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Absrmcr-Gencllc Algorithms (GAS) and other cuolutlonnry opllmlza- 
tlon methods to design fuzxy rules from data for system modeling and 
cla~sificatlon havc recelved niucfi attcntlon in remnt IIteraturc. We show 
that dilfcrent tools far modcllng and coniplcxlly reduction can br favorably 
comblned In a scheme with GA-based parameter optlniiration. Fuzzy CIIIS- 
tering, nile reductton, rule bare slmpliflcatlon and canstrnlncd gtnctic opti. 
mization nre Integrated in a date-driven modeling schemc with low hiimnn 
intervention. Attractlve models wtth rcspcct to compactncss, transparency 
and accuracy, are thc rcsult o f  this symbiwts. 

I .  INTRDDUCTlON 

WC focus on learning fuzzy rules from data with low human 
intervention. Many tools to initialize, tune and manipulate fuzzy 
modcts have been developed. We show that different tools can 
be favorably combined to obtain compact f w u y  rule-based mod- 
els of low complcxity with still good approximation accuracy. 
A modeling schemc is presented that combine four p r c h u s l y  
studied Lools for d e - b a s e d  modeling: fuzzy ctustcting [ 11, rule 
reduction by orthogonal techniques [21, similarity driven simpli- 
fication [3], and evolutionary optimization [4]. 

Fuzzy clustering [ l ]  is used to obtain an initial rule-based 
model from sampled data. Since rules obtained and tuned by 
daia-driven techniques often contain redundancy in terms of 
similar (overlapping) fuzzy sets, similarity driven rule base sim- 
plification is applied to [3] detect find mergcs compatible fuzzy 
sets in the model nnd to remove "don't-care'' terms. TO reduce 
the number of rules, we apply a simple QR decomposition based 
rulc rcduction technique proposed in  [Z]. Finnlly, since these 
methods arc based on the sepnrate identification and manipuln- 
tion of the models premise and consequent parts, a constroined 
real-coded GA is applied io simultnneously Gnc-tune (optimize) 
all parameters in the resulting rule-bnse. In (41, we showed that 
such n GA was able to strongly improve the models performance 
by small altcrations to the rules. 
By combining these tools in an iterativc loop we propose a 

.powerful fuzzy modeling schcme. The algorithm starts with an 
initial model. obtained here by mcans of fuzzy clustering in the 
product space of measured in -  and outputs, Successivzty, rule 
reduction, rule bnse simplificarion and GA-based opiimization 
are applied i n  an iterative manner. The GA performs a multi- 
criterion search for model accuracy while trying to exploit the 
possible redundancy in thc model. In the ncxt iteration, this re- 
dundaacy will be used by the rule reduction and rule basc sim- 
plification tools to rcducc and simplify thc rule base. The re- 
sult is a compact fuzzy rule base of low complexity with high 
accuracy. Whcn the itcrations terminate, a final GA-based op- 
timization i s  performed to increase accuracy and transparency, 
as opposed to the GA i n  thc iterative loop which tries to exploit 
red u n dnnc y. 

The next scclion rliscusses datn-driven fuzzy modcling. Then, 
in Section I11 the rulc rcduction and rule base simplification 
tools sre described. Section IV presents tho GA-based opti- 
mization strategy, and in Section V thc resulting, total model- 
ing scheme is givcn. In Section VI, thc method is dcmonstrnted 
on a nonlincar dynamic systems model known from the litera- 
ture, and thc rcsults we compared to other methods published. 
Section VI1 concludes the paper. 

11. DATA-DRIVEN MODELING 

A. The TS fuzzy ntodel 
Rule-based models of the Xikagi-Sugeno (TS) type [7 j  are 

especially suitable for the approximation of dynamic systems. 
The rute consequents are often takcn to be lincar functions of 
the inputs: 

Ri ; If z1 is  Ail and . , . 5,  is A,, then Gi = (1) 
( i l l 1  -1. . . , , &"Z, 4- <i{n+l)r i 7 1 , .  . . , M .  

Here ;L? = 1x1, ~ 2 , .  . I , znIT is the input vector, is  the output 
of the ith rulc, and A , I , .  . . ,Ain are fuzzy sets defined in the 
antecedent space by membership functions P A , ,  (z,):I-+[O, 11. 
& arc the consequent parameters and M is the number of rules. 
The total output of the model is coinputed by aggregating Ihc 
individual contributions of the rules: 

M 

t=l 

where gi(a) i s  the normalized firing strength of the ith ruic: 

In the following, we will apply ihc frequently used triangular 
membership functions p i j  to describe the fuzzy sets Ai j  in the 
rute antecedents 

U. IdcnfiJ?cationfrom data 

Givcn N inpuboutput data pairs {a!k,gk), the typical idcnti- 
fication of the 'I3 model is done in two slcps: first the fuzzy rule 
antccedcntx arc determinctl, and then least sqiiares parameter es- 
tiinntion is applicd to determine thc consequents [ I ] ,  [8]. In the 
examples i n  this paper, the snicccdents of thc initial fuuzzy rule 
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bases arc obtained from fuzzy e-mcans clustering in the product 
space oilhe sampled input-output data. Following thc approach 
in [I], [9], each cluster represent a certain region in the systems 
input-output state-space, and corresponds to B rule in the role 
base. The fuzzy sets in  thc rulc antccedent is obtained by pro- 
jecting the cluster onto the domain of the various iiiputs. 

U. ?rntrsparcncy and accuracy 
Ilie initial rule base constructed by fuuzzy clustering typically 

fulhlls many criteria for transparency and good semantic prop- 
erties [ IO]: 
I Moderate number of rules: fuxzy clustering helps ensure 

a comprehensive sized rule base with rulcs that describe 
important regions in  the data. 
Normality: by fitting parameterized Functions to thc pro- 
jected clusters, normal and comprehensive membership 
functions are obtained that can bc taken to represent lin- 
guistic tcrms. 
Coverage: the deliberate overlap of the clusters (rules) and 
their position in populated regions of the input-output data 
space ensure that the model is  able ta derive an output for 
all occurring inputs. 

However, the approximation capability of thc initial rule base 
remains suboptimal. The projection of the clusters onto the in- 
put variables, and their approximation by parametric functions 
like, e.g., triangular fuzzy sets, introduce a structural error since 
!he resulting premise partition differs from the cluster portition 
matrix. Also, the scparatcd identification ofthe rulc antccctlents 
and the rule consequcnts prohibits interactions bctwccn them 
during modeling. To improve the approximation capability of 
the initial model, a GA based optimization method is applied. 

The transparency and compactness of the initial rule base are 
oftcn also subject to improvement. The distinguishability of the 
rulcs and the terms (fuzzy sets) resulting from the projection de- 
pends, among others, on the difficult determination of the cor- 
rect number of clusters (rules) in the data an thcir position i n  
the product spacc. To reducc thc rule base complexity, we ap- 
ply two meihods for rule reduction and rule base simplification, 
respectively, as explained in the next section. 

111. RULE DASH REDUCTION AND SIMPtlPlCATlON 

The complexity of n rulc basc is dctcrniincd by the numbcr 
of rules, and the number of diffcrent fuzzy sets used in thc rulc 
antcccdcnis. Both can be reduced by the techniques described 
in this scction. 

A. Rule reduction with P-QR 

Various rulc reduction strategies bnsed on rank-revealing 
techniques like the singulw value decomposition (SVD) havc 
been proposcd for fuzzy models [SI. Such tccbniques transform 
the rule selection problcm into the prohlcm of picking the most 
influcnlial columns of the firing matrix P = [ p ,  ,p2,. . I , p M ]  E 
R N x M ,  which cnntnins the firing strength of all the M rules 
for thc N inputs mk. The elements in the columns p i  = 

[ p ~ , . , p 2 ~ ,  . , p ~ i ] ~  are the nortnalized tiring strengths calcu- 
lated as in (3). 

111 [2] it is shown [hat a simple pivoted QR (P-QR) dccom- 
position of the models firing matrix P can be used to obtain an 

importance ordering of the rules in the rule base without the 
need for estimating the SVD of P. Moreovcr, tinlike compara- 
ble methods ~ u c l i  as the SVD-QR i l l ] ,  the ordcring produced by 
the P-QR does not depcnd on an estimate o r  thc effective rank 
of P. 

The QR decomposition of P is given by Pn = QR, where 
L7: E W M x M  is R permutation matrix, Q E W N X  ]ins ortlionor- 
mal columns and R f R M x  is upper triangular. I f  P has full 
rank, thcn R is nonsingular (invertible). When P is (near) rank 
deficient, it is  desirable to sclect the permutation matrix n such 
that the rank deficicncy is  exhibited in R, having a small lower 
right block Rcl; E Rkxk [12]: 

= [ "d' :;; ] 
It can be shown that for the M - k i. l ' ih  singular vatuc of P, 
wc havc u ~ - k . , . l ( P )  I I[RkkII. Therefore, if IIRkkll is small, 
thcn P has at least k small singular values. 

The QR decomposition is uniqucly determined by the permu- 
tation matrix fl which can be computed by a column pivoting 
strategy [ 133. The pivoting algorithm favors columns of R with 
a high norm, related (through orthogonalization) to the norm 
of the columns.of P. For a fuzzy rule base the norms of the 
columns of P correspond to thc firing strength andlor firing fre- 
quency of the rules. Thus, P-QR picks first ihc most active and 
least redundnntof the remaining rules. 

B. Similurio driven rule base sintpIificafinn 

The similarity driven rule base simplification mcthad was 
proposcd in [3]. A simlcrity measure i s  used to quantify the 
redundnncy among the fwzy  scts in the rule base. Similar fuzzy 
sets, representing compatiblc concepts, are merged in order to 
obtain a generalized concept represented by a new fuzzy sei that 
replaces the similar ones in thc rule base. This reduces the nuin- 
ber of different fumy sets (linguistic terms) used in the model. 
The similarity measure is also used to detect "don't care" terms. 
i.e., fuzzy scts iii which all elements of a domain havc a mem- 
bership close to 1. Similarity driven simplification differ from 
rule reduction in that it is driven by the similnrity among filzzy 
sets defined on the domain of the same antcccdenr variable, and 
not in the product spnce of the inputs. Thus. the modcts term set 
can be rcduced without necessarily any rules being rcmoved. 

We apply a similnrity inensure based on the set-iheorctic op- 
erations of intcrscction and union: 

where 1.1 dcnotcs the cardinality of a sei, and the n and U opcr- 
ators rcprcscnt thc inierscction and union respectively. For dis- 
crete domains X = {xjlj = 1,2,. . . , m}, this can be written 

where A and V nre the minimutn and maximum operators, rc- 
spectively. S is a symmetric inensure in [0,1]. I f  S ( i , j )  = 1, 
then the two membership functions A ,  and A j  are equal and 
S(i, j) becomes 0 whcn the membership functions are non ovcr- 
lnppi nE. 
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IV. REAL CODED GENETIC ALGORITHM 

A real-codcd GA [ t4] is used for thc simultancous optimizn- 
tion of the parameters of the aatccedenl membcrship functions 
and the rule conseqiients, Thc main aspects of the proposed CA 
arc discussed bclow and thc implemcntation is summarized in 
Section W E .  

A. Fuzzy model representdoll 
Chromosomes arc used to dcficribe thc solutions. With a pop- 

ulation sizc L, we encodc the parameters of cach ruuzzy modcf 
(solution) in R chromosome si, I = I , .  . . , L, as B sequence of 
elements describing the fuzzy scts in thc rule antecctlonts 101- 
lowed by the parameters of the nile consequents. A TS tnodel 
wi th  h.1 fuzzy rules is encoded as 

st = (ant l , .  .   ant^,<^, . . . , C M )  , (7) 

whcrc C, contains the conscqubnt paramcters Cis  of rule R,, and 
ant, = ( I L ~ I ,  b i l ,  GI, I . . , ajn, b,,, etn, contains thc parametcrs 
of thc anrecedcnt fuzzy sets A i j ,  j = 1 ! .  I . , n, according to (4). 
In the initial population So = { s l l .  I . , B:} ,  8: is the initial 
model, and s:, . . , s: arc created by random variation with a 
uniform distribution around 5:. 

D. Sclectiorzfitriction 

The roulette wheel selcction method [ 141 is u5ed to select nc 
chromosomes for operation. The chance on the roulette-whecl 
is adaptive and is given as PI/ Cl, Pp where 

and Ji is tho perforrnance of the model encoded in chromosome 
81. The inverse of the selection function (P;') is used to se- 
lect chromosomes for deletion, The best chromosome i s  atways 
preserved in the papulation (Elitist selection). 

C. Generic operators 

Tho classical opralors, simple arithmetic crmmver and uni- 
form mutation, and four special real-coded operators ilie used 
in the GA. In the following, *r E [0,1] is  R random num- 
ber (uniform distribution), t = 0, 1, . . . ,T is the generation 
number, spr and s, are chromosoines selected for operation, 
IC f {l, 2 , .  . . N }  is the position of an clement in the chromo- 
some, and and w S a r  we the lower nnd irppcr bounds, rc- 
spectively, on the parameter encoded by element k: 

1 .  Uniform mufarion; n random selected element V k ,  IC E 
{ 1,2,. . . , N) i s  replaced by vi which is  a random num- 
ber in the range [U?, upu"]. The resulting chromosome 
l g 8 1 - k I  = (Vi,. . . 1 4,. , . I Um). 

2 .  Multiple uniform nirrrcltion; uniform mutation of n ran- 
domly selected elements, where n is also selected at ran- 
dom from { i ,  . . . , N ) .  

3. Goussim mutarion; all dements ora chromosome arc mu- 
tntcd such that ah+' = (w;~. . . , vi,. . , ,&) where vl, = 
uk -t f k ,  k = 1 ,2 ,  , . . , hr. Here fk is a random numbcr 
drawn from a GausJian distribution with zero mean and an 
adaptive variajlcc uk = (=)('T''< I- ). tuning per- 
Formed by this operator bccomes fincr and increases. 

U 

4. Siinple ariihmetic crossover; S: and s:,, nre crossed 
over at thc kth position. l'lic resulting offsprings 
arc: SE+' = (VI,. . .  , u k , w ~ . , . l , ,  . .  ,wly) and si+,"' = 
( ~ 1 , .  . . , wp, u k + l , .  . . , U N ) ,  whcre k is selected at random 
from (2 , .  . . , N - I}. 

5. Whole orithhnierdc crossover; ii linear combination of S :  

and SL rcsuliing in st;" = ~ ( 8 : )  t (1  - r)sL and s:;~' = 

6. Ifeurisric crossover; 8; and st arc combinctl such that 
si'' = s i  -1- .(sf, - 8 ; )  and st f '  = rr: f Y(S; - s$). 

Y(&)  + (1 - r)st. 

U. Consrraints 

Thc optimization performed by the GA is ~iibjccted to two 
types of constraints: pariiiiun and search spacc. The parti- 
tion constraint prohibits gaps in the partitions of thc input (an- 
tecedcnt) variables. Thc cotling ofa fuzzy set must comply with 
(4), i.c., a 5 b 5 c. To avoid gaps i n  the partition, pairs of 
ncighboring fuzzy scts are conrrrainctl by U R  5 CL, where L 
and R denote left and right set, respcctively. 

The GA search spacc i s  coostmincd by two user defined 
bound-paratnctcrs, a1 and az, that applies Io Ihe antecedcnt 
and the consequent parameters of the rulcs, Icspcctively. The 
first bound, a l ,  is intended to innintain the distinguishability 
of the models term set (the fuzzy scis) by allowing the pa- 
ramctcrs describing the fuzzy scts Aij to vary a n l y  within a 
bound of fa1 IXjl around their initial values, whcrc IrC,l is the 
length (range) of the domain on which the Fuzzy sets A l j  are 
defined. .The second hound, 0 1 2 ,  is intended IO maintain thc 
loc~l-nmdd interpretation of the rules hy allowing the gth con- 
scqucnt parameter of the ith rule, to vary within a bound of 
&taz(maxi(<,,) - mini((+,)) around its initial value. 

The search space constraints are coded in thc two vectors, 

ing thc upper nnd lower bounds on cacti of the N elemcnts in a 
chromosomc. During generation of ihc initial parlition, and i n  
the case of a uniform mutation, elemcnts arc generated at ran- 
dom within these bounds. 

vmnx = (Vyx,. . . , U"Q'1 and wmtc = { v p 7  . . . ,U$'"], giv- 

E. Generic a 1~ o rithin 

Given thc pattern matrix Z and a fumy rule base, sclcct thc 
number of ge~eratiOnS T, the popularion sizc L,  the number of 
operations lac and the constraints al and 0 2 .  Lct SL be the 
current population of solutions s t ,  I = 1 , .  . . , L,  and lei J t  be 
the vcctor of corresponding values of the evaluntion function: 

I .  Creatc initial chromosome 3: from tha fuzzy rule base. 
2. Calculate the constraint vcctors U'"'" and vma" using 6?, 

a1 and a2. 
3. Create the initial population So = { B Y , .  . . , S O L }  where 

sy7 I = 2, . . . , L are created by constrained random vnri- 
ations around s t )  ant1 ttie partitroxt coiistraints app~y. 

4. Repeat genetic optimizationfor ! = 0, 1,2, . . , 7' - 1. 
(a) EvaIuatc 
(b) Select nc chromosomes for opcratioti. 
(c) Select nc chromosomes for deletion. 
(d) Operafc on chrotnosotnes acknowledging the search 

(e) Implcmcnt padiion constraints. 

and obtain J t .  

space constraints. 
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(0 Crcatc new population S l f ’  by substituting thc opcratcd 
chromosomcs for thosc selec[ctl for deletion: 

5.  Sclcct bcst solution from S T  by evaluating J ‘  . 

v. PI<OPOSEO FUZZY MODELING SCllEME 

Wc propusc I I  fuzzy modeling approach that conibines thc 
modeltng, tuning and cotnplexity reduction tools described 
above. An initial fuzzy modcl is first obtained from dntn by 
Cumy clustering. Then, the model is succcssivcly rcrluccd, sim- 
plificd imtl uptimized in an iterative fashion. After termination 
of thc iterations, a last GA- bnsed fine tuning is donc. 

I .  h i t i d i z d m :  Obtain initial fuzzy inodcl. 
2. Conpkxiry reducrion: Repeat tinti1 tcrininlt’ ion: 

(a) Rulc rcduction according to user prererence after visual 

(b) Similarity driven rulc basc simplification 
(c) CiA optimizalion with redundancy objective: 

Motlcl accuracy while cxploiting redundancy 

Model accuracy with well scpnratcd fuzzy sets 

inspcction or P-QK ranking 

3.  GI\ finc tuning with transparency objective: 

I n  step 2 of the algorithm, user intervcntion is ncedcd. The 
rille ordering t)y the P-QR is visualizcd for the user to select the 
number ofrulcs to rciiiovc. Stcp 2 tcrniinalcs when the rule t w e  
can not bc fiirthcr rctluccil or simplified. 

‘Ihc motlel accuracy is  measured in terms ofthc i t tennsqrwed 
error (MSD): 

(9) 

whcre y is the true output and ?j is the model output. hi thc 
GA-based optimization, the MSE is combincd with R similarity 
measure. In step 2, similarity is rewarded, that is, thc CA trics 
to cmphasizc thc reduntlsncy i n  the model. This redundancy is 
then uscd to remove unnecessary rules or fuzzy sets in the next 
itcration. In step 3 of the algorithm, the final fine tuning, simi- 
larity among fuzzy sets is pennlized to obtain a distinguishable 
tertii set for lingriistic intcrpretation. Thc objective thc GA is 10 
minimize the cost function 

3 = (1 -I- AS*). M S B ,  (10) 

where S* i: [ O ,  11 is a the averagcof thc maximum pairwise sim- 
ilarity prcscni i n  each input, i.e., S* is an aggregated similarity 
measure for the total model. The weighting function X f [-l,l] 
determines whether similarity i s  rewarded (A < 0) or  pcualized 
(A > 0). 

VI.  EXAMPLE: NONLiNEAI< PLANT 

We considcr the 2nd ordcr nonlincar plant studied by Wmg 

( 1  1) 

nndYcn i n  [ l5] , [16],  161: 

g ( i )  :: g(y(k - I), y(k - 2)) -I- u ( k ) ,  with 

‘I’hc god  is to approximate the notilinear component g(y(k - 
I), g ( k  2)) ofthc plan1 with a fuzzy model. [n [IS], 1100 siinu- 
lilted data points were generated froin tlic plant modcl ( I  1). 200 

g0 
- 1  

o 50 too 150 200 250 so0 350 JW 

k 
Pig. I .  I n p ~  u ( k ) ,  ilnfarced system ~ ( b ) .  nntl oiitlikt y(k) ofthe plnnt in ( I  1). 

snmplcs of identification data wcrc obtaincd with a randolii in- 
put signal u ( k )  iiniforinlyrlistributcrl i n  ( - , 1 . 5 , 1 . 5 ] ,  followerl by 
200 samples of cvaluation data oblsincd using a sinusoid input 
signal u(k )  = sin(2xk/25) (Pig. 1). 

A ,  Soluhurs in  the literature 

We compare oiir results, witb those obtaincd by the three dif- 
ferent a p p r o a c h  descrihed below. ‘I’hc bcst results oktnined in 
cnch case mc summarized in Table I .  

In  [15] a CA was combined with R Knlinan filter to obtain a 
fumy modcl of thc plnnt. The aniccctlent fiizzy sets nf 40 rules, 
encoded hy Gaussian mcinbership functions, wcrc detcrmincd 
initially by clustering and kept fixcri. A binary CIA was usctl 
to sclcct ii subset of the initial 40 rulcs in  order IO produce a 
more c o m p m  rulc base with better gencralizntion properties. 
The consequents of thc various models in thc Gh population 
were estimated akcr cach gcncrntion by the Kalman filter, and 
an information criterion was uscd ns the evaluation funclion to 
balancc thc trndc-off between rhc nunibcrof rules and thc model 
accuracy. 

In [ 161 various information critcria was used to sucres.rivcly 
pick rules from n set of 36 rules in ordcr to obtain a compact, 
but accurate model. The initial rulc base was obtnincd by pnr- 
titioning cach of the two inputs ~ ( k  - 1) and y(k ~ 2) hy six 
equally disrributcd fuzzy scts. The rules wcrc picked in  aa order 
determined hy an orthogonal transform. 

In [6] various orthogonal transforms for rulc sclcction and 
rule ordering wcrc studied using an initial modcl with 25 rules. 
In this initial modcl, 20 nilcs were obtaincd by clustering, while 
five redundnnt rulcs wcrc added to evaluatc thc sclcction pcrfor- 
mancc of thc studied tecliniqucs. 

R. Pr#pQJ.ed nppmack 

We applicd both the inotlcling approach proposed in  Sec- 
tion V and its predccessnr, prcscntcd i n  [4], which does not con- 
tain ttic second step (the complcxity rcduction) uf thc scllcmc 
proposed in Section V. Fur both methods, ‘1’s models with ; i s  

well singlcton as linear conscqucnt funcrions wcrc studicd. The 
GA was applicd with L = 40, n~ .- 10, LII = 25%. 112 = 25% 
and 1’ = 1000 in the final optiinizntion arid TI‘ = 2110 i n  thc 
coinplcxity rcrhiction step. The h w h o l t l  for sct mcrging was 
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TABLE I 
FUZZY MODELS FOR TIlE UYNhMlC P L A N T  Al.[. MOUELS A R B  01: THE TAKAGI-SUCENOTYPT.. 

28 rules ?optimized) 
[I61 36 rulcs (initial) 

23 rules (optimizcd) 
36 rules (initial) 
24 rules (optimized) 

t61 25 rutcs (inilial) 
20 tules (optimized) 

This paper 7 rules (initial) 
7 rules (optimized) 
5 rules (initial) 
5 rulcs (optimizcd) 

This paper 10 rules (initial) 
Pig. 2 6 rules (optimixed) 

Fig, 3 5 rules (optimized) 

without step 2 

7 rules (initial) 

No. of  rulcs I No. of sets Consequent I MSE train 1 MSE ewl 
(initial) 1 40 Gaussians (2D) I Singleton I 3.3e -' 1 0.9e-'' 

28 Gaussians (2Dj Singleton 3.3e 6.Oe-l 
I2 Baplines Singleton 2.8ec5 5. le -a  
12 E-splines Singleton 3.ZeV5 1.9e-s 
I 2  B-splines Lincar 1.9e-4 29e-9  
I 2  B-splines Linear 2 . 0 ~ ~  6 . 4 ~ ~  

25 Goussians (2D) Singleton 2.3e-" 4 . I e - C  
20 Gaussians (2D) Singleton 6.8e"4 2.4e-'l 

14 triangtdars Singleton 1 . 2 ~ 7 ~  3.5,-2 
14 triangulars Singleton 1 . 9 ~ - ~  7 lie-3 
I O  triangulars Linear 3.8e-3  2.0e-3 
I O  triangulars Linear 6 . 1 ~ ~  - 3.0e-' 
10 irinngulars Singleton 1 . k  -2  1 . 5 C 2  
5 rrimgulars Singlckon 1 .k  - 3  7.6e-q 
14 triangulars Linear I .%-"  1.0ec" 
5 triangulars Linear 5.Dec3 4 . 2 ~ ~  

0.5 and 0.8 for removing sets similar to the universal SCI. ("don't 
care" tertns). 
Without complcxity reduction: First a sirigleron TS tnodel 
consisting of seven rules was obtained by fuzzy c-means clus- 
tering and gcnctic optimization. The MSE far both training 
and validation data were comparable, indicating that the initial 
modcl is not over-fitted, By Gh optimization, the MSH was re- 
duced by 84% from 1 .2cL2 to 1 .9e-3 on ihc training data, and 
by 79% from 3 . 5 ~ ~ ~  to 7.5em3 on the evalualion data. 

'l'hcn a TS tnodet with linear consequents was considered. 
Because of Ihe more powerful approximation capabilities of the 
functional consequents, an initial model of only live rulcs was 
constructed by clustering. The MISE for both training and val- 
idation data were, IS expected, beter  ttisn for the singlclon 
inodcl. Moreover, ttic rcsult on the vnlidntion data (low he- 
c]ucncy signal) is twice as good as on the identification data, 
indicating the gcnernlity of the obtained model, By GA opti- 
mization, the MSE w n s  reduced by 84% from 3.8em3 to 
on the training data, and by 85% from 2 . 0 ~ - ~  to 3.De-4 on tlic 
evaluation data. 
With complcxity reduction: The proposed method in Sec- 
tion V including the complexity reduction step (step 2) was con- 
sidered. Due to the possibility of rule rcduction, an initial sin- 
gleton TS model with as much as 10 fuzzy rulcs atid in totat 20 
fuzzy sets was constructed by clustering (Fig. 2 Top). 

During thc iterative cotnplexity reduction step, in each itera- 
tioil the niodcl was sought reduces, simplified and finally opti- 
inizcd by ihe GA. The tnodcl wns reduced as rollows: (i) sim- 
plihctition reduces from I O  + I O  IO 9 1. 5 fuzzy sets, (ii) simpli- 
fication reduces to 7 + 4 sets, (iii) rule reduction removes three 
rules, resulting in 7 rules and S + 4 sets, (iv) simplification re- 
diices to 1 + 2 scts, a n d  ( v )  one rule was removed. The Anal 
model, has only 6 rules. using 3 + 2 fuzzy scts (Fig. 2 Middle). 
The identification and validation results as well as thc prcdiction 
crror, arc presented in Fig. 2 Boltom. The resulting singleton TS 
inodel is coinpaci and has good approximation properlics. cx-  

cept in the low region were almost no data was provided. The 
reduced model with 6 rules atid 5 set5 is as nccuratc as thc iiiitial 
model with 7 rules and 14 scts. 

Finally a TS model with lhear consct]ucnts was studied. Thc 
initial model was obtained with 7 clusters, rcsulting in  a model 
with 7 rulcs and 14 fu7.x~ sets (Pig. 3 Top). The model was re- 
duced as folhws: (i) simplification reduces from 7 + 7 to 5 + 
5 fuzzy sets, (ii) rulc reduction removes two rules resulting i n  
5 rules and 3 + 4 scts. (iii) simplification rcduces to 2 + 4 sets, 
and (iv) simplification to 2 + 3 sets. l i e  resuliing TS inodct 
with linear conscqucnis has only 5 rules using 2 + 3 fumy sets 
(Fig. 3 Middle). The identification and validation results as weti 
as the prediction error, nre presentcd in Fig. 3 Bottom. The 
approximation properties are beiter than for rho singleton TS 
model (Fig. 2 Bottom). Thc linear consequent TS model also 
extrapolalcs welt and the dificult part in the low region is  nicely 
approximated. Once again, thc rcduccd and optimized TS modcl 
with 5 rulcs and 5 sets is comparable in accuracy to the initial 
TS model with 7 rules and 14 fuzzy sets. 

Ram the results summarizcd in Table I, wc sec that thc pro- 
posed modeling approach is capable of obtaining good rcsults 
using fewer rules and fuzzy sets than other qqxoachcs reported 
in the litcrature. Moreover, simple triangulnr membership func- 
tions were used a opposcd to cubic D-spliiics ill [ 161 and 
Gaussian-lype basis functions i n  [ 151, [6j. sicp, not only ac- 
curate, but also compact and 

VII. CoNcr.usroN 

We have dcscribcd an approach to construct compact and 
transparent, yet accuratc fuzzy rulc-bascd models from mea- 
sured input-output data. Scvcral methods for modeling, com- 
plexity rcdtiction and uplimiziition are combine0 in the ap- 
proacti. Fuzzy clusicring is first used to obtain an initial rule 
base. Rulc reduction, similarity based simplihcaiion and GA- 
based uptimimion arc then uscd in an itcrativc iiinniicr LO de. 
crcase the coinplcxity of thc model while maintaining high ac- 
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Fig. 2. Singlelon conscqiicnt TS model; Iniiiol inodel (10 rules, 20 hrzy  
scts). Middle; Sirnpliliatl inithl inodcl (6 nilcs. 5 fumy scts). Borrow 
ldciitificnrion and validation for rhc opt imixd fuzzy model. 

curacy. We successfully applied the proposed algorithm to a 
problcm known hotn the liternturc. Thc accuracy of the ob- 
tained models werc comparable IO the results reported in the 
lilcralure. Howcvcr, the ubtained models use fewer rules and 
fuzzy sets than othcr inurlcls reported in the literature. 
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