IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 49, NO. 2, APRIL 2002 433

SVD-Based Complexity Reduction to
TS Fuzzy Models

Péter Baranyi, Yeung Yansenior Member, IEEEAnnamaria R. Varkonyi-KéczySenior Member, IEEE
Ron J. PattonMember, IEEE P&l Michelberger, and Masaharu Sugiyama

~ Abstract—One of the typical important criteria to be considered  low-cost operations of this new generation of engineering
in real-time control applications is the computational complexity systems. To overcome these problems, the experts have turned
of the controllers, observers, and models applied. In this paper, a thajr attention from the often used conventional model-based
singular value decomposition (SVD)-based complexity reduction hes to th u ti It A It
technique is proposed for Takagi Sugeno (TS) fuzzy models. The aF’PTO_aC, es 9 € more "nonconventiona _ypes. S a resuft,
main motivation is that the TS fuzzy model has exponentially artificial-intelligence-based and soft computing methods have
growing computational complexity with the improvement of its  gained ground in both fundamental research and application
approximation property through, as usually practiced, increasing [16]. In this paper, we focus on the complexity problem of
the density of antecedent terms. The reduction technique proposed applying fuzzy logic to model-based approaches in fault
here is capable of defining the contribution of each local linear di is. H th liditv of th thod ted h
model included in the TS fuzzy model, which serves to remove |agno§|s. owever, the validity of the methods presented here
the weakly contributing ones as according to a given threshold. and their consequences are more general. They can be adopted
Reducing the number of models leads directly to the computa- in more general modeling, diagnosis, and control systems.
tional (_:omplexny re_duc_tlon. This work also includes a number of System models are aimed at capturing relationships between
numerical and application examples. measured variables and system component parameters. In
Index Terms—Anytime systems, complexity reduction, fuzzy model-based systems, the priori knowledge is directly
rule base reduction, singular value decomposition (SVD), TS fuzzy represented as a built-in model capable of following changes
model. in the supervised system or its environment for optimal per-
formance. Fault Detection and Isolation (FDI) methods often
|. INTRODUCTION employ failure models to establish the relationship between
HE lexi ¢ today ‘ beddi ¢ Imeasurements and a preenumerated set of faults [21]. However,
comp equ/ ° °.t ay's sys ‘ém d.em © _'”% Cﬁn_roburdened by their limited capability, the identification is
measurement, monitoring, an 1agnosis  tlechniqugssyicted to only the usual and preknown faults. To overcome

have increased to such a degree that designers and ENGINELS disadvantage, more general observer-based functional

would have difficulties in the application of “classical” deSig%odels can be employed to describe the system behavior and

mgt_hod_s and too_ls. _C_)n the other hand, growing de"_“.”‘”ds & fault detection or isolation can then be based on the analysis
arising in the reliability, safety, robustness, adaptability, a

the reported deviations in the context of the given model [3].
The signals representing the inconsistencies between the model
and the actual system being monitored are called residuals. The
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their relevancy in the present work as well, a brief discussion t&chnique because it also offers an excellent extension for “any-
the TS fuzzy model and its computational complexity probletime” operations [35]. This paper is hence an attempt to inves-
is given below. tigate a TS fuzzy observer and model from the complexity and
TS fuzzy models are fuzzy models where multiple modefsossible complexity reduction point of view.
are applied to the fuzzy inference systems. The inputs of theln computer-based monitoring and diagnostic systems, oper-
inference system coming from the environment (the fuzzy iations should be performed under prescribed response time con-
ference variables) are in fact quantitative variables. The qualitiitions. Given that sufficient computational power is provided,
tive properties of this variable, however, are derived in order the achievable processing speed is highly influenced by the pro-
combine linear models into a new nonlinear dynamic structucedures, timing, and data access conditions of the processing it-
under the multiple-model fuzzy inference modeling strategy s€lf. It may be inevitable even in the case of extremely careful
Takagi-Sugeno [27]. In this way, the TS fuzzy model structuidesign to get into situations where the shortage of necessary data
can be analyzed [29] and designed to closely resemble the tamel/or processing time becomes serious. Such situations may
nonlinear input—output and state variable behavior of the reakult in a critical breakdown of the monitoring and/or diag-
process. The TS multiple-model scheme has been used bothiostic systems [25]. The concept of “anytime” processing tries
the feedback control [28], [30], [31] and for the design of okto handle the case of too many abrupt changes and their conse-
servers for FDI [32]. Both are based on the principlepaf- quences in larger scale embedded systems [2]. The idea is that,
allel distributed compensatid33], [34]. By extension, the FDI if there is a temporal shortage of computational power and/or
structure is also based upon the TS multiple-model system. Tthigre is a loss of some data, the actual operation can be continued
can be viewed as either a nonlinear observer or as a (in at@maintain the overall performance “at a lower price,” i.e., in-
stricted sense) fuzzy observer (because of the use of the fulaynation processing based on algorithms and/or models of re-
inference variable). The use of a TS fuzzy model offers a walgced complexity should provide outputs of acceptable quality
to describe nonlinear dynamics using local linear models [27h continue the operation of the full monitoring system. The ac-
Thus, according to the TS model, a nonlinear dynamic systemracy of the process will be temporarily lowered but possibly
can be linearized around a number of operating points. Eagdfil sufficient to produce data for qualitative evaluations and
local linear model represents the local system behavior arounsigporting decisions. Consequently, “anytime” algorithms pro-
certain operating point. The global system behavior is describéde short response time and are very flexible with respect to the
by a fuzzy fusion of all the linear model outputs. The model i@vailable input information and computational power.
described by fuzzyr-THEN rules, which represent local linear The TS fuzzy model-based approaches combined with the
relations of the nonlinear system. Appropriately chosen op&VD technique are excellent tools for “anytime” operations
ating points, i.e., the number of local linear models and the sii@5]. By using SVD, not only the “sequence” of the rules is
of the corresponding regions used in the supervision systetefined but also the extent to which they contribute to the
can guarantee the asymptotic stability of the dynamic systemapping. To cope with the limits arising in the system or in
[5]. However, there can be a serious limitation on the applicés environment determined by the computational need of the
bility of such control schemes because the computational coramaining truncated model, we can appropriately abandon
plexity of the system increases exponentially with the numb#tire less significant parts of the rule base online. This can be
of models, and finding the minimum number of the necessatpnducted based on the singular values, which also manage to
models would be of great importance. In other words, despi@e/e the approximation error of the process [4], [22]-[24]. The
all of the above advantages, applications of TS fuzzy modédsy ideas of this paper are based on the SVD fuzzy rule base
are restricted by model complexity. The problem becomes eveauction technique initialized in [1], [4], and [22]-[24]. The
more acute because of the contradictory requirements in perfisansformation of the antecedent sets via SVD decomposition,
mance. On one hand, there is an effort to use a great numishich is extended here to local linear models, is introduced in
of fuzzy rules or a great number of local, linear fuzzy mode[g], [22], and [23]. Presumably, the SVD technique here can be
to ensure a good approximation with enough precision to guaeplaced by other orthogonal techniques as in [24]. Extension
antee the observer’s stability. On the other hand, designers anf4] to multi-dimensional cases may also be conducted in a
experts are tempted to reduce the number of the applied modsisilar fashion as high-order SVD [4], [8], [23].
and rule-bases to keep the complexity of the system and thén the following, we present the exact and nonexact
costs of the operations as low as possible. Unfortunately, th&&D-based model reduction methods for TS fuzzy models to
is no standardized framework regarding the design, optimalitiecrease model complexity and thus to open up possibility
reducibility, and partitioning of a fuzzy rule set and thus the suer their application in extremely large systems or in such
cess of finding the optimal tradeoff is only by chance. Fuzzgystems where serious temporal limitations may occur in the
rule bases describing system behavior, which often is the casemputing and/or timing conditions during the operations.
contain redundant, weakly contributing, or outright inconsistefihe present work focuses on product-sum-gravity inference.
components [22]. Techniques offering tools to extract the mokHowever, algorithms introduced here can readily be extended
pertinent elements and to filter out unnecessary or weakly cdo-other fuzzy inference techniques by replacing the product
tributing parts of a given rule set are, hence, highly desirabiaference form with generalized tuneable operators introduced
Among the wide variety of known complexity reduction techin, for instance, the works of Rudas [17]-[20]. This paper is
nigues that may contribute in overcoming the above burden, eeanized as follows. Section Il gives the definitions of the pa-
focus in this work on the singular value decomposition (SVODameters adopted for later development. Section Il gives a brief
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overview on the TS fuzzy models and observers. Section I\ y(t) y(t)

investigates the computational complexity of such systems >\ Plant

Section V presents the SVD-based complexity reductior .

methods. Section VI presents the performance of the reductio +— v |

E— —
uzzy inference uzzy mference]
engine/model I:> engine / control

combination combination
Membership

degrees N y
~ "
TS fuzzy observer TS fuzzy controller

Section VIl shows the possible extension of the present methc
to the multi-dimensional case. Section VIII gives the example:
to illustrate the strength of the present methods and, finally
Section IX gives the conclusions.

Il. DEFINITIONS

This section introduces the elementary definitions anu
concepts utilized in later sections. Before starting with they 1 15 fuzzy model utilized to observer and controller.
definitions, we note the following on the notations to be

utilized. To facilitate the distinction between the types Oéioint of view. Fig. 1 shows the block diagram of a TS fuzzy
given quantities, scalar values are denoted by lowercase letighserver from [5] and [13], together with a possible TS fuzzy
{a,b,...;, 8,...}; column vectors and matrices are given b¥ontroller. Since they are the same in the sense of computational
bold-face letters aga,b,...} and {A, B, ...} respectively, complexity, the reduction technique to be discussed here can
matrix 0 contains zero values only; multl-way matrices correpe performed on both the TS fuzzy observer and the controller.
spond to capital letters gsi, B,...}. The transpose of matrix  For the fuzzy observer design, it is assumed that the fuzzy
A is denoted afA”. A SUbSC“Pt is consistently used for asystem model is locally observable. Using the idea of parallel
lower order of a given structure, e.g., the elements of marix distributed compensation (PDC) [26], a linear time-invariant ob-
are marked by the row-column numberiof and symbolized server can be associated with each rule of the TS fuzzy model.
as(A);,; = a;,;. Throughout this work, théth column vector Let us suppose that the models are varying with respect to a
of A is denoted ag;, i.e., A = [a; a, ---]. To enhance the fuzzy variablew, which yields the following fuzzy rules [5],
overall readability, charactefsj, [, n, 0, u, v .. . denote indices [13], [37]:

(counters) and, .J, L, N,O,U,V ... are reserved for the upper ]

bounds of the indices, unless stated otherwidex 2> >Ix s IF wis fuzzy setd, THEN modelM, (1)

the vector space of real valuefl (x I> x --- x I5) multi-way with o = 1

: . .,V andV is the number of fuzzy terms, namely,
matrices. Fuzzy sets are denoted by capital letters, £4.9.,

e _ A the number of local linear models. Equation (1) involves only
Definition 1: (n-mode matrix of A) Assume anN-way qne yariables. The case of multi-dimensional parameter space

1 Iy X Do XX Iy I L, xJ . . . . . . . .
matrixA € RN, Then-mode matrid | € R, wij| pe briefly discussed in Section VIM,, in (2) is defined for
J = TI,1; contains all the vectors in theth dimension of the observers as

matrix A . The ordering of the vectors is arbitrary; this ordering .
shall, however, be consistently used later @& ))J is called X(t) = A X(t )JE?_U( ) (% LY(®) = X(t))} = M,. (2)
the jth n-mode vector. Note that any matrix of which the =
columns are given by.-mode vectors{é(n)), can evidently Letus define arbitrary shaped fuzzy sats: 4, (w) = fi(w).
be restored to be matri®. The restoring can be executed eveithe TS fuzzy model approximation based on the combination
when some rows oA | are discarded since the value bf of the local models is then
has no role in the ordermg QfA( )i A
Definition 2: (n-mode matrix partition )JAssume N-way M(w) =3 folw)M,,. 3)
matrix A € RIxEx-xIv The n-mode partitions of
A are By € ROxERoxhoodixinaxceIn denoted as The structure of the TS fuzzy model based approximation is
A =[B1By--- Brl,, wherel,, = 3, J;. depicted in Fig. 2, which shows that the output of each linear
Definition 3: (n-mode matrix product) The n-mode model is contributed by functioffi,(w) to the output. In order

product of A € R7>*72>*Iv by a matrixU € 7>+, de- to have general discussion, let us consider the following form:
noted byAx,, U, isan (; x Iox- - -x I, 1 X Jx I 11X+ -xIN)

matrix of which the entries are given by x,, U = B, where Zy Eq,-,1,1 Eq,-,1,2 o EM,U X
B,y = U- A(,,. For more explanation of the above definitions, Zp .y 2;,2,1 2;;,2,2 EM,U X
see [14] and [39]. M, =1 . |=] . _ :

Z; . B B --- B Xy

lll. THE TS Fuzzy MODEL =L =Ll =uv,L2 =v,L,u | Y

(4)

This section discusses the basics of the TS fuzzy modehere I. denotes the number of rows in the model (i.e., the
Without loss of generality, a fuzzy observer is given as arumber of equations describing the model) &hichdicates how
example. This exampled observer taken from [5] and [36]—-[3&)any terms there are in the rows of the equations (2 and 3, re-
consists of a number of local linear models designed to estimafeectively, in the case of (2). Vectar, consists of the model
the system state vector and is discussed here from a complekiguts and state vectors. Further, in the case of¥2)= x(¢),
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which yields the term” - Zle 0. Finally, the termV’ - C,

is the calculation of thg'(w)’s. Lemma 1 shows that the com-
putational complexity explodes with the number of local linear
models. As pointed out in the introduction, this gives rise to dif-
ficulties in our pursuit of good approximation and hence system
performance.

Model M,

Model M,

V. COMPLEXITY REDUCTION

Model My The main objective of this section is to propose a method

capable of reducing the complexity of the TS fuzzy model ap-
Fig.2. Structure of the TS fuzzy model. The number of local linearized modgioximation. The aim here is to decredéenamely, to find the
and functionf. (w) is V. minimal number of local linear models and corresponding an-
tecedents. A subsequent goal is to present a method capable of
y ¥(t), the outputs of theth local  decreasing), and1,, which is in the dominant growing part of
linear model arez; , = x,(t) andz,, = y (¢). The coef- (7). Actually,0, andI, are the number of elements in the state,
ficient matrices of (4) are thelB | = A | Bb 12 = B, input, and output vectors defined by the application at hand and
B,;=L,andB , =C,B ,,=0 andB s23 = 0, hence cannot be reduced directly. However, the TS fuzzy model
i.e., some of the matnceB . §Rél *Is contain only zero el- approximation can be transformed into a subspace whgaad
ements. Let us form the three -way matridgg, € RO*I.xV I, may becomé&; < O; andl;; < I,,. Output calculations per-
fomB , € RO Substituting (4) into (3), the following formed in this subspace (WhICh we will term minimal computa-
is obtaired. tional space) may then require less computational efforts, after
Definition 4: General form of the weighted combination ofVhich the result can be projected back to the original space for
models: the final output. If the transformation is reversible, then the re-
- duction is exact in the sense that the output of the original model
is the same as the reduced one, otherwise a reduction error is
qu W)z, ( qu Z B, (). () produced. This idea is performed in Method 1 of this section.
Method 2 in this section is aimed at finding the minimal number
of models and the corresponding weighting functions. The re-
duction is exact if the original model has redundant local linear
models; if it does not, then the reduction can be increased at
the price of nonexact reduction. The more reduction we aim for,
This section investigates the computational complexity of (3)e larger approximation error may occur. Therefore, the algo-
The investigation considers only the number of multiplicatiorithms in this section have an error-controllable property, which
operations in calculating the output. Let us write (5) in the foran help us with executing the reduction technique according to
of a predefined reduction error tolerance, which safely conserves
v I, the system performance. The main concept of the reduction is
_ o ) defined in the following theorem.
0= 2 o) 2D bisntnian) ©) Theorem 1: Equation (5) can always be transformed into the
following form:

X, = u(t), andx; = y(t) - y(¢

u=1

Finally, for further notation, let the weighting functiorfs(w)
be contained in row vectdi(w).

IV. COMPLEXITY INVESTIGATION

u=1 j=1

whereb; ; ., 1 .. stands for they « )th element of matrilB, ot € v

ROy, 1(t) is theith element of output vectgy ( ) and, ZJ”
similarly, z; .. (¢) is thejth element ofk,, (¢). Accordmg to (6), = 2z
we have the following Lemma. VT

Lemma 1: The computational complexity of (5) grows expo- —A Z F(w Z (t) @)
nentially with the number of models. Considering the multipli- = =vil, ”—” *u

cation operation only, the computational requirement is charac-
terized ES y P q where " denotes “reduced, the S|zeAf C andB’ e are

Oy xO7, I, x I, andOy x I, respectlvely FurtheVl O’
O, Vu : I < I, and the number of models is reduced/tb<
O, O+ C, 7 b u = Tu =
<;uzl ! +Z ot ) ) V. The proof can be derived readily from the following Methods

hereC, indi h ber of multipli q h I1 and 2. Before starting with the algorithms, let us briefly digress
wher indicates the number of multiplications during the ca and represent (4) in different ways. Let the multi-way matrix

culatlon of anf(w). To arrive at (7), one notes that calculatin Orx(Y. LyXV
Byil, x,, heedsO; - I, muIt|pI|cat|0ns Furthermore, there aréb R be given by the form ofi-mode matrix

U himber of term8 . in the rows of (4) which leads to partition as:G = [Bi1 Br -+ Biul>. This actually fits the
v coefficient matrices in the two-dimensional arrangement and, as

the termzl:1 ES 1 O, ThIS is multiplied by} for the cal- 3 result, (4) can be written as
culations of the outputs of thE models. Moreover, the output

is given by the linear combination of tHé outputs of models, Z,= (Gz xo [x{ X3 - ng)(l)
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whereZ, € RV is understood a&, = [z, z;> -~ zyv]-
Let multi-way matrixH,, € R~ %*L1xV e given asH,, =

[Biw B2 -+ Bru]i- Thus, (4) can also be given in the form
of
Z,
Z,
S| = B Hylyxa [x1 %5 xt Dy
Z,

The reduction is conceptually obtained by the singular value
based decomposition of (5) and by the truncation of the zero or
smallest singular values with their corresponding decomposed
parts. Hence, we have the following definition.

Definition 5: Singular Value Based Reduction (SVDR). Let
us suppose that matri rxng) = [b: ;] is given. Applying
singular value decomposition yields

=UDV' = {g" U

MatricesU and¥ are orthogonal. MatriXD contains the sin-
gular values in decreasing magnitude, as diagonal elements. The
zero or the smallest singular values (smaller than singular value
threshold?}, say) can be discarded to yield a simpler system.
Let B” contain the retained arl8¢ contain the discarded sin-

gular values. Let the result of SVDR iB:= U"B"V" .

For a more detailed description of SVD, see [6], [9] and [10].
Having defined SVDR, the following reduction techniques can
then be proposed for the TS fuzzy model approximations in
accordance with Theorem 1. First, we discuss the case whe
only zero singular values are discarded in SVDR. Then,
error bound of the more general reduction case is discussec[l
Remark 2.

Method 1 (Projection to Minimal Computational Space):

1) Determination of matriced,, namely, the reduction according toK’ =

of O;. LetS
S, y|eIdsS = A -D -V = A S Matix 2

S’ RO o2 E 1. can be restored to multi-way ma-
trix G € € ROTXQ, LIXV
)  Determination of matricegu, namely, the reduction

of I,,. Let us construcH; e R 01XV ywhich
is resulted byH,, = [B], B, --- By ,li, where
multi-way matrlcesB
of step 1), thus,G¢; =
letM = (H,
M“ = Cu D’u V’l = C M’l Matrix M
can be restored according 1 M = (H")@, in

order to define matricesB;, € ROV g

H! = [B], B, -

[351352 lc]2 Then

M =

437

Model M}

¥

Model M,

ModelM;r

Fig. 3. Compressed model structure.

into a subspace ax; = CT , then the output
values can be calculated in the reduced space as

T T T

zi, vl =u,1,2 =1 || XY

T T T r
Z5, | Zv21 S22 2010 || X2
75 B B ... B" X7r
2L S0l =u,L2 ZoLul 7Y

which requires less computational effort than in the
original case (4) since the size of the coefficient ma-
trices are decreased. The resulting output vector is the
combination of the outputs of the local models (5):
y;(t) = Z; 1 fu(w)zi (1), which also requires less
calculation than the or|g|nal model because the size of
vectory’(t) is less than the size of vecty(t), though

in fact t thls latter reduction is not as significant as the
computational reduction ig; . Outputy, (t) resulted

by combining the outputs of the Iocal linear models
(5) should be projected back to the original space as:
y,(t) = Ay} (¢). The following method serves to pin-
pomt the r m|n|mal number of linearized models.

Method 2 (Determination of the Minimal Number of Linear
odels) Determination ofV",

1,1 (3)
SVDR on matrixK, we obtain’K = TDV” = TK'. T has
the size ot x V", Matrix K’ can be restored to matrlc&

Let us form matrixK =

(B1,2)(3) (Bru))l. Then, executing

7711

[(Bl 1)(3) (Bl 2)(3) (BL U )(3)]

= (Gy)(1)- Then, applying SVDR to The reduced weighting functions are transformed by malrix

£ (w) = f(w)T (10)

The order of performing Method 1 or 2 is arbitrary. The re-
sults obtained by both methods are matrides C, B7
andf”(w) in full accordance with Theorem 1. The number of
models isi’" in the reduced form. The reduced form is depicted
are defined by the result i Fig. 3.

Remark 1: Fuzzy logic theory has restrictions to the func-
)(2) whereupon SVDR is performed: ions of fuzzy sets. The results of Method 1 and 2 do not guar-
antee that the resulted weighting functions can be interpreted as
fuzzy sets. If the reduced form is not only for saving compu-
Lu tational cost, but for further studies in fuzzy operation as well,
B} .li. Let us assume that then the reduced weighting functions should accommodate the

the values ol0; andI, are decreased. Consequentlypertaining characterizations. Further transformations may hence

matricesA, andC transform the input vectors,

be required. For instance, to obtain matiixin such a way
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that the reduced functions are bounded by [0,1]. Some tools, fiv(wy 4 N
such asnonnegativenessum normalizationand set normal- ) g
ization have been developed in [22] and [23]. These transfor- (@) o

mations are attached to SVDR to ensure that the results are inter-

pretable as fuzzy sets, furthermore to maintain Ruspini-partition Model M,
and to have normalized sets according to the concept discussed .

by Duboiset al. [7]. For more details about these transforma-
tions, see [4], [22] and [23]. In conclusion, the computational Model M,
cost of the algorithm may be reduced in the final implementa-
tion, which serves our main goal, but the price to pay is that
the interpretability of the fuzzy sets may be degraded. This also Model My*
makes an interesting point in fuzzy theory—how to represent
and extract a rule-base in different ways. In the worst caseri§. 4. Reduction where each equation in the model has its own weighting
may be that the resulted antecedents are very weakly inforrfigctions.

tive as far as fuzzy linguistic interpretation is concerned.

Remark 2:1f not only zero singular values are discardeqhare the additional terms, compared to (7), come from the
then the effectiveness of the reduction is improved, howevﬁransformation to the reduced space

reduction error is obtained. The error resulting from SVDR is For the second case. where the transformed antecedents
bounded by the sum of the discarded singular values [4], [22], ot he analytically simplified, we have the following.

[23]. The final error of the model approximation depends on Lemma 3: The computational complexity of (8) is
the type of weighting functions applied. In this regard, several '

cases of the antecedents are discussed in [4]. Generally, it can <

be said that if the weighting functions satisfy the Ruspini-partP; = V"
tions, which is maintained in the above transformations, then the
maximum final error is the sum of the discarded singular values
controllable during the execution of Method 1 and 2. For more +
details of SVD reduction error, see preliminary works [4], [22]. !

2.

=1

3
Il <
—

L
Oj,+Y 0;‘)
=1

.
O;O+ > II,+C,V+V'V (13)
u=1

B

Il
R

whereV"V indicates extra computation to result the values of
VI. INVESTIGATION OF COMPLEXITY REDUCTION the reduced weighting functions from the values of the original

This section compares the computational complexity of ti¥eighting function [see (10)]. _
original (5) and the reduced (8) forms. The comparison is doneHence, with?” < P, we have both (12) and (13) showing
for two cases of the weighting functiorfs(w). The first case complexity reduction over (7_) except for some extreme cases,
assumes that the transformed weighting functions can be a#fere the number of model inputs and outputs are 2 or 3. As a
lytically given in the same form as the original ones. For ignatter of fact, differenfC, can be generated for each equation
stance, if the antecedent sets are given in the forrf,b) = for the reduced model, which yields a different set of weighting
a, sin(cw + 7, ), then the result of (10) can be given in the sam@inctions for each value df The benefit of havindL, is that
form asf?(w) = a sin(cw + ~7). Another example is that the the size of a commof’ may be larger than the size of afy
weighting functions are piecewise linear or given in a generdld the value of’" is in the dominant exponentially growing

form of term of (12) and (13). The disadvantage is that usifig
though it may be smaller thal, does bring extra calculation
M since eaclh needs the calculation of a different set of weighting
Fo@) =7 Gompm(w) (11) functions. In this light, Method 2 can be modified in such
m=1 away thatK, = [(Bi1)a) (Bi2da - (Buu)plis
where the weighting functions are expressed in terms of tﬁres‘t constructed, whereupon the execution of SVDR is carried

- , . X )
basis functionsp,,,(w). The second case has weighting funcc—JUt asgl o EIEI' Coefficient matncesrare then defined
(Bw)(g)] and the

1 s s
tions where the transformed antecedents cannot be analyticgh'ggz . [(Bl,l)_(??) (B,l,2)(3>
simplified membership functions bffj (w) = f(w)T,. Consequently, to

For the first case, where the transformed sets are expresslmg rove thl?j I’ledléCtIO?, orr:e hazto qheck whethehr the appllcayon
in the same form as the original one, we have the followin .lz would lea to_ urther re ucthn or _not..T e structure in
results. this case of using dlffereﬁ:[‘ls is depicted in Fig. 4.

Lemma 2: The computational complexity of (8) is
VII. M ULTIVARIABLE CASE

U L
r - " . This section briefly discusses a possible direction to extend
=V o7l o7 +C, ; : . : .
' <lz:; uz::l thet lz:; ot p) the proposed reduction technique if the input parameter space is

N-dimensional. In this case, the rules in a TS fuzzy model are:

L U
+5°0;0,+ 3 00, (12)  Fwiis Ay, AND wp IS Az, - AND wy 1S Ay, THEN
=1 modelM.,, v, . vx -

u=1
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Applying the product inference form leads to 7 fv((’))
ViVa. Vi 1

Xl(t) = Z H fn sin (wn) Zﬁ/pf; VNS u_U( ) (14)

ViV2. VN R

\/

(O]
where f,, ;j(w,) of row vectorf, (w,,) is the jth membership
function defined on the:th input universe. Equation (14) canfig- 5. Example 1: weighting functions.
be written as :
U Y7 i0.7593 20.5808 0.5976
T o )
= Biuxax, () xa £, (w1) £ 0.4023
el | 04191 .
Xafo(w2) - Xny2 £ (wn) . (15) ®
Hence, reduction is to be of the form Fig. 6. Example 1: transformed antecedérits= 2, which are in a Ruspini-
partition.
) —
Y =4y <ZBI W X2 %, ()€, X3 TABLE |
EXAMPLE 1: RESULT OF THEPROPOSEDREDUCTION
£ () X4 El(w) -+ X a2 Ei(on) 5 T c
” 0.0301 0.7058 | 0.0301 -0.9046 0.0301 -0.9046
wheref], = f, T in full accordance with (8) and (10). In 53329 T 03797 | 03941 | -0.4218 0.3941 04218
this case, Method 2 can be performed on all dimensions 798999 | 0.1529 | 0.9108 | 0.0608 0.9108 0.0608

multiway matrix By, € RO *LexVaixVexViv "except the first
and the second one in order to obtain transformation matrices
T.T, T, for the antecedent sets of each input. Also,
Method l can be applied to the first and second dimensions to
determineA andC. A detailed extension and examples of the
multidimensional case will be given in future works.

VIIl. EXAMPLES

Inthis section, three examples are given. The first two demon-
strates the use of the proposed exact reduction technique. Fige7. Example 2: mass-spring-damper system.
third illustrates application of the technique to a TS fuzzy ob-
server for controlling an induction motor. It is worth mentioningingular value and keep the two nonzero singular values. For
that the examples all use triangular-shaped fuzzy sets (resultingtrix C, two nonzero singular values are also obtained and
in a rough bilinear approximation) for simplicity, where ankept. They are 23.2313 and 8.2647. We then proceed to find a
observation fires a maximum of two antecedents with nonzecommon transformation matrik by Method 1, with the SVDR
membership values. The reduced forms will also have the saextended by NN and SN transformations to obtain fuzzy sets in
property. In this situation, it is therefore enough to consid@&uspini-partition (see [4], [22], [23], and Fig. 6). As a result,
only those rule pairs in both the original and the reduced formatricesA € %#**2, C € #**?, andT € R**? are given in
which are fired with nonzero values. This implies that the conTable I.
putational reduction is questionable. In general, computationalThe transformed antecedents are depicted in Fig. 6. The
reduction is expected when, for instance, all antecedents aoenputational complexity reduction is now considered. Calcu-
fired in the original and reduced rule bases, as is typical whéatingz,(t) = B x(t), v = 1..3 in the original model requires
a B-spline basis is used for antecedents. In this regard, the ar3*3 = 27 multlpllcatlons Transforming the input and output
tecedents in the examples can actually be replaced by a B-splie¢ween the reduced and the original space requit8s2
base. This would considerably improve the approximation. multiplications. Calculation in the reduced space requires

Example 1: Let the local linear model be such that there i8*2*2 multiplications. The reduced form requires 20 operations
only one equation in each model and only one term in eaghtotal. If the membership values of the reduced antecedents
equation, namely, = U = 1. The number of models I8 = 3. are transformed from the original weighting functions, then
Let O = I = 3 and the three models be given by(t) = 3*2 extra operations are needed. In this case, the number
Eyz(t)' They are to be combined according to the actual values operations is 26, which is less than in the original model
of the corresponding weighting functiofig(w) [see (5)], which approximation.
are triangularly shaped as depicted in Fig. 5. Let the elementExample 2: This example, taken from [34], involves the
of the coefficient matrices b ; , = 2ijv —ij — iv — jv — design of a simple nonlinear mass-spring-dampler mechanical
3i — 27 — v + 8 which imitates an approximation of a nonlineasystem as depicted in Fig. 7. The main goal of the example
system. In the first step of Method 1, the two nonzero singulbere is to approximate the mass-spring-dampler mechanical
values are: 24.2036 and 4.710 03. Here, five decimal places system (like a dynamically unknown one) by a TS fuzzy model
used to enhance the precision. For maskixve discard the zero over a fuzzy partition. The partition used is quite dense so as
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to achieve a good approximation. Then, the proposed method fl(f) f )
is applied for reduction and to obtain a minimal form. The ft(’a 1001
differential equations of the mechanical system are analytically
given in the minimal form of a TS fuzzy model as wellinorder | A \ 77777777
to evaluate the effectiveness of the reduction. The goal here is

to show that the resulting minimal form is actually the same, in 1'.5 3

the complexity sense, as the one to train the dense rule base in

the first place. The example as given in [34] utilizes a dynami¢sy. 8. Example 2: dense fuzzy partition to achieve a good approximation.
model varying in a 2-D parameter space. Here, the model is

slightly modified to yield variation in only one-dimensional 1

(1-D) parameter space. The model is a spring-mass-damper a7

system with nonlinear/uncertain stiffness coefficient, damping !

coefficient and forcing function: K F|”
0.5
Fa
‘2

,
Fo %

m-&+g(x, &)+ kx) = ¢@) -u (16)

wherem is the massy is the force k() is the nonlinear or
uncertain term with respect to the sprig@:, &) is the nonlinear 0-15 +1.5 %

or uncertain term with respect to the damper, add) is the

nonlinear term with respect to the input term. It is assumed tHag- 9. Example 2: the analytical and the reduced antecedent $etsi.

g(z,2) = d(crz+c22®), k(z) = caz+cgx®, p(2) = 1+ 503

and also that € [—a,a], & € [-D,}], anda,b > 0.In[34], [—1.5 1.5]bedivided by 1001 triangular shaped fuzzy sets, as in
the parameters are set as follows:= 1,d = 1, ¢ = 0.01, Fig. 8. We sample the dynamic system at paints —1.5+(v—

c2 =0.1,¢3 =001, ¢, =067, ¢; =0,a=15,andb = 1.5.  1)0.003, which imitates the result of an identification algorithm,
Here, we letc, = 0 in order to have a simpler model, varyinge g., a gradient descent algorithm. The dense TS fuzzy model as
in only 1-D parameter space. Equation (16) then becomes gptained is thente i(t) is F, THEN & = a,i + byz + cou,
wherea, = —0.1(—1.5 + (v — 1)0.003)%, b, = —0.02 and

¢, = 1, which is in matrix form:iF 4(¢) is F,, THEN x(¢) =

The nonlinear termis-0.1:2. Let us proceed further in the sameévz(t) + E'vg(t)’ V= 1001. Executing Method 2 on ma-

way as in [34] and give a TS fuzzy model of (17) with minimaliC€S A in MATLAB (note that matricesB ~are constant)
number, namely, two fuzzy rules. Given thasatisfies the fol- yields three nonzero singular values of 31.734 509 156 6805,

#=—0.1i% - 0.022 + u. (17)

lowing conditions: 2.120618090212 44 and 2.285539931 266 82e-016. The last
one is numerically equivalent to zero. In this case, we can keep
{ —0.225: < 0123 < %-0 >0 the two nonzero singular values, which means that two local
0-£<—-01i%< 02258 <0 linear models are sufficient for the same approximation of the

original 1001. It turns out that in this case, the mafthas ob-
tned has negative values, which implies that the resulting func-
tions by (10) are notinterpretable as fuzzy sets, though the result
is acceptable in the sense of computational complexity reduc-
tion. Further application of the NN and SN transformation of
gt]l and [22] then yields an SN and NN matrR which guar-
ntees that (10) yields fuzzy sets in the Ruspini-partition. The

resulting SN and NN sets are depicted in Fig. 9. The reduced TS
fuzzy model isiF &(t) is Iy THEN X(¢) = A x(t) + B u(t),

the nonlinear term can thus be represented by the followi
upper and lower bounds:0.1z% = f;(2)2 - 0 — (1 — fi(2)) -
0.225&, wheref, (&) € [0,1], V = 2. This leads to fuzzy sets
FP oo f(2) = 1 — (42/2.25) (“a” meaning that this func-
tion is obtained analytically) and’y : f§(z) = ?/2.25.
The antecedent functions are as depicted in Fig. 9. The f
lowing rules are thus obtained analyticaliy:z(¢) is F* THEN

¥ = —0.02z + u; IF &(¢) iS F'§ THEN & = —0.225z — 0.02z +

1 With matrix representation, we obtairk &(t) is 7 THEN

0 —002 V = 2, where
x(t) =A x(t)+B u(t),V =2, whereA = 1 0 } ,
1 —0.225 —0.02 1 A = [_13/;0323 _00'02} B, = [H
B, = o] aom, = %)m, = o)
Consequently, the nonlinear model can be described by a TS 26.58001 —0.02 1
fuzzy model, which has only two rules. The next step is to ap- A, = { 1 0 } B, = {0} : (18)

proximate the model (17) with a dense rule base, after which

we can assume that (17) is unknown and then go about geréote that if the identification process includes noise then we
ating a minimum rule base by the present technique based omigy obtain some extra, relatively smaller (according to the
on the dense rules. The idea here is to show that the resultimaise) nonzero singular values. Keeping only two of them has
minimal rule base would be similar to or the same as (17) in tkeme filtering effect on the noise. Since the original fuzzy sets
first place. are triangular, as depicted in Fig. 8, the columns of matrix

We aim to use a high-density fuzzy partition to achieve & actually contain the membership values [4], [22]. Using

dense rule base of a good approximation. Let the interval polynomial approximation to the 1001 values of both columns,
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(19) is obtained, shown at the bottom of the page. Indeddtic, and zero temperature coefficient in the windings. In [5],
substituting (19) into (18), the original model (17) is obtainefl2],[37], and [38], the model is comprised of five local linear

in a matrix form.

models asM(w)

a1

25:1 fu(w)M,,. For simplicity, let us
Consequently, the two fuzzy rules as obtained by Methodf@us only on matribA (w). Thus M(w) = z(¢) = A(w)xz(t).
from the 1001 rules are in full accordance with the analyticali@iven five matrices,&v is shown as o
derived TS fuzzy model. They constitute a transformed rule set o

similar to the one using? andF$. Analytically, they are shown —459.2987 0 233.3444 0
to be equivalent to the original model. o 0 —459.2987 0 233.3444

Example 3: The main idea in the application of [5], [12], =L 427.7981 0 —250.5265 0
and [36]-[38] is to have a set of local linear models at var- 0 427.7981 0 —250.5265
ious operating points with respect to a certain variable, which 45992987 _81.8650 233.3444  _87.8931
can then be used as tool for either fault detection or isolation. 81.8650 —459.2987  87.8931 233.3444
The overall nonlinear model is approximated based on the locdhz = 427.7981 878031  —250.5265  94.3650
linear mogels_ in the form of a TS fuzzy model. Tlhe induction _87.8931 4277981  —94.3650 —250.5265
motor under investigation constitutes a very nonlinear system
because of the cougling effect between rotgr and stator ::)/hases —459.2987 _1§0'9840 2333444 —140.6289
where the coefficients of the matrices vary with the rotor posi-A, = }égggég _11‘69622227 _1;1906332 féggéjﬁ
tion and the motor speed. For detailed development and anal- : : OLOSBY SO I
ysis, see [5], [12], [37], and [38]. The performance of the pro- —140.6289  427.7981  —150.9840 —250.5265
posed observer here is assessed using Matlab/Simulink. The — —459.2987 —212.8490 233.3444  —228.5220
FDI subsystem forms part of a fault-tolerant control system to, _ 212.8490  —459.2987  228.5220  233.3444
regulate the torque and flux in the induction motor. =47 4277981 2285220 —250.5265  245.3490

The sensor fault-tolerant control scheme is run in real time —228.5220 427.7981  —245.3490 —250.5265
using measurements taken from a hardware testing, which 4592987 —343.8330 233.3444 —369.1509
consists of a three phases AC induction motor driving a dc 343.8330 —459.2987 369.1509  233.3444
motor as load. The three-phase voltages are supplied from@As = 4277981 369.1509 —250.5265  396.3330
100 KHz PWM-inverter. The induction motor is a 0.2-kW 369.1509 427.7981 —396.3330 —250.5265
three-phase four-pole machine. The overall system consists .
of a pulsewidth modulation (PWM) inverter, which provides 0.5967 0.4033

0.6302 0.3698

the necessary power to drive the machine. As the torque

and flux cannot be measured they are estimated using a Tsl— :ggggg 8311122
fuzz rver. Faul in and bi han noi ) )
uzzy observer. Faults due to gain and bias changes, noise 07372 0.2698.

and interferece pick up, clipping or slew-rate limits, signal

processing effects, and disconnections due to continuous gfbse five matrices are of full rank. No reduction is thus ob-
intermittent loss of measurement can occur in the systefgined with Method 1. Method 2 utilized with NN and SN trans-
A FDl/reconfiguration process based on the fuzzy observggimation results in the above matfiin transforming the an-
performs the detection and isolation of faults and takes thecedent sets. The reduced antecedent sets are interpretable as
necessary action to maintain the controller performance. Tﬂ}%zy sets defined in Ruspini-partition. This implies that the
dynamics of the induction motor observer is described by TRe of only two models is enough to the same approximation.
fuzzy rules [see (1)]. Specifically, the induction motor can bene computational reduction theoretically is about 50% based
modeled by the following bilinear differential equations: on (13) withC,, = 1. The reduction is exact, which implies that

x =A(w)x 4+ Bu = Ax + N(w)x + Bu the system performance is not degraded compared to the results

v :—X - - - in [5], [12], [37], and [38]. In order to check the real compu-

= = tational reduction, the output values of the original model were
where x = [lydg il ], y = [lale]', u = generated 10 000 times. Atthe same time, the reduced form was
VasVysVarVyr]t, and V- oand I denote the current andcalculated in parallel and was executed 14 843 times. It is con-
voltage, respectively. Comprehensive analysis of the examplddded that the computational time of the reduced model was
motor and its differential equations are given in [5], [12], an@7.3701% of the original model (the difference between the the-
[36]-[38]. The speed is referred to as the bilinear input. Thisoretical and the measured reduction is that the real valdg, of
model is derived based on three main assumptions, namédytarger than one and hence is dominant because of the small
ideal air gap flux distribution, linear magnetization charactenumber of local linear models.

K
2

L fT(E) = (0.002 501047 170 33..)i% + (0.664 778651 145 95..);
fy(@) =1 fi(#) (19)
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