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A New Fuzzy Set Merging Technique Using
Inclusion-Based Fuzzy Clustering
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Abstract—This paper proposes a new method of merging param-
eterized fuzzy sets based on clustering in the parameters space,
taking into account the degree of inclusion of each fuzzy set in
the cluster prototypes. The merger method is applied to fuzzy rule
base simplification by automatically replacing the fuzzy sets corre-
sponding to a given cluster with that pertaining to cluster proto-
type. The feasibility and the performance of the proposed method
are studied using an application in mobile robot navigation. The
results indicate that the proposed merging and rule base simplifi-
cation approach leads to good navigation performance in the ap-
plication considered and to fuzzy models that are interpretable by
experts. In this paper, we concentrate mainly on fuzzy systems with
Gaussian membership functions, but the general approach can also
be applied to other parameterized fuzzy sets.

Index Terms—Fuzzy clustering, fuzzy modeling, fuzzy sets, in-
clusion, merging.

I. INTRODUCTION

LUSTERING has been acknowledged as a powerful
Ctool to analyze data and to build data-driven models.
It is similar to the ability of humans to divide objects into
groups or clusters sharing common characteristics. Children
for instance can quickly label objects referring to buildings,
vehicles, people, animals, etc. Since the introduction of the
fuzzy set theory, its application to classification has produced
very appealing outcomes, both from the theoretical perspective
as testified by the exponential growth of literature in fuzzy
clustering, and from the practical viewpoint as suggested by the
emerging successful applications. In fuzzy modeling, clustering
is equivalent to finding the fuzzy sets sharing the same features
or characteristics. In data-driven approaches, the membership
functions that represent the linguistic terms in the model are
derived from these fuzzy sets (clusters). Usually, one observes
a large degree of overlap among the fuzzy sets obtained. In
this sense, the fuzzy sets are said to be similar according to
some concept or measure of similarity. In order to increase the
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interpretability of fuzzy models, these similar fuzzy sets are
often combined or merged [1], [2].

A. Merging Based on Similarity

In the field of merging membership functions in data-driven
modeling, the following three issues of paramount importance
have emerged: 1) how to quantify the similarity between the
fuzzy sets, 2) how to determine which sets to merge, and 3) how
to merge the selected fuzzy sets.

Regarding the first issue, the similarity between fuzzy sets
is typically quantified by using a similarity measure. The latter
is evaluated between pairs of fuzzy sets, and it is assumed that
the pairs corresponding to high values of similarity measure
represent compatible concepts. Various similarity measures
have been proposed for fuzzy sets [3], [4]. In general, one dis-
tinguishes the following two types of similarity measures [1]:
1) geometric similarity measures and 2) set-theoretic similarity
measures. Geometric similarity measures consider similarity
as proximity of fuzzy sets, and are best suited for measuring
similarity among nonoverlapping fuzzy sets [5]. Set-theoretic
similarity measures are based on the application of set-theo-
retic operators such as the union and the intersection. They
are considered to be more suitable for quantifying similarity
between overlapping fuzzy sets [1]. Since automated methods
for fuzzy system construction often result in highly overlapping
fuzzy sets, set-theoretic fuzzy measures are usually used for
simplifying fuzzy rule bases. Setnes et al. proposed to use the
Jaccard index to quantify similarity [1]. However, measures
related to inclusion can also be applied [6].

Regarding the second issue (determining which sets are to
be merged), one can distinguish two main approaches. One ap-
proach is to determine groups of sufficiently similar fuzzy sets
and to merge them. Each group consists of two or more fuzzy
sets to be merged. The relation induced by the similarity mea-
sure from pairwise similarity assessment of fuzzy sets is, in
general, symmetric, but unfortunately, not transitive. Therefore,
the induced relation is not a similarity relation in the algebraic
sense, and hence, determining the groups of similar fuzzy sets
need not have a unique solution. To deal with such a problem,
the transitive closure of fuzzy relations can be used [7], but the
results are not satisfactory all the time. Consequently, some au-
thors have proposed to apply an iterative solution to the problem
[1]. In this approach, similarity between all pairs of fuzzy sets,
which are candidates for merging, is considered. Then, one suc-
cessively merges the two most similar fuzzy sets p and q (by
replacing them with a new fuzzy set p*). This process con-
tinues until no more fuzzy sets can be merged, because the max-
imum similarity is below a user-defined threshold. Since only
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two fuzzy sets are merged at a time, the problem of transitivity
is circumvented. In both approaches, the user must specify a
merging threshold, which indicates the similarity above which
the fuzzy sets should be merged.

The third issue regarding the actual merging method is solved
heuristically. The fuzzy set p*, which replaces the merged sets
p and ¢ is determined from some kind of combination of infor-
mation from p and q. Setnes et al. took the support of p U q as
the support of the new fuzzy set p* [1]. This guarantees the cov-
erage of the whole premise space when p* replaces p and ¢ in
the premise of the rule base. The core of p* is then computed
by averaging the cores of p and g. The problem of determining
the fuzzy set that will replace the merged ones is similar to the
prototype-merging problem in pattern recognition literature. For
example, in view of Chang’s algorithm [8], p* can be computed
as a weighted average between p and ¢. Alternatively, in the
modified Chang algorithm (MCA) presented by Bezdek et al.
[9], a simple arithmetic mean of p and ¢ can be used to compute
p* regardless of the weight values.

B. Merging in the Parameters Space

The way the above three issues are addressed in similarity-
based merging has made it an effective method. However, there
are also some drawbacks associated with these methods as fol-
lows.

1) Usually, user intervention is required to guide the merging
process by detecting the fuzzy sets that are sufficiently
similar in the data space. Additional parameters are intro-
duced, such as the merging threshold. The optimal values
of these parameters for a given problem may be tedious to
determine. Adaptive threshold approaches have been pro-
posed in [6], but as mentioned by the authors, the results
are often context dependent, which restricts their general-
ization.

2) If the fuzzy sets are merged sequentially, two most sim-
ilar fuzzy sets at a time, the resulting solution may be far
away from the optimal one, both from the viewpoint of
the size of the resulting fuzzy rule base and its represen-
tation power [10]. Furthermore, the pairwise comparisons
and sequential merging increase the computational burden
of the method and the results become sensitive to the order
in which the fuzzy sets are merged.

3) The methods for determining the fuzzy set that replaces
the merged sets in data space are mostly based on heuris-
tics. The methods that originate from the pattern recogni-
tion community may result in gaps in the final rule base,
which means that after the merging phase the fuzzy system
may not be able to derive an output for all possible inputs.
The method proposed by Setnes et al. [1] guarantees the
coverage of the rule premise space, but it is unknown how
the merge results influence the final system performance if
the merging was done in another way.

An alternative method to merging fuzzy sets in the data space is
merging them in the parameters space. When one inspects the
fuzzy sets obtained by automated techniques, it is often easy
to recognize visually groups of fuzzy sets that are similar. This
suggests that a clustering approach could be used for merging
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those fuzzy sets. Since fuzzy models often use a parameterized
representation of fuzzy sets, similar fuzzy sets will also have
similar parameter values. Hence, clustering in the parameters
space can reveal the underlying similarity structure between the
fuzzy sets.

C. Paper Outline

In this paper, we consider merging parameterized fuzzy sets
in the parameters space and its application to data driven mod-
eling. We propose a new technique for merging fuzzy sets by
evaluating the inclusion degrees of each datum in the underlying
prototype in the parameters space. For this purpose, we propose
anovel fuzzy clustering algorithm, where the objective function
implicitly accounts for overall inclusion degrees [11] of each
datum in the underlying prototype. A distance minimization cri-
terion is also incorporated into the objective function in order to
prevent the trivial solution of a very large prototype. The proto-
types obtained from the novel clustering algorithm are used for
replacing the similar fuzzy sets.

The outline of the paper is as follows. In Section II, we pro-
pose a new merging algorithm based on clustering in the pa-
rameters space. This algorithm accounts for the inclusion de-
gree of each datum in the prototype class. In this paper, we con-
sider only fuzzy systems with Gaussian membership functions,
but the results could be generalized to other types of fuzzy sets,
too. The application of the proposed clustering algorithm in rule
base simplification is discussed in Section III. In Section IV,
we discuss a mobile robot navigation problem as an illustra-
tive application example. The results show that our algorithm
for rule base simplification is in agreement with expert intu-
itive reasoning regarding the simplification of fuzzy systems.
We also compare our results with another algorithm for merging
fuzzy sets in the data space. Finally, conclusions are given in
Section V.

II. CLUSTERING IN THE PARAMETERS SPACE OF Fuzzy SETS

Two fuzzy sets p and ¢ are similar if their membership
functions have approximately the same values over all elements
of the domain on which they are defined. This is also the
basis for using set-theoretic similarity measures, which are
evaluated on discrete domains. On nondiscrete (continuous)
domains, the membership functions are usually evaluated on
discrete samples, which are obtained according to some dis-
cretization process. In many fuzzy systems, however, the shape
of the membership functions is not completely free. Instead,
parametric membership functions are used, so that the general
mathematical description of the membership functions is fixed.
The use of parametric membership functions in parameters
space simplifies their storage in computers, and they can be
evaluated for any element of the continuous domain [12]. For
the parametric membership functions, the similarity between
fuzzy sets can also be evaluated by considering the parameters
of the sets: Similar fuzzy sets will have approximately the
same values of their parameters. For example, two triangular
fuzzy sets T(x;a1,b1,c1) and T(x; az,be, c2) [13], [14] that
are similar would have similar values for their parameters a;,
b;, and ¢; for 7+ = 1,2 in the parameters space.
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Gaussian membership functions are often used in fuzzy sys-
tems. Especially when the fuzzy systems are obtained by auto-
mated methods, Gaussian membership functions are useful be-
cause of their differentiability, so that supervised learning algo-
rithms can be used, such as various gradient descent learners
[15] and neurofuzzy systems [13]. In the rest of this paper, we
concentrate on fuzzy systems with Gaussian membership func-
tions, but the general approach can also be applied to fuzzy
systems with other types of membership functions. A Gaussian
membership function p; can be defined by three parameters, i.e.,
the mean m;, the standard deviation o;, and the height h;. We
assume that all membership functions are normalized, so that
their heights equal 1. In that case, each membership function
is characterized by the two parameters u; and o;, and it can be
represented as a point in parameters space IR?. Because similar
membership functions would have similar parameters in the pa-
rameters space, a fuzzy clustering algorithm applied to data in
this space could be used to detect groups of similar membership
functions. We now turn our attention to fuzzy clustering.

Fuzzy clustering partitions a data set into a number of over-
lapping groups. One of the first and most commonly used fuzzy
clustering algorithms is the FCM (FCM) algorithm [16]. Since
the introduction of FCM, many derivative algorithms have been
proposed and different applications have been investigated. Typ-
ically, FCM allows the determination of the membership value
u;; of each datum x;(4 = 1,...,n) to cluster j based on the
distance from datum x; to cluster prototype v;(j = 1,...,¢).
The number c of classes is supposed to be known beforehand by
the user. The obtained partition is optimal in the sense of mini-
mizing the objective function

T=Y"% ugds; M

i=1 j=1

subject to the constraint
C
> ui=1. )
=1

The symbol d;; indicates the distance from the cluster proto-
type v; to the datum x;. The parameter o > 1 is the fuzziness
parameter, which controls the spread of the membership func-
tions induced by wu;;. The partition matrix U, whose elements
consist of the computed membership values wu;;, indicates the
partitioning of the data set into different clusters j, or, equiv-
alently, the membership grade of each datum x; to the class j
whose prototype is v;.

For any semidefinite and positive matrix A, the distance d;;
can be written as

d7; = (xi — vj) T A(x; — v;). )

Thus, any choice of a matrix A induces a specific kind of
distance interpretation, and consequently, generates its own
meaning of cluster shape. For instance, if A is the identity
matrix, d;; corresponds to a Euclidean distance and it induces
roughly spherical clusters. Gustafson and Kessel [17] have
focused on the case where the matrix A is different for each
cluster j. A is obtained from the covariance matrix of cluster

j, while the determinant of each A, which stands for the
volume of the cluster, is kept constant. This enables detection
of ellipsoidal clusters. Bezdek ef al. [18], [19] have investigated
the case where one of the eigenvectors of the matrix (that corre-
sponds to the largest eigenvalue) is maximized. This allows the
detection of linear clusters such as lines or hyperplanes. Dave
[20] proposed a special formulation of the objective function
that yields a better description of circular shape. Later, he also
proposed a method to deal with random noise in data sets [21].
Krishnapuram and Keller [22] put forward another formulation
of J where the membership values are not normalized ac-
cording to (2). Instead, the algorithm is implicitly constrained
by the formulation of the objective function .J.

The preceding indicates clearly that neither the formulation
of the matrix A nor that of the objective function .J is com-
pletely fixed. Therefore, some flexibility is allowed, depending
on the application. In rule base simplification, it is important that
the membership function that replaces a group of similar mem-
bership functions represents a general concept that includes the
concepts it replaces. In this way, the coverage of the variable
space by the fuzzy rules does not deteriorate. Further, large
overlap between the rules improves the interpolation property
of the fuzzy model. Indeed, the inclusion characteristic of the
replacing membership functions has been observed in previous
studies on rule base simplification as in [1]. Although the simi-
larity between fuzzy sets is quantified by a symmetric set-theo-
retic measure such as the Jaccard index, there are explicit mech-
anisms in the merging algorithm that biases the replacing func-
tion towards the inclusion of the membership functions it re-
places. Setnes et al., for example, achieve this by taking the
union of the supports of the membership functions, as explained
before [1].

For the merging purpose, one could cluster the Gaussian
membership functions, which are represented by their mean
and standard deviation, in IR2, by using a fuzzy clustering al-
gorithm such as the FCM algorithm. The prototype of a cluster
then represents another membership function, which could
be used to replace the membership functions in that cluster.
However, the distance structure in the product space of fuzzy
set parameters need not correspond to an inclusion structure
between fuzzy sets. Since the replacing function must be biased
towards the inclusion of membership functions it replaces,
one must constrain the fuzzy clustering algorithm additionally
in order to detect the inclusion of fuzzy sets in the cluster
prototype. For this purpose, we introduce an inclusion concept
hidden in the distance structure, which accounts for inclusion in
a global sense. In the following, we discuss an inclusion index
for Gaussian fuzzy sets defined in the parameters space and its
incorporation in fuzzy clustering.

A. Construction of Inclusion Index

The goal here is to model the amount of inclusion between
two membership functions. Let 7 and o be the parameters cor-
responding to the mean and standard deviation, respectively, of
a Gaussian membership function G. Let us denote by G; the
Gaussian membership function characterized by (m;,0;). Let
Id(G4,G2) stand for the degree of inclusion of the Gaussian
(31 in the Gaussian (2. Globally, we require that the more the
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Fig. 1. Interval representation for Gaussian membership functions.

former fuzzy set is a subset of the latter, the larger the value of
Id(Gy,G3).

For any Gaussian membership function G, it is known that
almost 98% of the membership function is concentrated within
the interval [ — 30, m + 30]. Each membership function can,
therefore, be represented as an interval centred at m; and with
length 60;, as shown in Fig. 1. For the sake of clarity, we will
denote with o’ (respectively, o7) the values of 3o (respectively,
30;). Inspired from the fuzzy set-theoretical inclusion, the inclu-
sion grade of G; into G can be represented as the ratio (G N
G2)/(G1). From this perspective, the inclusion grade equals
zero whenever fuzzy sets G and G are disjoint (G1 NGy = 0)
and reaches the maximum value, which is one, whenever (G4 is
a subset of G5 (G1 C Gy). Strictly speaking, there are various
formulations of fuzzy set inclusion indices in the literature of
fuzzy set theory. However, the aforementioned ratio is among
the best candidates that preserve the logical relations held by
the standard set inclusion index [23], [24].

The use of the aforementioned interval interpretation of the
Gaussians allows us to construct a model of the previous ratio.
An estimation of Id(G1, G>) can be obtained as

L(M;y N My)

/
207

1d(Gy,Gs) = )

where M; represents the interval [my — o}, m; + o}], M> rep-
resents the interval [me — o4, mo + o4l,and L : I — R isa
mapping from the set of intervals on real numbers (II) to the set
of real numbers, which assigns for each interval [a, b] its length
b — a. More specifically, (4) can be rewritten as

sars 10 <11 < 207
1
Id(G1,G2) =10, ifl; <0 o)
1, ifL > 20

where I; denotes o] + o} — |m1 — ma].

Alternatively, one may use squared values of parameters in
order to avoid the use of the absolute value in (5). Then, a
counter part of (5) becomes

4(15—2/)27 if 0 < I < 4(07)?
Idy(G1,G2) = 1 0, ifI, <0 (6)
1, if I > 4(c))?
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with Iy = (o} + 04)? — (m1 — m2)?. Equation (6) can be
rewritten using step functions H as

I
Idy(G1,Go) = ———H(L) +

4(o1)

which holds almost everywhere. Note that the standard step
functions H are defined as

0, ifr<a
H(x—a):{l/Q7 ifr=a . (8)
1, ifz>a

From this perspective, Ids(G1,G2), as defined in (7), corre-
sponds to a straightforward interpretation of the previous fuzzy
set-theoretical inclusion grade, and therefore, it preserves all the
intuitive features and properties of the fuzzy set-theoretical in-
clusion grade. As soon as |m; —m| > 3(o;40;), which means
that the two membership functions are far away from each other,
1d(G;, G;) vanishes. If the fuzzy sets have the same mean, i.e.,
|m;—m;| = 0and o; < o;,then Id(G;, G;) equals one. Other-
wise, the inclusion grade captures the overlap between the two
fuzzy sets with respect to that of G;.

The index Idy (G, G2) attains its maximum value when the
first fuzzy set is fully included in the second. For cluster merging
purposes, however, it may be useful to assess not only whether a
fuzzy set is included in the other one, but also the extent to which
the including distribution is large compared to the included one.
In this course, one may consider omitting the upper bound of
the index. The index then becomes

T .
—2=. if 5 >0
Ids(Gy,Gy) = 4 37 102 = 9
3(G1,Go) {07 i1, <0 )
or, equivalently, by using step functions
Ids(Gy,Gs) = I2 H(Iy) (10)
3G, G RTERE 2)

Loosely speaking, the latter captures not only the inclusion
of (G1 in G5 but also the extent to which the spread of Gy is
smaller than that of G'5. It holds that as soon as a physical inclu-
sion G; C G occurs, then Id3(G1,G2) > 1. Otherwise, the
index still captures the degree of overlapping between the two
distributions with respect to the distribution G';. Consequently,
Ids offers a better performance when the relative size of dis-
tributions is desired as part of the evaluation index, which, in
turn, endows the inclusion index with discrimination power. In
particular, as exhibited in Fig. 2, the inclusion index /d3 allows
us to discriminate between the different scenarios of inclusion
induced by the different pairs of membership functions. In this
course, the formulation in (10) leads to the following ordering
[subscript 3 is omitted from [d3 for clarity purposes, i.e., Id,)
stands for evaluation of index Ids3 in the case of pair of fuzzy
sets pertaining to Fig. 2(a)]:

Idy) (G2, G1) > 1dyy (G2, Gy) > 1dy)(G2, Gr)
> Idg)(Go, G1) = Idey(Ga, G1) =0 (11)
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Fig. 2. Illustration of inclusion for several pairs of fuzzy sets.

which is in agreement with the intuition regarding the given ex-
amples.

B. Inclusion-Based Fuzzy Clustering Algorithm

We now introduce a fuzzy clustering algorithm that incorpo-
rates the inclusion index. The main idea is to obtain class proto-
types such that all elements of that class are roughly included in
the Gaussian class prototype in the sense of evaluation given by
index Id3. Ideally for each class, one would look for a Gaussian
prototype that maximizes the overall inclusion degrees over the
set of Gaussians belonging to that class, or equivalently, that
maximizes the total sum of inclusion degrees of each Gaussian
into that prototype, while each inclusion index is weighted by
the corresponding value of the membership value u7;. Conse-
quently, the problem boils down to maximizing the quantity
> o1 2iey 1d3(Gi, Gy, ) U, or equivalently, minimizing the
objective function

(&

=3 1ds(Gi, Gy,))US

j=11i=1

J= (12)

subject to (2). Here, G; corresponds to the sth Gaussian of initial
datum with mean m; and standard deviation o;, and G, corre-
sponds to the Gaussian prototype of the jth class whose mean
and standard deviations are My, and Tujs respectively.

Unfortunately, the optimization problem (12) and (2) without
further constraints would lead to the extreme solution where the
spread (standard deviation) of all the prototypes tend to their
maximal values. To circumvent this effect, a term can be added
to (12) to minimize the distance from each prototype to all ele-
ments (Gaussians) of the same class as the aforementioned pro-
totype. A possible formulation of such reasoning consists of
a linear combination of objective functions (1) and (12). This
leads to the following optimization problem:

Minimize J
==Y 1ds(Gi, G, ug
j=11i=1
+ ’lUZ Z(Xi - VJ)TA(XL - VJ)U’U
7j=11:=1

w>0 (13)

subjectto (2). In (13), each Gaussian G, is interpreted as a vector
x; with coordinates (m;, 30;). Similarly, the jth prototype can

be represented as a vector with coordinates (m.,,30,,). The
weight w is a positive number, which acts as a regularization
term and controls the balance between the inclusions and dis-
tances while quantifying the relative importance of both terms
with respect to each other. Indeed, (13) indicates a balance be-
tween maximizing inclusion indices of each element in the pro-
totype G,,;, and minimizing the distance from the prototype to
these elements. Besides, as neither the distances d;; nor the in-
clusion evaluations Ids are normalized entities and due to the
presence of negative parts in (13), w plays a role of an adjust-
ment factor. Note that the value of w that ensures a rational
behavior for the aforementioned optimization is not unique as
will be pointed out later. On the one hand, choosing w relatively
large makes the distance minimization requirement a predomi-
nant part in the objective function (13). This, in turn, brings the
aforementioned optimization closer to the standard FCM algo-
rithm. On the other hand, taking w relatively small makes the in-
clusion evaluation a predominant part in the objective function
(13). Thereby, (13) tends towards the optimization (12), which,
in turn, induces prototypes with a maximum spread as already
mentioned. Some possible suggestions for w are provided later

on.
10 0 0
Let B; = 0 0) and B, = (0 1).Then,]clg, can be

rewritten as

Ids(Gy, Gy) = ~ (xTBox,) ' Si;H(S;;)  (14)

e~ =

with

Sij = (xi +v;) " Ba(x; + v;)

—(x; — v;)"Bi(x (15)

i = vj)-

Therefore, a counterpart of the objective function in (13) is

Z Z TBQXL ! SL]H(SL])’U,Z
7j=11:=1
+wzz x; — v;)TA(x; = vj)ug, w > 0.
j=1:=1
(16)

We can now calculate the update equations that lead to the
optimal solution by combining (16) and (2) using augmented
Lagrangian methodology. The optimal solutions are reported in
Proposition 1 whose proof is given in the Appendix.
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Step 1  Fix the number of clusters ¢, the parameter of
fuzziness «, the value of w and initialise the matrix
U by using the fuzzy c-means algorithm.

Step 2 Determine v; from (18).

Step 3 Determine the new matrix U using previous evalu-
ation of S;; and (17).

Step 4  Test if matrix U is stable; if stable, stop; else return

to Step 2.

Fig. 3. Inclusion-based fuzzy clustering algorithm.

Proposition 1: Minimizing the objective function (13) sub-
ject to constraint (2) leads to

1

Ui =
—1

(xIByx;) " SuH(Su) +wdly

1
I

—3(xTBox;) =15, H(Si;) + wd};
a7
with df; = (x; — v;)" A(x; — v;). Further
Ev,=F (18)

where

n 1 -1 @ e’
E=) 7 (K Baxi)  (By — Bo)H(S;)ufj + 2wAug
=1
(19)

and

n 1 _

F = Z 1 (xiTBzxi) 1(B1+B2)xiH(Sij)u§"j+2waiu% .
=1

(20)

In our case, the matrix A in (13)-(20) coincides with identity
matrix, which makes the distance metric equivalent to the Eu-
clidean distance.

Note that one needs to ensure that the solution v; does not
make .S;; vanish as step function is not differentiable for S;; =
0. This requirement is usually satisfied, since numeric optimiza-
tion provides only an approximate result. In order to simplify
the resolution of (17), where the quantity H(.S;;) is also a func-
tion of v; to be used in computing v;, we evaluate S;;, thereby
H(S;;), by using the previous estimate of v; (from the pre-
vious step of the iterative algorithm). The matrix solution is then
v; = E"'F. This approximation is well justified from at least
three arguments. First, H(S;;) is a binary variable, and so any
small error in v, if relatively close to the true v;f has no influ-
ence at all on the estimation of H(S;;). Second, as the number of
iterations increases, the estimations of v; tend to be very close
to each other, which offers appealing justification to the first ar-
gument. Third, this reasoning is very similar in spirit to iterative
approaches applied for solving linear/nonlinear systems in op-
timization problems [25].

A possible initialization of v; consists of using the FCM al-
gorithm. In that case, the proposed inclusion-based fuzzy clus-
tering algorithm can be summarized as in Fig. 3.
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Step 1  Fix the number of clusters c, the parameter of
fuzziness «, the value of w and initialise the matrix
U and the prototypes v; by using the fuzzy c-means
algorithm.

Step 2 Evaluate quantities S;; and H(S;;) by using the
estimates v;.

Step 3 Determine the new matrix U using (17).

Step 4 Determine prototypes v; using (18).

Step 5  Test if matrix U is stable; if stable, stop; else return

to Step 2.

Fig. 4. Approximate inclusion-based fuzzy clustering algorithm.

Alternatively, (19) and (20) can be computed using an ap-
proximated model, where H(S;;) is evaluated at the previous
step. Then, the previous algorithm is modified as in Fig. 4.

C. Choice of the Weighting Parameter W

In this section, we consider possible approaches to selecting
appropriate values for the parameter w, since it is an important
parameter for the clustering results. At least two different strate-
gies can be suggested for selecting an appropriate value of w.

1) Constraint-Based Methodology: In this case, the choice of
w is constrained by the ranges assigned to the entities involved
in the optimization problem, like the matrix U or the data ma-
trix X. Especially, when one considers (17), an inconvenient
choice of w may lead to membership values that are slightly
greater than one or that are slightly negative. Even though it is
customary in optimization to round the value off to the closer
boundary range (either O or 1 for u;;) [26], this situation can be
avoided by assigning a specific range to values of w. Proposi-
tion 2 now holds.

Proposition 2: 1f the condition w > (max; 07)/(4 min; o?)
holds, then it is guaranteed that 0 < u;; < 1.

The proof of the proposition can be found in the Appendix.
Note that the aforementioned condition is only sufficient and
not necessary, as the aim is not to find the optimal bounds of w,
which are not obvious. In other words, the above lower bound
on w is not the most conservative one.

In the case where both components of data x; lie within the
unit interval, it might be desirable that the prototype vectors also
have their components within the unit interval. In this respect,
Proposition 3 holds.

Proposition 3: When the data x; lie within the unit square
and if the condition w > 0.5 holds, then both components of the
prototype vector v;(j = 1, ..., c) lie within the unit interval.

The proof of Proposition 3 can also be found in the Appendix.
It can be proven from (18) that regardless the value of w, if the
mean component of data x; lies within the unit interval, then
the mean component of the prototype vectors v; also lies within
the unit interval. However, the fact that the spread (standard de-
viation) components also lie within the unit interval does not
necessarily entail a spread component of the prototype, since
the inclusion constraint would intuitively force the prototype’s
spread to be maximized. Consequently, the requirement of both
prototype components lying within the unit interval is restric-
tive, but can be justified in some applications or automated sys-
tems where all parameters are bounded from the above.

Note, again, that similar to Proposition 2, the condition
pointed out in Proposition 3 is only a sufficient condition.
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Besides, the condition in Proposition 2 often entails that of
Proposition 3 as soon as there is large discrepancy among the
values of ;.

Given the previous condition, a rational choice for
w 1is to use the lower bound of the inequality (i.e.,
w = (max;o?)/(4min; 0?) in case of Proposition 2 or
w = 0.5 in case of Proposition 3). This choice can be justified
as the most pessimistic evaluation in the absence of further evi-
dence, which ensures coherence in the sense of the fulfillment
of the desired constraints. Such reasoning is quite common
in possibilistic reasoning schemes, where the lower bound
provides an indication about the necessity-based evaluation
[27].

2) Empirical Methodology: In this case, the choice of w re-
lies either on expert knowledge or on intensive simulation and/or
experimental tests. Inspired by robust statistics theory and in
the light of suggestions regarding robust fuzzy clustering [26],
a possible solution is to let w vary at each iteration of the algo-
rithm and be calculated as (21), shown at the bottom of the page,
where the superscripts k and k — 1 stand for the kth and (k—1)th
iteration, and 7 is a proportionality factor. Equation (21) indi-
cates a choice of w that is proportional to the ratio of overall in-
clusion evaluations and the overall distance evaluations, while
the proportionality term 7 allows us to control the convergence.
It should be for instance small at the beginning to encourage the
formation of small clusters and then should increase gradually to
encourage agglomeration. A combination of empirical and con-
straint-based approaches can also be obtained by constraining
the choice of 7 such that either the U’s constraints or V’s con-
straints are held. However, it was found in practice that such a
formulation sometimes leads to instability due to the variability
of 7 at each iteration.

Another empirical formulation has been found to work well
in practice provided both components of the objects in the data
set lie within the unit interval. In this case

1
= . (22
W= max <(1 — min; 0;)(1 + min; 0;) " max; U?) (22)

As for most empirical formulations, the motivation for (22) is
mainly experimental, despite being related to the constraint-
based approach when turned into inequality and accounting for
V’s constraint under certain conditions. This choice of w has
worked well in our experimental data set.

III. RULE BASE SIMPLIFICATION WITH INCLUSION-BASED
Fuzzy CLUSTERING

In this section, we consider how rule base simplification can
be achieved by using the inclusion-based fuzzy clustering al-
gorithm from Section II. Rule base simplification is concerned
with complexity reduction, transparency, and interpretability of
fuzzy models. While complexity reduction is concerned with
controlling the number of rules in a fuzzy system, transparency
and interpretability are concerned with constraining the fuzzy

membership functions such that semantic interpretations can
be attached to the fuzzy concepts that the fuzzy sets represent.
In recent years, fuzzy rule base simplification and data-driven
generation of interpretable fuzzy models have received much
attention in the literature (see, e.g., [2], [28], and [29]). In [30],
interpretability is maintained by constraining the location of
the membership functions during the learning phase. Another
approach based on merging similar fuzzy sets after initial rule
base construction is investigated in [1], [4], [31], and [32].
Evolutionary approaches to the generation of interpretable
fuzzy models have been studied, among others, in [33] and
[34]. Recently, an online approach to obtaining interpretable
fuzzy models has also been proposed [35].

When fuzzy rules are obtained by automated techniques,
there is usually much redundancy in the resulting rule base
regarding the distribution of similar fuzzy sets that represent
compatible concepts [1]. In many cases, groups or clusters of
similar fuzzy sets can be recognized when the fuzzy sets in
these rule bases are inspected visually (see, e.g., Fig. 6). Based
on this observation, we suggest a clustering-based approach to
rule base simplification. The algorithm takes into account the
inclusion of the fuzzy sets in the cluster prototypes.

A. Generation of Simplified Models

Given the formulation of the inclusion-based fuzzy clus-
tering algorithm from Section II-B, we can now sketch the
fuzzy modeling and simplification approach based on the
proposed merging algorithm. The modeling consists of three
phases. In Phase I, the initial fuzzy model is generated by using
a suitable automated fuzzy modeling technique (which is not
described in this paper). Some possibilities are fuzzy clustering
(e.g., [31] and [36]), neurofuzzy and gradient—descent learning
systems (e.g., [37] and [38]), or evolutionary adaptation (e.g.,
[39]-[41]). Phase I results in a set of fuzzy rules with associated
antecedent membership functions and consequent parameters
(or consequent membership functions in case of Mamdani-type
systems). In Phase II, the membership functions are considered
in the parameters space. Each Gaussian membership function is
represented by its mean and standard deviations. The merging
algorithm is then applied to determine the prototypes that
will replace the initial fuzzy sets. In general, the fuzzy sets
are replaced by the prototype for which they have the highest
membership. This completes Phase II. In Phase 111, the new rule
base is screened further. The replacement operation may lead
to rules with the same antecedents. These rules are merged, and
possibly the consequent parameters are reestimated. Further-
more, the rule base may further be adapted in order to optimize
the rule premises and the consequents. The proposed modeling
and simplification procedure is summarized in Fig. 5.

B. Related Work and Discussion

The proposed algorithm requires as prerequisite the specifi-
cation of the number of classes used by the merging algorithm.
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Phase I:
Determine a fuzzy system from data: learn fuzzy rules,
membership functions and consequent parameters. If not
available already, convert membership functions into Gaus-

sians parameterised by mean and standard deviation.
Phase II:

For each feature do:

« Normalize Gaussian means and three times the stan-
dard deviation to the unit interval.

« Represent Gaussian membership functions as points in
the parameters space.

« Determine groups of compatible membership functions
by using inclusion-based fuzzy clustering.

« Replace each membership function in the rulebase by
the prototype to which it has highest membership.

Phase III:
Screen rulebase:

o Remove redundant rules, i.e. rules whose antecedents
already exist in the rulebase.

o Re-estimate rule consequents and, if needed, optimise
the final rulebase.

Fig.5. Fuzzy modeling and rule base simplification using inclusion-based clus-
tering.

The number of classes could be determined by one of the many
cluster validity criteria proposed in the literature; see, for in-
stance, [16] and [42]. The inclusion-based clustering algorithm
can easily be accommodated to account for an unknown number
of clusters and use some cluster validity index. For example, the
authors of [43] have proposed a new validity index, which was
applied to the FCM algorithm. Such methods can be extended to
our inclusion-based method straightforwardly. Another relevant
issue is how to perform rule base simplification, given that each
rule possesses both a premise and a consequent part. After the
simplification, there may be rules that conflict with each other
as they may have different consequents for the same premise. A
conflict resolution mechanism is needed to resolve such cases
[1]. The handling of such situations in our paper is explained in
Section IV. Finally, regarding the accuracy of models obtained
from rule base simplification, there is always a tradeoff between
the accuracy of the model and its transparency, which is related
to the minimization of the number of fuzzy rules (see, for in-
stance, [44]). This tradeoff is not investigated explicitly in this

paper.

IV. APPLICATION EXAMPLE

In this section, we describe the application of our proposed
algorithm to a mobile robotics problem. The three phases from
Fig. 5 are described in detail. Further, the performance of the
algorithm is compared to the rule base simplification approach
proposed in [1].

A. Mobile Robot Navigation

The example we consider in this section is a real-time mobile
robot navigation task. Information from two sensors is consid-
ered for an obstacle avoidance task. The standard fuzzy system
proposed by Wang and Mendel [30] has been used as a con-
troller for the behavior of the robot in front of obstacles without
any prior knowledge about interactions of the robot with the en-
vironment. As discussed in Section III, the design methodology
for the fuzzy system is divided into three phases. Phase I refers
to the configuration phase, where the fuzzy rules, the member-
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ship functions, the strength of the rules, and other parameters
are generated online by using a backpropagation through-time
(BPTT) algorithm. Phase II concerns the complexity reduction
of the rule base generated from Phase I. The interpretability of
the rule base is improved by using the proposed inclusion-based
fuzzy clustering approach for the simplification of the rule base.
This phase can be done offline, since no input from the real-time
system is required. Phase III deals with the adaptation of the
consequent parts of the rules, where conflicting rules are re-
solved. This phase is performed online. We now discuss these
three phases in more detail.

1) Configuration of the Fuzzy System: In Phase I, a fuzzy
system is generated by using online data. The robot used in
this experiment is equipped with eight ultrasonic sensors for
obstacle detection. The inputs for the obstacle avoidance con-
troller are the ultrasonic measurements provided by robot sen-
sors. Only two measurements are considered to be important for
this task, namely, d; and ds, corresponding, respectively, to the
lateral and the frontal sensors with respect to a robot configu-
ration. The output corresponds to the orientation 6 of the con-
troller, with respect to the robot axis. Note that the velocity of
the robot, when moving, is assumed to be constant.

We use information in the form of relative distance values.
Note that the sensors provide evaluative information rather than
instructive information. By using this information, one can de-
fine an objective function in order to evaluate the performance
of the controller. Using the relative distance values, we define
the following objective function:

1 on &
=3 SN NS = St 4l

k=1n=1

(23)

In (23), the symbol S, j stands for the distance from sensor
n to the obstacle or object identified by that sensor at sample
time . Similarly, the symbol S¢ , stands for the minimum or
the desired distance from sensor n to that obstacle at sample
time k. Wang and Mendel’s standard fuzzy system [30], which
is based on Takagi—Sugeno rules, is used as the architecture for
the fuzzy controller. The system is initialized randomly with
25 rules. Hence, 25 fuzzy sets were used for each input. The
optimal parameters are obtained by minimizing the objective
function (23) after the controller produces a sequence of control
actions. A BPTT algorithm [45], which is not described further
in this paper, is used for the training. The algorithm determines
the optimal parameters for the Gaussian membership functions
of the fuzzy system and the rule strengths.

2) Interpretability and Complexity Reduction: As shown in
Fig. 6(a) and (b), the rule base obtained after the learning stage
in Phase I contains highly overlapping fuzzy sets. Inclusion-
based fuzzy clustering algorithm is applied to reduce the com-
plexity of the rule base and to improve its interpretability. The
membership matrix U and the matrix V of cluster prototypes
are obtained from the clustering algorithm, which converged to
a stable solution in less than 15 iterations in most cases. Based
on knowledge about the process dynamics, four clusters have
been generated for dy and ds. The prototypes determined by in-
clusion-based fuzzy clustering are depicted in Fig. 6(c) and (d)
(in thick lines).
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Fig. 6. Fuzzy sets for the sensor (a) d; and (b) d» after learning in Phase I. Fuzzy sets for the sensor (c) d; and (d) d- in the simplified rule base.

The parameters of these cluster prototypes are as follows:

d1 : 0171(010,030) 0172(036,024)
C15(0.64,0.21) C} 4(0.84,0.16)
dy: C51(0.09,0.31) C52(0.34,0.14)
C5.5(0.54,0.23)  C54(0.89,0.29).

Now, let us assign the following labels to these prototypes:

d1 . 0171 TP 01,2 . P 01,3 . M 0174 : L
d2 : 0271 : TP 02,2 : P 02,3 M 0274 : L.

Each membership function in the rule base from Phase I is re-
placed automatically with the closest prototype by using the ma-
trix U, for the sensor d; and the matrix Uy for d>. The new
partition in the reduced rule base is shown in Fig. 6(c) and (d).

To study how the rules have been modified, let us consider
the following sample of the rules generated after the learning in
Phase 1.

Rule 1:  1F d; is near (0.1117,0.1144) and ds is near

(0.9290,0.1364), THEN 6 is 0.01.

Rule 2:  1F d; is near (0.8511,0.1150) and ds is near

(0.0158,0.1235), THEN 6 is —0.68.

Rule 3:  1F d; is near (0.6051,0.1021) and ds is near

(0.5277,0.1181), THEN 6 is —0.30.

Rule 4:  1F d; is near (0.1050,0.1061) and ds is near

(0.6188,0.0998), THEN 6 is 0.25.

Rule 5:  1F d; is near (0.3742,0.1000) and ds is near

(0.0679,0.2152), THEN 6 is 0.60.
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Tables I and IT show the partition matrices U; and U, that are
obtained from the clustering step. By using the partition matrix,
one can determine automatically which prototype will replace
a particular membership function, by checking the prototypes
with the highest membership values. For example, the member-
ship function F} ; defined by the parameters (0.1117,0.1144)
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TABLE I
PARTITION MATRIX U; OF d;
HCy 1(F1,j) HCy 2(F1,j) /"01’3(F1,j) HCy 4(F1,j)
Fi1 0.8179 0.1382 0.0290 0.0149
Fi o 0.7792 0.1531 0.0435 0.0242
Fi3 0.7202 0.1945 0.0549 0.0303
Fi 4 0.6556 0.2232 0.0765 0.0447
Fi5 0.6300 0.2429 0.0807 0.0464
TABLE 11
PARTITION MATRIX U OF dg
HCy 1(F21j) HCzyz (F2,j) N02’3(F2,j) HCy 4(F2,j)
Fy 0.0271 0.0573 0.1242 0.7915
Fp 2 0.6353 0.2429 0.0895 0.0323
Fy3 0.0373 0.2383 0.6715 0.0529
Fy 4 0.0454 0.1854 0.6351 0.1341
Fo 5 0.8509 0.1012 0.0361 0.0118

for d; has the largest membership to the prototype C7 ; (mem-
bership of 0.8179) and the membership function F; defined
by the parameters (0.9290, 0.1364) of d5 has the largest mem-
bership to the prototype C' 4 (membership of 0.7915). Hence,
F5 ;1 is replaced by Cy 4 during rule base simplification.

After applying the proposed algorithm, the premise parts of
rules 1, 15, 21, and 25 coincide as well as those pertaining to
rules 2 and 18; rules 4, 10, and 22; rules 5,12, and 19; rules 6
and 13, and the rules 14 and 17. Therefore, the underlying rules
can be merged, reducing the number from 25 to 14 rules. After
reestimating the parameters of the merged rules, the sample of
rules becomes as follows.

Rule 1, 15, 21,25: 1F d; is near Cy 7 and d5 is near Cy 4,
THEN £ is 0.01.

Rule 2, 18: IF d; is near C'; 4 and ds is near Cy 1,
THEN f is —0.6.

Rule 3: IF d; is near C'y 3 and dy is near C3 3,
THEN € is —0.30.

Rule 4, 10, 22: IF d; is near C'y 1 and ds is near C 3,
THEN £ is 0.2.

Rule 5, 12, 19: IF d; is near C'; 2 and ds is near Cy 1,

THEN 6 is 0.61.

Alternatively, we can also write these rules using the previous
linguistic labels. For instance, rules 12 and 14 can be rewritten
as follows.

Rule 12:
Rule 14:

IF di is TP and d5 is TP, THEN 6 is 0.7
IF d; is L and d» is P, THEN 6 is —0.5.

3) Resolving Conflicts and Adapting Consequent Parts:
After replacing the fuzzy sets with prototypical fuzzy sets
generated from Phase II, the performance of the fuzzy system,
in general, deteriorates since the consequent parts of the rules
are not optimal. Therefore, one must redetermine the rule
consequents. In this phase, the adaptation of the simplified rule
base and the handling of conflict situations are performed. We
use a real-time recurrent learning (RTRL) algorithm [46] for
the adaptation in our mobile navigation application, although
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other adaptation methods can also be used in this phase. In our
approach, the adaptation of the consequent parameters occurs
in the least squares sense, based on the squared error between
the output of each rule and the output 7 of its simplified version,
i.e., it is based on e = (r — 7’)2. Furthermore, we apply a
heuristic for rule replacement in the case of conflicting rules.
After reducing the rule base of the mobile robot controller by
using inclusion-based fuzzy clustering, the online adaptation
algorithm RTRL is applied to optimize the performance of the
mobile robot. Simultaneously, a procedure for dealing with
conflict situations has been performed to guarantee successful
navigation. As a result of this optimization, 11 rules have been
deleted from the rule base. For example, when we consider the
Rules 1 and 2 that were discussed before, the change of the
consequent parameters as a result of the RTRL algorithm is as
follows.

Phase I

Rule 1:  1F d; is near (0.1117,0.1144) and ds is near
(0.9290,0.1364), THEN 6 is 0.01.

Rule 2:  1F d; is near (0.8511,0.1150) and d is near
(0.0158,0.1235), THEN 6 is —0.68.

Phase 11

Rule 1:  1F d; is near (0.1007,0.3020) and d5 is near
(0.8911,0.2900), THEN 6 is 0.17.

Rule 2:  IF d; is near (0.8421,0.1607) and d5 is near
(0.0904, 0.3113), THEN 6 is —0.68.

Phase III

Rule I:  1F d; is near (0.1007,0.3020) and d5 is near
(0.8911, 0.2900), THEN € is 0.17.

Rule 2:  IF d; is near (0.8421,0.1607) and d is near

(0.0904,0.3113), THEN 6 is —0.43.

To illustrate the performance of the robot as a result of
our proposed training and simplification method, we have
conducted a typical experiment. The robot has been instructed
to follow a path with obstacles, and its response has been tested
after the three phases discussed previously. Table III lists the
number of fuzzy sets and the number of rules in the rule base. It
also shows the value of the performance index obtained as the
sum of squared errors. After the learning in Phase I, the fuzzy
system has 25 rules and 50 fuzzy sets in total. The performance
index is 0.0012, which indicates a very satisfactory result. After
the rule base simplification in Phase II, there are still 25 rules
in the rule base, but the total number of fuzzy sets is reduced
to eight. There are now conflicting rules as they share the
same premise but have different consequents. Because of the
conflicting rules and the nonoptimal values of the consequents,
the performance index increases to 0.0092 indicating a loss of
performance. After the conflict resolution and real-time conse-
quent adaptation in Phase III, the number of rules is reduced to
14. The number of fuzzy sets in the rule base is now eight and
the performance index is 0.0057. This corresponds to a small
decrease in performance compared to the initial learned rule
base, while the fuzzy system is simplified significantly. Fig. 7
shows the paths followed by the robot after each of the three
phases.
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Fig. 7. Paths followed by the mobile robot after (a) Phase I, (b) Phase II, and
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(b) ©

(c) Phase III.

TABLE III
PERFORMANCE OF THE FUZZY CONTROLLER DURING THE THREE PHASES OF MODEL CONSTRUCTION
Number of membership func. ~ Number  Performance
dq do of rules index
Phase 1 25 25 25 0.0012
Phase 11 4 4 25 0.0092
Phase 111 4 4 14 0.0057

Membership functions of simplified model for variable d1
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Membership functions of simplified model for variable d2
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Fig. 8. Simplified fuzzy sets for the sensor (a) d; and (b) d» after using Setnes’ approach.

B. Comparison With Setnes’ Approach

Setnes’ algorithm [1] is an alternative approach to merging
similar fuzzy sets and simplifying the rule base. In this section,
we compare our approach with Setnes’ algorithm and analyze
three important issues in fuzzy modeling: accuracy, complexity,
and interpretability.

1) Accuracy: Consider again the same initial rule base
that has been generated from Phase 1. After applying Setnes’
method, the membership functions of the simplified model for
dy and dy are shown in Fig. 8. Part of the initial rule base looks
like as in the following after applying Setnes’ algorithm and
reestimating the consequence parameters.

Rule 1: 1F d; is MF1 and d5 is MF5, THEN 6 is 0.015.
Rule 2: IF dy is MF2 and d5 is MF6, THEN 6 is —0.680.
Rule 3: 1F d; is MF2 and ds is MF7, THEN f is —0.386.

Rule 4:
Rule 5:

Table IV shows the comparison of the performance of the
controller in terms of average squared error before and after sim-
plification of the rule base using both our and Setnes’ method
in three different experiments.

Table V compares both approaches in terms of the output of
the fuzzy system in two different experiments. We run the first
experiment with four fuzzy sets for each of the input variables,
and we run the second experiment with two fuzzy sets per
variable. The threshold parameters of Setnes’ algorithm were
selected such that the resulting number of fuzzy sets after
the merger was the same as the number of fuzzy sets from
the approach proposed in this paper. The results show that
inclusion-based fuzzy clustering performs better than Setnes’
method when performance is quantified in terms of the squared
error (see, also, Fig. 9).

IF dy is MF1 and ds is MF7, THEN 6 is 0.525.
IF d; is MF3 and ds is MF7, THEN # is 0.395.
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Fig. 9. Real and the predicted outputs using both approaches in experiment 1.
TABLE V

TABLE IV
PERFORMANCE OF THE Fuzzy CONTROLLER BEFORE
AND AFTER SIMPLIFICATION

Nbr of Nbr of Nbr of Perf.
Method Experiment rules MbF di  MDF do Index
Before
Inclusion  simplification 25 25 25 0.0012
Fuzzy 1 14 4 4 0.0092
Clustering 2 4 2 2 0.0360
3 16 4 5 0.0083
Before
simplification 25 25 25 0.0012
Setnes 1 10 4 4 0.0145
2 4 2 2 0.0450
3 10 4 5 0.0110

2) Complexity: As shown in Table IV, our proposed method
reduces the number of rules from 25 to 14 in the first experiment,
and to four in the second experiment. In comparison, Setnes’
method reduces the number of rules from 25 to ten in
the first experiment, and to four in the second experiment.
We observe that Setnes’ method tends to produce smaller
number of rules for a given number of fuzzy sets. However,
the accuracy of the model is worse than the accuracy of
the model obtained with our approach. Note also that the
use of Setnes’ approach requires determining all pairwise

similarity values and the user needs to set a threshold A above
which two membership functions are considered to be similar.
The computation of all pairwise similarity values has some
computational burden, and the results are sensitive to the
choice of the similarity threshold value \. Additionally, the
intransitive nature of the threshold-based similarity merging
may undermine its performance and lead to a counter-intuitive
result. The reader should also note that Setnes’ method does
not allow explicit control of the number of membership
functions. Hence, the tuning of the thresholds can be very
tedious if a desired model complexity is required. In general,
the optimal values of the similarity threshold A and the
set threshold v have to be determined experimentally in

Setnes’ approach. The complexity of a simplified model

can be controlled more explicitly in our proposed approach

by specifying the number of clusters in the inclusion-based
clustering step, which is an advantage over Setnes’ approach.

OUTPUT OF THE CONTROLLER WITH FOUR AND TWO
Fuzzy SETS PER VARIABLE

Number of  Desired Output using Output using
fuzzy sets output  proposed method  Setnes’ method
-0.1952 -0.0530 0.1173
0.4425 0.3301 0.3131
4 -0.3341 -0.1826 -0.0085
-0.2701 -0.1452 -0.0429
-0.3430 -0.2086 -0.1029
-0.1000 -0.1385 -0.3928
0.2600 0.2337 0.3594
2 -0.3000 -0.0349 -0.0367
-0.1000 -0.1319 -0.3990
-0.1500 0.1963 0.0720

3) Interpretability: In order to compare the interpretability
of the models obtained from the two rule base simplification ap-
proaches, we have studied the fuzzy sets obtained, respectively,
from the Setnes’ approach and the proposed approach for the
variable ds. These fuzzy sets are shown in Figs. 10 and 11 for
two sets of experiments.

In general, the membership functions obtained from Setnes’
approach are nonsymmetric because of the sequential nature of
the merging, even though the similarity measure used is sym-
metric (Jaccard index). In the inclusion-based clustering ap-

proach, the membership functions in the simplified model have
the same shape (in this case, symmetric Gaussians) as the fuzzy
sets in the complex model, since the simplified fuzzy sets are pa-
rameterized in the same way as the initial fuzzy sets. Note also

that some of the classes obtained using Setnes’ method can be

included in another one. Considering the case of Fig. 10(a), for
example, MF8 is a subset of MF7. Similarly, MF9 is a subset
of MF7 in Fig. 11(a). The presence of subsets in the model de-
creases its interpretability. It is not possible in our proposed ap-

proach to obtain fuzzy sets that are included in another. Table VI

summarizes the comparison between the proposed rule base

simplification approach and Setnes’ approach in terms of com-
plexity, accuracy and interpretability of the simplified models.

V. DISCUSSION AND CONCLUSION

In this paper, we have proposed a new merging method based
on clustering of fuzzy sets in the parameters space of mem-
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Membership functions of simplified model for variable d2

Membership functions of simplified model for variable d2
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Fig. 10. Fuzzy sets obtained for variable d> using (a) Setnes’ method and (b) the proposed method for experiment 1.
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Fig. 11. Fuzzy sets obtained for variable d> using (a) Setnes’ method and (b) the proposed method for experiment 3.

TABLE VI
COMPARISON BETWEEN TWO RULE BASE SIMPLIFICATION METHODS
Complexity Accuracy  Interpre-
Pre-proc. Number of rules tability
method need and membership func.
Setnes”  High Small Medium Fair
Proposed Low Medium High Good

bership functions, taking into account the degree of inclusion
between the cluster prototypes and the fuzzy sets. The origi-
nality of our approach resides in using fuzzy clustering for deter-
mining fuzzy sets that are compatible with one another in feature
space. We have applied our inclusion-based fuzzy clustering al-
gorithm for simplifying fuzzy rule bases that are constructed in
a data-driven manner. The advantage of the proposed algorithm
is that it allows explicit control over the desired complexity of

the simplified model and avoids the problem of sensitivity to the
order of merging, which is present in similarity-based simplifi-
cation approaches that are proposed earlier in the literature.

In the proposed approach, the fuzzy sets are replaced by
the most compatible prototypical fuzzy set that is determined
from the inclusion-based clustering algorithm. After reducing
the number of fuzzy sets, rules with the same antecedents can
be merged for conflict resolution, and the performance of the
simplified system can be improved by reestimating the rule
consequents. We applied the proposed algorithm successfully
to mobile robot navigation. The results indicate that our strategy
of merging can generate a compact and interpretable fuzzy
model, which is in agreement with expert reasoning. These
results are also supported by our performance comparison of
the proposed method with another rule base simplification
approach based on similarity-driven merging of fuzzy sets.
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A number of extensions of our work can be considered. In
future work, we will study the behavior of the inclusion-based
clustering algorithm for other standard modeling tasks, such as
classification. In this context, the extension of inclusion-based
clustering for dealing with noise may be of interest. Another in-
teresting problem is determining the optimal number of fuzzy
sets in the simplified model by using cluster validity and/or
cluster merging techniques, without using other means, such as
the expert knowledge about the process.

APPENDIX

A. Proof of Proposition 1

Minimizing
== 1ds(Gi, G, ug
j=1i=1
+w Z Z(XL — Vj)TA(Xi — vj)u?j
j=1i=1
subject to

(&

Zuij =1

J=1

leads to the following augmented Lagrangian:

c

J(U,V,8) == "Ids(Gi, G, )usj
j=1i=1
—+ w Z Z(Xi — Vj)TA(Xi — v]-)uf‘j
7j=1:=1
+D B D ui—1 (24)
i=1 j=1
Substituting the Id3 expression (14) into (24) leads to
~1
J(U,V,B) = —= Z Z x; Box;)  Si;H(Si)u;
] 1:=1
+w Z Z(x7 -v)TA(x; - vj)ug;
j=1i=1
+ Z ﬁi Z U 1 (25)
i=1 j=1

with S;; defined as in (15). The necessary conditions for opti-
mality are found by setting the derivatives of J with respect to
its parameters to zero. Therefore, provided S;; # 0, which en-
sures the derivability of the step function H (S;;)

0] o« ) -
Quij; — 7 (I Boxi) T Si H (S )ug!
+ wo‘(xi —vj)TA(x; — vj)ug; !
Zuu =0 o

851

1=1
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_ Z Z (X;»TBQXZ')il (BQ(XVL'
+v,)- i Bi(xi — v;))H(Sij)uss = 0. (28)

Equation (28) is obtained by noting that the derivative of the step
function H (z) with respect to variable z is the Dirac function
8(z), which is zero valued for all nonzero values of 2. Conse-
quently, the result (28) is obtained.
Equation (26) entails
1

b, 00)
SZ']'H(SU') + wad?j

Ui = —
! [% (x7 Bax;)

with d?j = (x; — vj)TA(x
equivalent to

i — Vv;). Now, using (27), (29) is

1
Uij = 1
Zk 1 % (X BQXZ) SzkH(Szk) +w d2 T
B % (X BQXL) SUH(SU) +"Ud123

(30)
In order to determine the prototype vector v;, (28) can be
rewritten as

n 1 _
lz i (xBax;) ! (B1—Bz)H(Sij)+ZU’A“?j] v
i=1
Z{ X; BZXZ 1(Bl+B2)Xz’H(Sij)“?j+2wAXi“%]'

Therefore

Ev,=F (31)
where E and F are defined by (19) and (20), respectively.
B. Proof of Proposition 2

Letx; = ‘Jlandv; = < U”J ).Then, we can write the
vj

i
membership value u;; as

1
Uq5 = T
dwd?, — (i + 0v,)? = (mi — my,)?)Hye |
4wdz2] - ((07 + U1’j)2 - (m1 - m11])2)H7',j
(32)
where dfj = (0i — 0v,)* + (m;i — m,,;)* and
Hip = H((0i + 00,)* = (m; —my, )?). (33)

Note that if each term of the sum used in the denominator of
the right-hand side of (32) is positively valued, then the overall
sum, and thereby, u;; is also positively valued. In other words,
w 1is chosen such that

4'U)dl2k - - mwk)Z)Hik Z 0.

((01 + 077k)2 - (mi (34)
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For example

. 2 _
w > max (o + om,)
ik 4((01 -

}

(mi - muk)z)Hik
o )E + (12; — 110, )2) } - &

Since H;j is binary valued

{ ((0i + 00,)% = (mi —m,)?) }
A(i = 00, )* + (mi —my,)?) |

Given that all entities m;, 0;, M., , and o, lie within the unit
interval, the maximum of the right-hand side of (36) is reached
when (m; — m,, ) vanishes while the expression in the numer-
ator is maximized and that of the denominator is minimized,
which holds if ¢, vanishes as well. Consequently, (36) entails

w > max

i,k (36)

> ma.xi o 37)
4 min; aiz

Note that the lower bound mentioned in the inequality (37)) is

far from a conservative bound because neither (m; — m,, ) nor

oy, vanishes in practice, and also, the switch from (35) to (36)

is not optimal as the evaluations H;j, are always set to their max-

imal values.

C. Proof of Proposition 3

Using a similar notation as in the previous section, (19) and
(20) are equivalent to

D1 J402 Uyj 0
E= v (38)
n 2w — Hij o
0 D T i
and
n MiH;; +2wm,;
F = W Hy42w (39)
2im1 1o, Uij
Consequently, solving for v;, the matrix equation Ev; = F
leads to
" miHij + 2wm; o
e
n H1 i+ 2w o
Ei:l ]40.2 Ui 40
Vi= . Hij+2w (40)
7114/. .
27:1 401' L)
n 2w — HL] o
Ei:l 40, Ui
Regarding the first component of v, note that
~ miHi'—|—2me HL —|—2w w0
y R < ST IR

P 4cr1-,2
always holdsforall: = 1,...,nandj = 1,..., cregardless the
value of w since m; < 1. Consequently, the mean component of
the prototype vector always lies within the unit interval as soon
as the mean components of the data set lie within the unit in-
terval, regardless of w values. This result is somehow similar to

FCM clustering where the prototypes are bounded by the lower
and the upper bound of the data set.
For the second component of v;, we have

Hi;+2w 2 Hla
Z ]4 wU<Zw ]w

forallz=1,...,nand j = 1,.

(42)

, ¢, which is equivalent to

S (5-2)) o2 15 (5- 1) @
i=1 ' i=1 v ¢

Hence

w >

. (44)
n (1 1
<2 D i1 U <U—; - J—z>>

The maximum of the right-hand side of (44) is reached when
H;; = 1, which forces the inequality to w > (1/2). Since
the condition (42) ensures that the spread component of v lies
within unit interval, the latter condition is equivalent to (44).
Similar to (36), the lower bound (44) is not the most conser-
vative since the hypothesis of H;; = 1 for all 4, j is not very
realistic. Consequently, (44) is only a sufficient condition but
not necessary.
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