed weighting functions can be ana-
lytically given in the same form as the original ones. For in-
stance, if the antecedent sets are given in the form of

, then the result of (10) can be given in the same
form as . Another example is that the
weighting functions are piecewise linear or given in a general
form of

(11)

where the weighting functions are expressed in terms of the
basis functions . The second case has weighting func-
tions where the transformed antecedents cannot be analytically
simplified.

For the first case, where the transformed sets are expressible
in the same form as the original one, we have the following
results.

Lemma 2: The computational complexity of (8) is

(12)

Fig. 4. Reduction where each equation in the model has its own weighting
functions.

where the additional terms, compared to (7), come from the
transformation to the reduced space.

For the second case, where the transformed antecedents
cannot be analytically simplified, we have the following.

Lemma 3: The computational complexity of (8) is

(13)

where indicates extra computation to result the values of
the reduced weighting functions from the values of the original
weighting function [see (10)].

Hence, with , we have both (12) and (13) showing
complexity reduction over (7) except for some extreme cases,
where the number of model inputs and outputs are 2 or 3. As a
matter of fact, different can be generated for each equation
for the reduced model, which yields a different set of weighting
functions for each value of. The benefit of having is that
the size of a common may be larger than the size of any
and the value of is in the dominant exponentially growing
term of (12) and (13). The disadvantage is that using,
though it may be smaller than, does bring extra calculation
since each needs the calculation of a different set of weighting
functions. In this light, Method 2 can be modified in such
a way that is
first constructed, whereupon the execution of SVDR is carried
out as . Coefficient matrices are then defined
by and the
membership functions by . Consequently, to
improve the reduction, one has to check whether the application
of would lead to further reduction or not. The structure in
this case of using different s is depicted in Fig. 4.

VII. M ULTIVARIABLE CASE

This section briefly discusses a possible direction to extend
the proposed reduction technique if the input parameter space is

-dimensional. In this case, the rules in a TS fuzzy model are:
IF is AND is AND is , THEN

model .
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Applying the product inference form leads to

(14)

where of row vector is the th membership
function defined on the th input universe. Equation (14) can
be written as

(15)

Hence, reduction is to be of the form

where in full accordance with (8) and (10). In
this case, Method 2 can be performed on all dimensions of
multiway matrix , except the first
and the second one in order to obtain transformation matrices

for the antecedent sets of each input. Also,
Method 1 can be applied to the first and second dimensions to
determine and . A detailed extension and examples of the
multidimensional case will be given in future works.

VIII. E XAMPLES

In this section, three examples are given. The first two demon-
strates the use of the proposed exact reduction technique. The
third illustrates application of the technique to a TS fuzzy ob-
server for controlling an induction motor. It is worth mentioning
that the examples all use triangular-shaped fuzzy sets (resulting
in a rough bilinear approximation) for simplicity, where any
observation fires a maximum of two antecedents with nonzero
membership values. The reduced forms will also have the same
property. In this situation, it is therefore enough to consider
only those rule pairs in both the original and the reduced form
which are fired with nonzero values. This implies that the com-
putational reduction is questionable. In general, computational
reduction is expected when, for instance, all antecedents are
fired in the original and reduced rule bases, as is typical when
a B-spline basis is used for antecedents. In this regard, the an-
tecedents in the examples can actually be replaced by a B-spline
base. This would considerably improve the approximation.

Example 1: Let the local linear model be such that there is
only one equation in each model and only one term in each
equation, namely, . The number of models is .
Let and the three models be given by

. They are to be combined according to the actual values
of the corresponding weighting functions [see (5)], which
are triangularly shaped as depicted in Fig. 5. Let the elements
of the coefficient matrices be

which imitates an approximation of a nonlinear
system. In the first step of Method 1, the two nonzero singular
values are: 24.2036 and 4.710 03. Here, five decimal places are
used to enhance the precision. For matrix, we discard the zero

Fig. 5. Example 1: weighting functions.

Fig. 6. Example 1: transformed antecedentsV = 2, which are in a Ruspini-
partition.

TABLE I
EXAMPLE 1: RESULT OF THEPROPOSEDREDUCTION

Fig. 7. Example 2: mass-spring-damper system.

singular value and keep the two nonzero singular values. For
matrix , two nonzero singular values are also obtained and
kept. They are 23.2313 and 8.2647. We then proceed to find a
common transformation matrix by Method 1, with the SVDR
extended by NN and SN transformations to obtain fuzzy sets in
Ruspini-partition (see [4], [22], [23], and Fig. 6). As a result,
matrices , , and are given in
Table I.

The transformed antecedents are depicted in Fig. 6. The
computational complexity reduction is now considered. Calcu-
lating , in the original model requires

multiplications. Transforming the input and output
between the reduced and the original space requires
multiplications. Calculation in the reduced space requires

multiplications. The reduced form requires 20 operations
in total. If the membership values of the reduced antecedents
are transformed from the original weighting functions, then

extra operations are needed. In this case, the number
of operations is 26, which is less than in the original model
approximation.

Example 2: This example, taken from [34], involves the
design of a simple nonlinear mass-spring-dampler mechanical
system as depicted in Fig. 7. The main goal of the example
here is to approximate the mass-spring-dampler mechanical
system (like a dynamically unknown one) by a TS fuzzy model
over a fuzzy partition. The partition used is quite dense so as
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to achieve a good approximation. Then, the proposed method
is applied for reduction and to obtain a minimal form. The
differential equations of the mechanical system are analytically
given in the minimal form of a TS fuzzy model as well in order
to evaluate the effectiveness of the reduction. The goal here is
to show that the resulting minimal form is actually the same, in
the complexity sense, as the one to train the dense rule base in
the first place. The example as given in [34] utilizes a dynamics
model varying in a 2-D parameter space. Here, the model is
slightly modified to yield variation in only one-dimensional
(1-D) parameter space. The model is a spring-mass-damper
system with nonlinear/uncertain stiffness coefficient, damping
coefficient and forcing function:

(16)

where is the mass, is the force, is the nonlinear or
uncertain term with respect to the spring is the nonlinear
or uncertain term with respect to the damper, and is the
nonlinear term with respect to the input term. It is assumed that

, ,
and also that , , and . In [34],
the parameters are set as follows: , , ,

, , , , , and .
Here, we let in order to have a simpler model, varying
in only 1-D parameter space. Equation (16) then becomes

(17)

The nonlinear term is 0.1 . Let us proceed further in the same
way as in [34] and give a TS fuzzy model of (17) with minimal
number, namely, two fuzzy rules. Given thatsatisfies the fol-
lowing conditions:

the nonlinear term can thus be represented by the following
upper and lower bounds:

, where , . This leads to fuzzy sets
(“ ” meaning that this func-

tion is obtained analytically) and .
The antecedent functions are as depicted in Fig. 9. The fol-
lowing rules are thus obtained analytically:IF is THEN

; IF is THEN

With matrix representation, we obtain:IF is THEN

, , where ,

and , .

Consequently, the nonlinear model can be described by a TS
fuzzy model, which has only two rules. The next step is to ap-
proximate the model (17) with a dense rule base, after which
we can assume that (17) is unknown and then go about gener-
ating a minimum rule base by the present technique based only
on the dense rules. The idea here is to show that the resulting
minimal rule base would be similar to or the same as (17) in the
first place.

We aim to use a high-density fuzzy partition to achieve a
dense rule base of a good approximation. Let the interval

Fig. 8. Example 2: dense fuzzy partition to achieve a good approximation.

Fig. 9. Example 2: the analytical and the reduced antecedent sets.x = _x.

be divided by 1001 triangular shaped fuzzy sets, as in
Fig. 8. We sample the dynamic system at points

, which imitates the result of an identification algorithm,
e.g., a gradient descent algorithm. The dense TS fuzzy model as
obtained is then:IF is THEN ,
where , and

, which is in matrix form:IF is THEN

, . Executing Method 2 on ma-
trices in MATLAB (note that matrices are constant)
yields three nonzero singular values of 31.734 509 156 680 5,
2.120 618 090 212 44 and 2.285 539 931 266 82e-016. The last
one is numerically equivalent to zero. In this case, we can keep
the two nonzero singular values, which means that two local
linear models are sufficient for the same approximation of the
original 1001. It turns out that in this case, the matrixas ob-
tained has negative values, which implies that the resulting func-
tions by (10) are not interpretable as fuzzy sets, though the result
is acceptable in the sense of computational complexity reduc-
tion. Further application of the NN and SN transformation of
[4] and [22] then yields an SN and NN matrix which guar-
antees that (10) yields fuzzy sets in the Ruspini-partition. The
resulting SN and NN sets are depicted in Fig. 9. The reduced TS
fuzzy model is:IF is THEN ,

, where

and

(18)

Note that if the identification process includes noise then we
may obtain some extra, relatively smaller (according to the
noise) nonzero singular values. Keeping only two of them has
some filtering effect on the noise. Since the original fuzzy sets
are triangular, as depicted in Fig. 8, the columns of matrix

actually contain the membership values [4], [22]. Using
polynomial approximation to the 1001 values of both columns,
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(19) is obtained, shown at the bottom of the page. Indeed,
substituting (19) into (18), the original model (17) is obtained
in a matrix form.

Consequently, the two fuzzy rules as obtained by Method 2
from the 1001 rules are in full accordance with the analytically
derived TS fuzzy model. They constitute a transformed rule set
similar to the one using and . Analytically, they are shown
to be equivalent to the original model.

Example 3: The main idea in the application of [5], [12],
and [36]–[38] is to have a set of local linear models at var-
ious operating points with respect to a certain variable, which
can then be used as tool for either fault detection or isolation.
The overall nonlinear model is approximated based on the local
linear models in the form of a TS fuzzy model. The induction
motor under investigation constitutes a very nonlinear system
because of the coupling effect between rotor and stator phases
where the coefficients of the matrices vary with the rotor posi-
tion and the motor speed. For detailed development and anal-
ysis, see [5], [12], [37], and [38]. The performance of the pro-
posed observer here is assessed using Matlab/Simulink. The
FDI subsystem forms part of a fault-tolerant control system to
regulate the torque and flux in the induction motor.

The sensor fault-tolerant control scheme is run in real time
using measurements taken from a hardware testing, which
consists of a three phases AC induction motor driving a dc
motor as load. The three-phase voltages are supplied from a
100 KHz PWM-inverter. The induction motor is a 0.2-kW
three-phase four-pole machine. The overall system consists
of a pulsewidth modulation (PWM) inverter, which provides
the necessary power to drive the machine. As the torque
and flux cannot be measured they are estimated using a TS
fuzzy observer. Faults due to gain and bias changes, noise
and interferece pick up, clipping or slew-rate limits, signal
processing effects, and disconnections due to continuous and
intermittent loss of measurement can occur in the system.
A FDI/reconfiguration process based on the fuzzy observers
performs the detection and isolation of faults and takes the
necessary action to maintain the controller performance. The
dynamics of the induction motor observer is described by TS
fuzzy rules [see (1)]. Specifically, the induction motor can be
modeled by the following bilinear differential equations:

where , ,
, and and denote the current and

voltage, respectively. Comprehensive analysis of the exampled
motor and its differential equations are given in [5], [12], and
[36]–[38]. The speed is referred to as the bilinear input. This
model is derived based on three main assumptions, namely:
ideal air gap flux distribution, linear magnetization character-

istic, and zero temperature coefficient in the windings. In [5],
[12],[37], and [38], the model is comprised of five local linear
models as . For simplicity, let us
focus only on matrix . Thus, .
Given five matrices, is shown as

These five matrices are of full rank. No reduction is thus ob-
tained with Method 1. Method 2 utilized with NN and SN trans-
formation results in the above matrix in transforming the an-
tecedent sets. The reduced antecedent sets are interpretable as
fuzzy sets defined in Ruspini-partition. This implies that the
use of only two models is enough to the same approximation.
The computational reduction theoretically is about 50% based
on (13) with . The reduction is exact, which implies that
the system performance is not degraded compared to the results
in [5], [12], [37], and [38]. In order to check the real compu-
tational reduction, the output values of the original model were
generated 10 000 times. At the same time, the reduced form was
calculated in parallel and was executed 14 843 times. It is con-
cluded that the computational time of the reduced model was
67.3701% of the original model (the difference between the the-
oretical and the measured reduction is that the real value of
is larger than one and hence is dominant because of the small
number of local linear models.

(19)
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IX. CONCLUSION

This paper proposes an SVD-based computational com-
plexity reduction technique capable of finding the linear
dependence among local linear models. SVD is utilized here
to define the contribution of the local models in a decreasing
order, which allows the removal of weak or noncontributing
components according to a given error threshold. The error
tolerance depends on how robust the system at hand is with
respect to approximation error. The key idea here goes back
to the original idea of applying an SVD reduction technique
[22]–[24]: given that there is no formal and proper procedures
in establishing a fuzzy system, how can one be sure that a
given, rather complex system is already in a simple form?
The SVD reduction approach basically allows that one does
as good a job as one can in coming up with a fuzzy model
utilizing dense fuzzy rule partition in order to achieve fine
approximation. Then one applies the proposed methods and
sees if any reduction is possible. The methods proposed here
are not merely restricted to reduction of TS fuzzy models, but
are applicable to any kind of model approximation techniques
where the investigated weighting function based formula (5)
is applied. Having said the above, an important point should
be noted regarding the computational reduction here. In some
cases, more of the reduced rules will be fired simultaneously
for a given input than in the case of the original rule base. In
such cases, the advantage of smaller number of rules may be
offset by an increase in the computation load. Even so, compu-
tational issues aside, it is still interesting from the perspective
of knowledge acquisition to see how a given rule set can be
replaced or closely replaced by a set of fewer rules. Our future
plan is to formulate a detailed extension of the present methods
to multidimensional parameter space and analyze the adaptive
property of the reduced models.
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