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Abseract-—Genetie Algorithms (GAs) and other cvolutionary oplimizi-
tlon methods to design fazey rules from dets for systems modeling and
clpssification have recelved nuch attentlon in recent liternture, We show
that different taols for modeling and complexity veduction can be favorably
combined In a scheme with GA-based parsmeter optimization, Fuzzy clns-
tering, rule reductton, rule base simplification and constrained genefic opti-
mization are integrated in a data-driven modeling scheme with lJow human
Intexvention. Attraciive models with respect to compaciness, transparency
and accuracy, are the result of this symbiosls.

I. INTRODUCTION

We focus on learning fuzzy rules from data with low human
intervention. Many tools fo initialize, tune and manipulate fuzzy
models have been developed. We show that different tocls can
be favorably combined to obiain compact fuzzy rule-hased mod-
els of low complexity with still good approximation accuracy.
A modeling scheme is preseated that combine four previously
studied tools for rule-based modeling: fuzzy clustering [1], rule
reduction by orthogonal techniques [2], similarity driven simpli-
fication [3], and evolutionary optimization [4].

Fuzzy clustering [1] is used to obtain an initial rule-based
mode] from sampled data, Since rules obtained and tuned by
data-driven techniques often contain redundancy in terms of
similar (overlapping) fuzzy sets, similarity driven rule base sim-
plification is applied to [3] detect and merges compatible fuzzy
sets in the model and to remove "don’t-care” terms, To reduce
the number of rules, we apply a simple QR decomposition based
rule reduction technique proposed in [2]. Finally, since these
methods are based on the separate identification and manipula-
tion of the models premise and consequent parts, a constrained
real-coded GA is applied to simultancously finc-tune (optimize)
all parameters in the resulting rule-base. In [4}, we showed that
such a GA was able to strongly improve the models performance
by small alterations to the rules.

By combining these tools in an iterative loop we propose a
powerful fuzzy modeling scheme. The algorithm starts with an
initial model, obtained here by means of fuzzy clustering in the
product space of measured in- and outputs, Successively, rule
reduction, rule base simplification and GA-based optimization
are applied in an iterative manner, The GA performs a multi-
criterion search for model accuracy while trying to exploit the
possible redundancy in the model. In the next iteration, this re-
dundancy will be used by the rule reduction and rule base sim-
plification tools to reduce and simplify the rule base. The re-
sult is a compact fuzzy rule base of low complexity with high
accuracy. When the iterations terminate, a final GA-based op-
timization is performed to increase accuracy and transparency,
as opposed to the GA in the iterative loop which tries to exploit
redundancy.

The next scelion discusses data-driven fuzzy modeling. Then,
in Section III the rule reduction and rule base simplification
tools are described. Section IV presents the GA-based opti-
mization strategy, and in Section V the resulting, total modal-
ing scheme ig given. In Section VI, the method is demonstrated
on a nonlinear dynamic systems modet known from the litera-
ture, and the results are compared to other methods published.
Section VII concludes the paper.

II. DATA-DRIVEN MODELING

A. The TS futzy mode!

Rule-based models of the Takagi-Sugeno (TS) type {7] are
especiatly suitable for the approximation of dynamic systems.
The rule consequents are often taken to be lincar functions of
the inputs:

Rz is Ay and .z, i Ay, then g = (1)
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Here @ = [&1,%2,...,%x]7 is the input vector, §; is the cutput

of the ith rule, and A;1, ..., Ay, are fuzzy sets defined in the
antecedent space by membership functions u 4 {2 R—(0, 1],
iy are the consequent parameters and 3 is the number of rules.
The total output of the model is computed by agpregating the
individual contributions of the rules:
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where p; () is the normalized firing streagth of the ith rule:
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In the following, we will apply the frequently used triangular
membership functions u4; (o describe the fuzzy sets A, in the
rute antecedents

Lz a, b e} = max (0, min (a: -z -ﬂ)) .

b—a'c—b )

B. Identification from data

Given N input-ocutput data pairs {@x, ¥« }. the typical identi-
fication of the TS model is done in two steps: first the fuzzy rule
antecedoents arc determined, and then least squares parameter es-
timation is applied to determine the consequents [1), [8]. In the
examples in this paper, the antecedents of the initial fuzzy rule
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bases are oblained from fuzzy e-means clustering in the product
space of Lhe sampled input-output data. Following the approach
in {1], 9], each cluster represent a certain region in the systems
input-ouiput state-space, and corresponds to a rule in the rule
base. The fuzzy sets in the rule antecedent is obtained by pro-
jecting the cluster onto the dormain of the various inputs.

C. Transparency and accuracy

The initial rele base constructed by fuzzy clustering typically
fulfills many criteria for transparency and good semantic prop-
erties [10]:

v Moderate number of rules: fuzzy clusiering helps ensure

a comprehensive sized rule base with rules that describe
important regions in the data.

o Normality: by fitting parameterized funclions to the pro-
jected clusters, normal and comprehensive membership
functions are cbtained that can be taken to represent lin-
guistic terms.

« Coverage: the deliberate overlap of the clusters (rules) and
their position in populated regions of the input-output data
space ensure that the model is able to derive an output for
all occurring inputs.

However, the approximation capability of the initial rule base
remains suboptimal, The projection of the clusters onto the in-
put variables, and their approximation by parametric functions
like, e.g., triangular fuzzy sets, introduce a structural error since
the resulting premise partition differs from the cluster partition
matrix. Also, the separated identification of the rule antecedents
and the rule consequents prohibits interactions between them
during modeling. To improve the approximation capability of
the initial model, a GA based optimization method is applied.

The transparency and compactness of the initial rule base are
often also subject to improvement. The distinguishability of the
rules and the terms (fuzzy sets) resulting from the projection de-
pends, among others, on the difficult determination of the cor-
rect number of clusters {rules) in the data an their position in
the product space. To reduce the rule base complexity, we ap-
ply two methods for rule reduction and rule base simplification,
respectively, as explained in the next section.

III. RULE BASE REDUCTION AND SIMPLIFICATION

The complexity of a rule base is determined by the number
of rules, and the number of different fuzzy sets used in the rule
antecedents. Both can be reduced by the technigues described
in this section.

A, Rule reduction with P-QR

Various rule reduction strategies based on rank-revealing
techniques like the singular value decomposition (SVD) have
been proposed for fuzzy models [6]. Such techniques transform
the rule selection problem into the problem of picking the most
influcntial columns of the firing matris P = [p,pq, ..., Py} €
R¥*M which contains the firing strength of all the M rules
for the & inputs @x. The elements in the columns p;, =
[P11sP21s- . - Poves]T are the normalized firing strengths calou-
lated as in (3).

In [2] it is shown that a simple pivoted QR (P-QR) decom-
position of the models firing matrix P can be used to cbtain an

importance ordering of the rules in the rule base without the
need for estimating the SVD of P. Moraover, unlike compara-
ble methods such as the SVD-QR [11], the ordering produced by
the P-QR does not deperd on an estimate of the effective rank
of P.

The QR decomposition of P is given by PII = QR, where
I € RM*M jg a permutation maltrix, Q € RVN*M |ag orthonor-
mal columns and R € BRM* js upper triangular, If P has full
rank, then R is nonsingular (invertible). When P is (near) rank
deficient, it is desirable to select the permutation marrix II such
that the rank deficiency is exhibited in R, having a small lower
right block R € BF** [12]:

_{ Rn Ry
R= | ]

It can be shown that for the M — & + 1'th singular value of P,
we have dps_ 1 (P} < [[Rix || Therefore, if | Ryx|| is small,
then P has at least & small singular valves.

The QR decomposition is uniquely determined by the permu-
tation matrix II which can be computed by a column pivoting
strategy [13]. The pivoting algorithm favors columns of R with
a high norm, related (through orthogonatization) to the norm
of the columns of P. For a fuzzy rule base the norms of the
columns of P correspond to the firing strength and/or firing fre-
quency of the rules. Thus, P-QR picks first the most active and
least redundant of the remaining rules,

B. Simelarity driven rule base simplification

The similarity driven rule base simplification method was
proposed in [3], A similarity measure is used to quantify the
redundancy among the fuzzy sets in the rule base. Similar fuzzy
sets, representing compatible concepts, are merged in order to
obtain a generalized concept represented by a new fuzzy set thag
replaces the similar ones in the rule base. This reduces the nuin-
ber of different fuzzy sets (linguistic terms) used in the model.
The similarity measure is also used to detect ““don’'t care” tegms.
i.¢., fuzzy sets in which all elements of a domain have a mem-
bership close to 1. Similarity driven simplification differ from
rule reduction in that it is driven by the similarity among fuzzy
sets defined on the domain of the same antecedent variable, and
not in the product space of the inputs. Thus, the models term set
can be reduced without necessarily any rules being removed.

We apply a similarity measure based on the set-theoretic op-
erations of intersection and union:

jANB| 5
AU B| ©)

where |.| denotes the cardinality of a se1, and the N and U oper-
ators represent the intersection and union respectively. For dis-
crete domains X = {x;|7 = 1,2,...,m}, this can be written
as:

S(A, B) =

S(A, B) — E?f—“l[“f"(xj} A“B(ij] (6)

Eimalpalz) v psla;)
where A and V are the minimum and maximum operators, re-
spectively, § is a symmetric measure in [0,1], If §(i,7) = 1,
then the two membership functions A; and A; are equal and
S{i, 4} becomes € when the membership funetions are non over-
lapping.
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IV. REAL CODED GENETIC ALGORITHM

A real-coded GA {14] is used for the simultancous optimiza-
tion of the parameters of the antecedent membership functions
and the rule consequents, The main aspects of the proposed GA
are discussed below and the tmplementalion is summarized in
Section [V-E.

A. Fuzzy model representation

Chromosemes are used Lo describe the solutions. With a pop-
ulation size L, we encode the parameters of each Mzzy modet
{(solution) in a chromosome 33,1 = 1,..., L, as a sequence of
clements describing the fuzzy sels in the tule antecedents fol-
lowed by the parameters of the rule consequents. A TS model
with M fuzzy rules is encoded as

NI "

where ¢; contains the consequent parameters g, of rule Ry, and
anty = {aq1,bi1, €41, . -+, @iy Dip, €ony ) CONLAINS the parameters
of the antecedent fuzzy sets A,j, J=1,...,n, according to (4).
In the initial populauon §% = [4§,. ,sg}, 87 is the initial
model, and 83,. .., are created by random variation with a
uniform distribution around &9,

& = (fl[n[]u '1anleCl.:"'

8. Selection function

The ronleite wheel selection method [14] is used to select ng
chromosomes for operation. The chance on the roulette-wheel
is adaptive and is given as P/ 3, P, where

1 2
(I) . Le{l,... L}, ®

and J; is the performance of the model encoded in chromosome
81. The inverse of the selection function (Pl'l) is used to se-
lect chromosomes for deletion, The best chromosome is always
preserved in the population (Elivist selection),

1t

by

C. Genelic operators

Two classical operalors, simple arithmetic crossover and uni-
Jorm mutation, and four special real-coded operators are used
in the GA, In the following, + € [0, 1] is a random num-
ber (uniform distribution), £ = 0,1,...,7T is the generation
number, s, and 8,, are chromosomes selected for operation,
k€ {1,2,... N} is the position of an ctement in the chromo-
some, and v7*" and »**° are the lower and upper bounds, re-
spectively, on the parameter encoded by element k:

1. Uniform mutation; a random selected element vy, k& €

{1,2,..., ¥} is replaced by vi which is a random num-
her in lhc range {v"""‘ vie¥]. The resulting chromosome
is 88t = (L), Ve Ui )

M

. Mulnpie ukiform mutation; uniform mutation of n ran-
domly selected elements, where n is also selected at ran-
dom from {1,... N},

3. Gaussian mutation; all elernents of a chromosome are mu-
tated such that 5*! = (vl,... v}, ..., v),) where v}, =

U+ fe, B = 1,2,...,N. Here fy is a random number

drawn from a Gamsmn (hslnbunon with zero mean and an
adaptive variance o = (L=t “)(J———L—). wming per-
formed by this cperator bccomes finer 'md increases.

4, Simple arithmetic crossover, st and 8!, are crossed
over at the kth position.  The resulting oifsprings

arer 85T = (v, Uk, Wha,. . wa) and 8EFt =
{awr,. - Wy Ykt 1y - -+, ¥ ), Where & is selected at rdmlom
from {2,..., N — 1},

5. Whole arzthmenc crossover; d linear combination of s}
and g%, resulting in a8+ = st} 4+ (1 —r)sf, and o457 =
7(3‘)+(1—1) at.

6, Heuristic erossover; st and sl arc combined such thar
sbtl = gt 4or{sl, — al) and ab}! = gf, +r(s! — st).

D, Constraints

The optimization performed by the GA is subjected 10 two
types of constraints: partition and search space, The parti-
tion constraint prohibits gaps in the partitions of the input (an-
tecedent) variables, The coding of a fuzzy set must comply with
{4), ie, a < b < ¢ Toavoid gaps in the pariition, pairs of
neighboring fuzzy scts are consirained by ag < ¢, where [
and R denote left and right set, respectively.

The GA search space is constrained by two user defined
hound-parameters, oy and cp, that applics 10 the antecedent
and the consequent parameters of the rules, respectively. The
first bound, vy, is inteaded to maintain the distinguishability
of the models term set (the fuzzy sets) by allowing the pa-
rameters describing the fuzzy sets A;; 10 vary only within a
bound of ey} | X around their initial values, where |X;| is the
lengih (range) of the domain on which the fuzzy sets Agy are
defined, "The second bound, o, is intended 1o maintain the
local-model interpretation of the rules by allowing the gth con-
sequent parameter of the th rule, Ciq, to vary within a bound of
+eog{max;{Qi,) — ming(¢;,}) arouad its jnitial value,

The search space constraints are coded in the two vectors,
pheT — Jvmax .. Uma:} ard oin — k}{nin‘ . 'Umm}‘ giv-
ing the upper and lower bounds on each of the ¥ elements in g
chromosome, During generation of the initial parlition, and in
the case of a uniform mutation, elements arc gencrated at ran-
dom within these hounds,

E, Generic algorithm

Given the pattern matrix Z and a fuzzy rule base, select the
number of generations 7", the population size L, the number of
operations ne and the constraints oy and aq. Lel S be the
current population of solutions 81 = 1,..., L, and lat J* he
the vector of corresponding values of the evaluation function:

1. Create initial chromosame 39 from the fuzey rule base.

2. Caleulate the constraint vectors ¥™™ and v™* ysing &Y,

ory and s,
3. Creale the initial population 8% = {s%,...,s%} where
sl i =12,.. ., L are created by constraincd random vari-

ations '\.round a9, and the partition constraints apply.
4. Repeat genetic optimization fort =0,1,2, ..., 7 - 1:
(a) Evaluate St and obtain .7t
(b Select ng chromosomes for operation.
{c) Select ne chromosomes for deletion,
(d) Operate on chromosomes acknowledging the search
5[¥ace constrainis,
() Implement parlition consirainis.
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(N Create new population 841 by substitnting the operated
chromosomes for those selected for deletion.
5. Sclect best solution from ST by evaluating J .

V. PROPOSED FUZZY MODELING SCIIEME

We propose a fuzzy modeling approach that combines the
modeling, tuning and complexity reduction tools described
above, An initial fuzzy model is first obtained from data by
fuzzy clustering. Then, the model is successively reduced, sim-
plified and optimized in an iterative fashion. After termination
of the iterations, a last GA- based fine tuning is done.

|. Initialization; Obtain initial fuzzy model.

2. Complexity reduction: Repeat until termination:

(a) Rule reduction according to user preference after visual
inspection of P-QR ranking
(by Similarity driven rule base simplification
(c) GA optimizalion with redundancy objective:
Model accuracy while exploiting redundancy
3. GA fine wning with transparency objective;
Madel accuracy with well separated fuzzy sets

Tn step 2 of the algorithm, user intervention is nceded. The
rule ordering by the P-QR is visnalized for the user 1o select the
number of rules to remove. Step 2 terminates when the rule base
can not be further reduced or simplified.

The model accuracy is measured in terms of the imean squared
errar (MSE)

LY

1 .
MSE = 3 5 (e~ )" ©)
k=1

where ¥ is the true ouiput and ¢ is the model output. In the
GA-hased optimization, the MSE is combined with a similarity
measure. In step 2, similarity is rewarded, that is, the GA tries
to emphasize the redundancy in the model. This redundancy is
then used to remeve unnecessary rules or fuzzy sets in the next
iteration. In step 3 of the algorithr, the final fine tuning, simi-
larity among fuzzy sets is penalized to obtain a distinguishable
term: set for lingnistic interprelation, The objective the GA s 1o
minimize the cost function

J=(14AS*)-MSE, (10)

where §* ¢ [0, 1] is a the average of the maximum pairwise sim-
ilarity present in each input, i.e., $* i3 an aggregated similarity
measure for Lhe total maodel. The weighting function X € [~1,1]
cletermines whether similarity is rewarded (A < 0) or penalized
(>0

V1. BXAMPLE:; NONLINEAR PLANT
We consider the 2™ order nonlincar plant studied by Wang
and Yen in [15], [1€], [6]:
y(k) = glylk - 1), y(k — 2)) + ulk), with (11}

(s = ylk - 2k~ 1) - 05)

glylk - 1), ylk - 2)) = T+ o2k — D2k — 1)

(12)
The goal is to approximate the nonlinear component g{y(k ~
1}, y#{k -- 2}} of the plant with a fuzzy model. In [15], 400 simu-
lated data points were generated from the plant meodel (11). 200

ufk)

S
350 400

e

250 300

1F T =1 T T T ¥

IS0 200 250 300 350 400

0 30 00 130 ZEO 250 300 350 400

Fig. L. Inpul u(k), unforced system g(k), and output (k) of the plant in (11).

samples of identification data were obtained with a random in-
put signat u(k) uniformly distributed in {—1.5, 1.5], followed by
200 samples of cvalnation data obtained using a sinusoid input
signal u(k) = sin{2wk/25) (Fig. 1.

A, Solutions in the literature

We compare our results, with those obtained by the three dif-
ferent approaches described below. The best results obtained in
cach case arc summarized in Table I,

In [15] a GA was combined with a Kalman filter to obtain a
Euzzy model of the plant, The antccedent fuzzy sets of 40 rules,
encoded by Gaussian membership fanctions, were determined
initially by clustering and kept fixed. A binary GA was used
to select a subset of the initial 40 rules in order 10 produce a
moete compact Tule base with better gencralizalion properties.
The consequents of the various models in the GA population
were estimated after cach generation by the Kalman filter, and
an information criterion was used as the evaluation function to
batance the trade-off between the number of rules and the model
accuracy.

In [16] various information criteria was used to suceessively
pick rules from a set of 36 rules in order to obtain a compact,
but accurate model. The initial rule basc was obtained by par-
titioning cach of the two inputs y(k — 1) and y{k — 2) by six
equally dismribuled fuzzy sets. The rules were picked in an order
determined hy an orthogonal transform,

In [6] various orthogonal transforms for rule selection and
rule ordering were studied using an initial model with 25 rules.
In this initial model, 20 rules were obtained by clustering, while
five redundant rules were added 1o evaluate the sclection perfor-
mance of the studied techniques.

8. Proposed approach

We applicd both the modeling approach proposed in Sec-
tion V and its predecessor, presented in [4], which does not con-
tain the second step (the complexity reduction) of the scheme
proposed in Section V. TFor both metheds, TS models with as
well singleton as linear consequent functions were studied. The
GA was applicd with L = 40, ngo == 10, o) = 25%, vg = 26%
and 7' = 1000 in the final optimization and T° = 200 in the
complexity reduction step, The threshold for set merging was
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TABLET
FUZZY MODELS FOR THE DYNAMIC PLANT. ALL MODELS ARE OF THE TAKAGI-SUGENOTYPE,

[ Ref, No. of rules No. of sets Consequent | MSE train | MSE eval

[15] 40 rules (initial) 40 Gaussians (2D} | Singleton 3.3 1 5027 |

28 rules (optimized) | 28 Gaussians (2D) | Singleton 3.3e~4 6.0e™"
[167+ 36 rules (initial) 12 B-splines Singleton 2.8¢-° 5.le=3 |

23 rules {optimized) 12 B-splines Singleton 3.2e75 1.9e73

36 rules {initiat) 12 B-splines Lincar 1.9~ 2.9¢70

24 rules (optimized) 12 B-splines Linear 2.0¢ B 6.4e"%
[6l 25 rules {inilial) 25 Gaussians (2D} | Singleton 2.3e 1 Adle~T |

20 rules (optimized) | 20 Gaussians (2D) | Singleton 6.8¢ 4 2.4e~1
This paper 7 rules (initial} {4 triangulars | Singleton 1.2e"7 3.5e~7% |
without step 2 | 7 roles {optimized) 14 triangulars Singleton 1.9¢ 3 7 5e~8

5 rules (initial) 10 triangulars Linear 3.8¢8 2.0e~%

5 rules (optimized) 10 uiangulars Linear 6.1c4 3.06_;_‘
This paper 10 rules {initial) 10 riangulars Singleton lde™? 1.5¢~
Fig. 2 & rules (optimized) 5 triangulars Singleton l4e~? 7.6e71

7 rules (initial) 14 triangulars Linear 1.8¢7% 1.0e73
Fig. 3 5 rules {optimized) 5 triangulars Linear 5.0e-4 4,2e71

! The low MSE on the training data is in contrast 1o the MSE for the evaluaticn data which indicates avertraining.

0.5 and 0.8 for removing sets similar to the universal set (“don’t
care” terms). .

Without complexity reduction: First a singleron TS model
consisting of seven rules was obtained by fuzzy ¢-means clus-
tering and genetic optimization. The MSE for both training
and validation data were comparable, indicating that the initial
model is not over-fitted. By GA optimization, the MSE was re-
duced by 84% from 1.2¢~2 to 1.9¢™? on the training data, and
by 79% from 3.5 =2 to 7.5¢2 on the evaluation data.

Then a TS modet with linear consequents was considered.

Because of lhe more powerful approximation capabilities of the
functional consequents, an initial model of only five rules was
constructed by clustering. The MSE for both training and val-
idation data were, as expected, betler than for the singleton
model, Moreover, the result on the validation data {low fre-
quency signal) is twice as good as on the identification data,
indicating the generality of the obtained model, By GA opti-
mization, the MSE was reduced by 84% from 3.8¢7% to 6.1e™*
on the training data, and by 835% from 2.0e =3 10 3.0¢™* on the
evaluation data,
With complexity reduction: The proposed method in Sec-
tion V including the complexity reduction step (step 2) was con-
sidered. Due to the possibility of rule reduction, an initial sin-
gleton TS mode! with as much as 10 fuzzy rules and in total 20
fuzzy sets was constructed by clustering (Fig. 2 Top).

During the iterative complexity reduction step, in each itera-
tion the model was sought reduces, simplified and finally opti-
mized by the GA, The model was reduced as follows: (i} sim-
plification reduces from 10 + 10 10 © + 5 fuzzy sets, (if) simpli-
fication reduces to 7 -+ 4 sets, (iii) rule reduction removes three
rules, resulting in 7 rules and 5 + 4 sets, (iv) simplification re-
duces to 4 + 2 sets, and (v) one rule was removed. The final
model, has only 6 rules, using 3 + 2 fuzzy sets (Fig. 2 Middle}.
The identification and validation results as well as the prediction
crror, arc presented in Fig. 2 Bottom, The resulting singletan TS
model is compact and has good approximation properties, ex-

cept in the low region were almost no data was provided. The
reduced model with 6 rules and 5 sets is as accurate as the initial
model with 7 rules and 4 sets,

Finally a TS medel with linear consequents was studied. The
initial model was obtained with 7 clusters, resulting in a mode!
with 7 rules and 14 fuzzy sets (Fig. 3 Top). The model was re-
duced as foltows: (i) simplification reduces from 7 + 710 5 +
5 fuzzy sets, (i) rule reduction removes two rules resulting in
5 rules and 3 + 4 sets, (iti) simplification reduces to 2 + 4 sels,
and (iv) simplification to 2 + 3 sets. The resulting TS model
with linear cansequents has only 3 rules using 2 + 3 fuzzy sets
(Fig. 3 Middle). The identification and validation results as wetl
as the prediction error, are presented in Fig. 3 Bottom. The
approximation properties are better than for the singleton TS
modei (Fig. 2 Boitom). The linear consequent TS mode! also
extrapolates welt and the difficult part in the low region is nicely
approximated. Once again, the reduced and optimized TS mode;
with 5 rules and 5 sets is comparable in accuracy to the initial
TS model with 7 rules and 14 fuzzy sets.

Fram the yesults summarized in Table I, we see that the pro-
posed modeling approach is capable of obtaining good results
using fewer rules and fuzzy sets than other approaches reported
in the literature. Moreover, simple triangular membership func-
tions were used as opposed to cubic B-splines in [16] and
Gaussian-type basis functions in [15), [6}. step, not only ac-
curate, but also compact and

VII. CoNCLUSION

We have described an approach to construct compacl and
transparent, yet accurate fuzzy rule-based models from mea-
sured input-output data. Several methods for modeling, com-
plexity reduction and optimization are combined in the ap-
preach, Puzzy cluslering is first wsed to obtain an initial rule
base. Rule reduction, similarity based simplification and GA-
based optimization are then used in an iterative manner o de-
crease the complexity of the model while maintaining high ac-
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Fig. 2. Singleton consequent TS model; Top: Inital model {10 rules, 20 fuzzy
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Identification and validation for the optimized fuzzy model.

curacy. We successfully applied the proposed algorithm to a
problem known from the literature. The accuracy of the cb-
taincd models were comparable to the resulis reported in the
literature. However, the obtained models use fewer rules and
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Fig. 3, Linear consequent TS model; Top: Initinl model (7 rules, 14 fuzzy sets),
Middle: Simplificd initial model (S rules, 5 fuzzy seis), Reliem. ldentifica-
tlon and validation for the optimized fuzzy model.

tion to modeling and control,” FEEE Trans. Sysiems, Man and Cybernetics,
vol. 15, pp. 116-132, 1985,

[8] I Yen,C Liac, B. Lee, and D, Randolph, “A hybrid approach to modeling
metabelic systems using genslic algorilhm and simplex method,” 1EEE
Trans. Sypiems, Man, and Cyberneties - Parr B, vol 28, pp. 173191, 1998,

fuzzy sets than other models reported in the literatre,

]
(2}
[31

H

131

(6]

gl

REFERENCES

R. Babudka, Fuzzy Modeling for Controd, Kluwer Academic Publishers,
Boston, 1998,

M. Seines and T 1ellendoorn, “Orthoponal wansforms for ordeting and
reduction of fluzzy rules,” in FUZZ-TEEE, San Antonio, Texas, USA, 2000,
M. Seines, R. Babugka, U, Kaymak, and H. R, van Naulg Lemke, “Sim-
ilarity measures in fozzy rule hase simplification,” JEEE Trans. Systems,
Man and Cvbernetics - Fart 8, vol, 28, pp. 376-386, 1998,

M. Semes and 1A Roubos, “Transparem fuzzy modeling using fuzzy
clustering and GA's in MAFIPS, New York, USA, Junc 10-12, 1999, pp.
198 202,

). Hohensohin and ). M. Mendel, “"Two-pass orthogonal least-squares algo-
rithin to train and reduce fuzzy logic systems,” in FUZZ-JEEE, Orlando,
USA, 1994, pp. 696--700,

I. Yen and L. Wang, “Simplifying fuzzy rule-based models using orthogo-
nal transformation methods,” IEFE Trans. Systems, Man and Cybernetics
- Part B, vol. 29, pp. 13-24, 1999,

T Takagi and M. Sugeno, “Fuzzy identification of systems and its applica-

1]

no

(1

{12}
{13
{14)
[15)

[15]

767

M. Seines, R, Babulka, and H, B, Verbruggen, “Rule-based modeling:
Precision and iransparency,” IEEE Trans, Systenrs, Man qand Cybernetics
- Part C, vol, 28, pp. 165-169, 1998,

). Valente de Ofiveira, “Semantic constraints for membership Function
optimizaton," JEEE Trans, Systemns, Man and Cybernetics Part A, vol. 29,
pp. 128138, 1999,

G.C. Mouzouris and J.M. Mendel, “Designing fuzzy logic systems for
uncertain environmems using a singular-value-qr decompasition method,”
in FUZZ-JEEE 96, New Orleans, LISA, Septemiber 1996, pp. 295-201.
G.W. Stewart, "Rank degeneracy,” SIAM J. Sei. and Star. Compui., vol. S,
pp. 403413, 1984,

G.H. Golub, “Mumerical melthods for selving least squares problems,”
Numerical Mathematics, no. 7, pp, 206-216, 1965,

Z. Michalewicz, Genetic Algorithms + Data Structeres = Evolution Pro-
grens, Springer Yerlng, Mew York, 2nd edition, 1994,

L. Wang and ). Yen, “Extracting fuzzy rules for system modeling using a
hybrid of genetic algorithins and Kalman filler,” Fuzzy Sets and Sysiems.
vol. 101, pp. 353-362, 1999,

I Yen and L. Wang, “Applicaiion of statistical information criteria for
optimal fuzzy model consicaction,” TEEE Trans. Fuzzy Systems, vol. 6,
pp. 362-371, 1998,



