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Abstract 

This paper proposes a genetic-algorithm-based approach to the construction of fuzzy classification systems with 
rectangular fuzzy rules. In the proposed approach, compact fuzzy classification systems are automatically constructed 
from numerical data by selecting a small number of significant fuzzy rules using genetic algorithms. Since significant fuzzy 
rules are selected and unnecessary fuzzy rules are removed, the proposed approach can be viewed as a knowledge 
acquisition tool for classification problems. In this paper, we first describe a generation method of rectangular fuzzy rules 
from numerical data for classification problems. We next formulate a rule selection problem for constructing a compact 
fuzzy classification system as a combinatorial optimization problem with two objectives: to minimize the number of 
selected fuzzy rules and to maximize the number of correctly classified patterns. We then show how genetic algorithms 
are applied to the rule selection problem. Last, we illustrate the proposed approach by computer simulations on 
numerical examples and the iris data of Fisher. 
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1. Introduction 

Fuzzy-rule-based control systems have been applied to various problem (for example, see [14, 18]). Fuzzy 
rules in those control systems were usually derived from human experts. Recently several approaches have 
been proposed for automatically generating fuzzy rules from numerical data without domain experts 
[19, 21,24]. Tuning techniques for the membership functions of antecedent and consequent fuzzy sets have 
been also proposed in many studies. For example, Ichihashi and Watanabe [6-1 and Nomura et al. [16] 
proposed tuning techniques based on descent methods. Horikawa et al. [5], Jang [11-1 and Lin and Lee 1-15] 
combined the learning ability of neural networks with fuzzy control systems to form self-learning fuzzy 
controllers. Berenji and Khedkar [1-1 proposed a reinforcement learning technique for fuzzy control systems. 

Genetic algorithms [3, 4] have been also employed for the learning of fuzzy rules. For example, the 
membership functions of antecedent and consequent fuzzy sets of fuzzy rules were adjusted in [12, 13], the 
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Fig. 1. An example of the fuzzy partition of a two-dimensional pattern space by a simple fuzzy grid. 
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Fig. 2. A fuzzy classification system based on 90 fuzzy rules in five fuzzy partitions. 

fuzzy partition of an input space was determined in [i 7], and an appropriate fuzzy set in the consequent part 
of each fuzzy rule was selected in [22]. Appropriate fuzzy sets in the antecedent and consequent parts of each 
fuzzy rule were also selected by the fuzzy classifier system in [23]. 

In the above-mentioned studies, fuzzy-rule-based systems were mainly applied to control problems. Since 
control problems and classification problems are different from each other, we cannot apply fuzzy control 
methods to fuzzy-rule-based classification systems. For example, in fuzzy control the inference step consists 
of composing the outputs of all rules then applying a defuzzification procedure while in fuzzy-rule-based 
classification the outcome of each rule is independent and a method is provided for determining which rule 
outcome to accept. Few methods for generating fuzzy rules have been proposed for classification problems 
I-7-10]. Ishibuchi et al. [7] proposed a rule generation method from numerical data based on fuzzy partitions 
by simple fuzzy grids. Fig. 1 shows an example of the fuzzy partition of a two-dimensional pattern space by 
a simple fuzzy grid. The fuzzy classification method in [7] simultaneously employed all the fuzzy rules 
generated for several fuzzy partitions of different sizes. In Fig. 2, we show a fuzzy classification system based 
on 90 ( = 22 + 32 + 42 + 52 + 62) fuzzy rules generated for five fuzzy partitions. The main drawback of this 
approach is that the number of fuzzy rules is enormous especially for classification problems in high- 
dimensional pattern spaces. In order to remove unnecessary fuzzy rules from fuzzy classification systems, 
Ishibuchi et al. [9, 10] proposed a genetic-algorithm-based approach that can reduce the number of fuzzy 
rules in fuzzy classification systems. Genetic algorithms were employed for selecting significant rules from the 
set of generated fuzzy rules. 

Since the above-mentioned fuzzy classification methods were based on fuzzy partitions by simple fuzzy 
grids as shown in Figs. 1 and 2, all the fuzzy rules in those methods had square fuzzy subspaces. Fuzzy rules 
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Fig. 3. A two-class classification problem. Closed circles and 
open circles represent the given patterns from Class 1 and Class 
2, respectively. 

Fig. 4. A fuzzy partition with 36 fuzzy subspaces. 

with rectangular fuzzy subspaces, however, may be more appropriate than square fuzzy rules in many 
classification problems. As an example, let us consider a two-class classification problem in Fig. 3 where 
closed circles and open circles denote the given patterns in Classes 1 and 2, respectively. If we try to classify all 
the given patterns by fuzzy rules based on a simple fuzzy grid, a fine fuzzy partition and a large number of 
fuzzy rules are required (see Fig. 4 where the pattern space is partitioned into 6 x 6 fuzzy subspaces). On the 
contrary, if we use fuzzy rules with rectangular fuzzy subspaces, all the given patterns in Fig. 3 may be 
correctly classified by the following five fuzzy rules: 

Rule 1: If xl is very small then Class 1, 
Rule 2: If x l is very large then Class 1, 
Rule 3: If x 2 is very small then Class 1, 
Rule 4: If x2 is very large then Class 1, 
Rule 5: Ifx~ is not very small and xl is not very large and x2 is not very small and x2 is not very large then 

Class 2. 
Five fuzzy subspaces corresponding to these fuzzy rules are shown in Fig. 5. That is, all the given patterns 

may be classified by the five fuzzy rules with the rectangular fuzzy subspaces in Fig. 5. From the comparison 
between Figs. 4 and 5, we can see that the introduction of rectangular fuzzy rules has a large effect on the 
reduction of the number of fuzzy rules. This discussion motivates us to propose a genetic-algorithm-based 
approach to the construction of compact fuzzy classification systems with rectangular fuzzy rules. 

In this paper, we use the term "rectangular fuzzy rules" for referring to fuzzy rules that fire in rectangular 
(or hyper-rectangular) subspaces of a pattern space. This means that the antecedent fuzzy sets of a rectangu- 
lar fuzzy rule compose a fuzzy subspace whose support set is a rectangle (or hyper-rectangle). Examples of 
fuzzy partition of a two-dimensional pattern space are shown in Fig. 6. 

The outlines of the genetic-algorithm-based rule selection method proposed in this paper can be written as 
follows: 

Step 1. Divide each axis of a pattern space by using triangular fuzzy sets. In this fuzzy partition, we use 
different triangular fuzzy sets with various sizes as shown in Fig. 6. The shape and the location of each fuzzy 
set are fixed. 

Step 2. Divide the pattern space into rectangular fuzzy subspaces by using the triangular fuzzy sets in each 
axis. In this fuzzy partition, the pattern space is divided in various manners as shown in Fig. 6. 

Step 3. Generate a fuzzy rule for each fuzzy subspace. The generated fuzzy rules are fixed. 
Step 4. Select a small number of significant rules from the set of the generated fuzzy rules. 
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Fig .  5. Fuzzy subspaces corresponding to the five rectangular fuzzy rules. 
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Fig. 6. Fuzzy subspaces generated by specifying lr,~x = 3 and Jm,x = 3 and the labels of corresponding fuzzy rules. 

Genetic algorithms are applied only to the rule selection problem, and the membership function of  each 
antecedent fuzzy set is fixed and not adjusted. Therefore, we do not always obtain the optimal (or minimum) 
number of  rules. In order to compensate this inflexibility of each fuzzy rule, we first generate a large number 
of  fuzzy rules with various membership functions, then select a small number of  significant rules from them. 



H. lshibuchi et al. / Fuzz), Sets and Systems 65 (1994) 237 253 241 

This paper is organized as follows. In Section 2, we describe a generation method of rectangular fuzzy rules 
from numerical data for classification problems. A fuzzy reasoning method based on the generated fuzzy 
rules is also described in the same section for classifying new patterns. In Section 3, we formulate 
a combinatorial optimization problem to construct compact fuzzy classification systems by selecting 
significant rules from the generated fuzzy rules. This optimization problem has two objectives: to minimize 
the number of selected fuzzy rules and to maximize the number of correctly classified patterns. We then show 
how genetic algorithms are applied to this problem. In Section 4, simulation results for the numerical 
example in Fig. 3 and the classification problem of the iris data I-2] are shown to illustrate the proposed 
approach. In the application to the iris data, it is shown that 149 patterns (99.33% of the given patterns) can 
be correctly classified by only five fuzzy rules. Finally, Section 5 concludes this paper. 

2. Fuzzy-rule-based classification systems 

In this section, we describe a generation method of rectangular fuzzy rules from numerical data. Basically, 
this method is the same as the generation method of square fuzzy rules in [7] except for fuzzy partitions. 

2.1. Classification problems 

Let us consider a classification problem in the two-dimensional pattern space [0, 1] x [0, 1] for enhancing 
graphical illustration, It is assumed that m patterns xp = (Xpx, xp2), p = 1, 2, . . . ,  m are given as training data 
from M classes (CI: Class 1, C2: Class 2 . . . .  , CM: Class M). Fig. 3 shows an example of the classification 
problem of this kind (In Fig. 3, M = 2 and m = 121). Our aim is to construct a fuzzy classification system 
with rectangular fuzzy rules from these numerical data. 

2.2. Fuzz)' partition 

Let us divide each axis of the pattern space into K (K ~> 2) fuzzy subsets {A~ r, A~: . . . . .  At}. We can use any 
type of membership functions (e.g., triangular, trapezoid and exponential) for these fuzzy subsets. In this 
paper, the following symmetric triangular membership function is employed for A~ r. 

p ~ r ( x ) = m a x { 1 - 1 x - a . r , [ / b  K,O}, i = 1 , 2  ....  , K ( K > ~ 2 ) ,  (1) 

where tL~r(x) is the membership function of A~ and 

a~ ¢ = ( i -  I ) / ( K -  1), i =  1 , 2 , . . . , K ,  (2) 

b r =  1 / ( K -  1). (3) 

For the case of K = 1, let us define the membership function of A ~ as 

p~(x) = {10 if O~<x~<l ,  
otherwise. (4) 

In this case, the fuzzy subset A ~ is the unit interval [0, 1]. 
The pattern space is partitioned by Cartesian product of the fuzzy partition of each axis. In our former 

work [7-10], we employed the same fuzzy partition for each axis. This led to the fuzzy partition of the pattern 
space by square fuzzy subspaces as shown in Fig. 1. In this paper, we relax this restriction on the fuzzy 
partition to generate rectangular fuzzy subspaces. 

Let us divide the axis of the first attribute value (i.e., the horizontal axis: x~) into I fuzzy subsets 
{A{, At, . . . ,  A~} and the axis of the second attribute value (i.e., the vertical axis: Xa) into J fuzzy subsets 
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{A s, A~,..., AS}. The membership functions of these fuzzy subsets are given by (1)-(3) or (4). In this case, the 
pattern space is partitioned into I x J fuzzy subspaces: {A[ × AS: i =  1, 2 . . . .  , I; j = 1, 2 . . . . .  J}. Various 
fuzzy partitions of the pattern space can be constructed by combining different fuzzy partitions of the two 
axes. Let us assume that the possible values of I and J are I = 1, 2, . . . ,  lm~ and J -- 1, 2 . . . .  , J,n~x. Then the 
total number of possible fuzzy partitions of the pattern space constructed by the combination of 
fuzzy partitions of the two axes is /max×Jrnax . If we use all the /max ×Jmax fuzzy partitions, 
(1 + 2 + ... +/max) × (1 + 2 + ... + Jmax) fuzzy subspaces: {A[ x AS: i = 1, 2 , . . . ,  I; I = i, 2,...,/max; 
j = 1, 2 . . . . .  J; J = 1, 2, . . . ,  Jm~x} are generated. All the fuzzy subspaces for the case Oflm~x = 3 and Jm~ = 3 
are shown in Fig. 6 (The label R~ s of each fuzzy subspace is explained in the next subsection). 

2.3. Rule generation 

Let R~'] be the label of the fuzzy rule corresponding to the fuzzy subspace A[ x A] (see Fig. 6). As in our 
former studies [7-10], the fuzzy rule R~ t] for the two-dimensional classification problem can be written as 
follows. 

Rule R~]: If Xpl is A[ and Xp2 is A] then (xpl,Xp2) belongs to Class C~] with CF = CF~'], 

i =  1 ,2 , . . . ,1 ;  I =  1,2 . . . .  , /max;J= 1,2 . . . .  , J ;  J =  1 ,2 , . . . ,  Jmax, (5) 

where the consequent C[] is one of the M classes and CFi~ J is the certainty of the fuzzy rule R~]. Since one 
fuzzy rule corresponds to one fuzzy subspace, the total number of the fuzzy rules in (5) is 
( 1 + 2 +  ... +lma0X(1 + 2 +  ... + Jmax). 

The consequent Cil] and the certainty CF~ r] of each rule can be determined by the following procedure. 

[Procedure 1: Generation of fuzzy rules] 
(i) Calculate flcT for T = 1, 2 . . . .  , M as 

&T Z ' J = I~i(Xpl) x #j(Xpz). (6) 
xpeCT 

(ii) Find Class X (CX) such that 

flcx= max{tic1, tic2 ..... flCM } . (7) 

If tWO or more classes take the maximum value in (7), the consequent citf. of the fuzzy rule R~j J correspond- 
ing to the fuzzy subspace A~ × A] cannot be determined uniquely. In this case, let Ci ~] be ~b to denote that 
R/~] is a dummy rule. I fa  single class takes the maximum value in (7), C~] is determined as Class X (CX) in (7). 

(iii) If a single class takes the maximum value in (7), CFIJ~. is determined as 

C F'J - f l ) / ~  flrr, ij  "~ (flCX (8)  
1 

where 

M 

fl= ~ flcr/(M- 1). (9) 
T = I  

CT ¢~ CX 

In this procedure, the consequent C H u is determined as Class X (CX) which has the largest sum of 
I~[ (xpl J ) x #2 (Xp2) among the M classes in (7). Fuzzy rules with ¢ in the consequent part are dummy rules that 
have no effect on fuzzy inference for classifying new patterns. If there is no pattern in the fuzzy subspace 

I J A~ x At, a dummy rule is generated by this procedure at that fuzzy subspace. 
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The definition of the certainty CFi 1] in (8) and (9) is clear if we consider a two-class problem. Let us 
assume that [1c~ > tic2 for the fuzzy rule R~] in a two-class problem. In this case, the consequent class C~ is is 
Class 1 and the certainty CF~]. is (flc~ - flcz)/(flcl + tic2). If there are no Class 2 patterns in the fuzzy 
subspace ~ J " Ai x At, it follows that [1cl > flc2 = 0 and CF[ s = 1 (Maximal certainty). On the other hand, if the 
numbers of Class 1 patterns and Class 2 patterns in the fuzzy subspace are similar to each other, it follows 
that tic1 ~ tic2 and CF[~ ~ 0 (Minimal certainty). 

Let us denote the set of all the generated (1 + 2 + -.. + Ira,x)x (1 + 2 + ... + Jmax) fuzzy rules by SALL: 

SALL = {Rgt~s: i = 1, 2 . . . . .  I; I = 1, 2 . . . . .  lmax; J = 1, 2 . . . . .  J;  J = 1, 2 . . . . .  Jmax}. (10) 

We also denote the set of the fuzzy rules in each fuzzy partition by S~J: 

S I J = { R ~ ] : i = I , 2  . . . . .  I ; j = l , 2  . . . . .  J}, I = 1 , 2  . . . . .  Ira,x; J = l , 2  . . . . .  Jmax. (11) 

That is, S H is the set of the fuzzy rules in the fuzzy partition by the I x J fuzzy grid. The rule set SALL of all 
the fuzzy rules can be written as 

I~.~ J ~  

SALL = ~) U S'J- (12) 
1 - 1  J - 1  

The rule selection problem in this paper is to select significant fuzzy rules and to remove unnecessary fuzzy 
rules from the rule set SALL. This problem will be discussed in Section 3. 

2.4. Classification of  new patterns 

Let us assume that a subset S of the rule set SAL L is given to form a fuzzy classification system. Using the 
fuzzy rules in S, a new pattern xp = (Xpl, xpz) is classified by the following procedure. 

[Procedure 2: Classification of a new pattern] 
(i) Calculate ~cr for T = 1, 2 , . . . ,  M as 

:~cr max{#~(xpl ) x J ,J ,s R~/~S}. (13) = ~j (Xp2) X CFij :Cij = Class T and 

(ii) Find Class X (CX) such that 

ecx = max{ctcl, Ctcz, . . . ,  CtcM}. (14) 

If two or more classes take the maximum value in (14) then the classification of xp is rejected (i.e., xp is left 
as an unclassifiable pattern), else assign xp to Class X (CX) determined by (14). 

In this procedure, the inferred class is the consequent of the fuzzy rule that has the maximum value of 
J I J  J p[ (Xpl) X #j (Xp2) X CFij among all the fuzzy rules in S. If there are no fuzzy rules such that p[(xpl ) X ~j (Xp2) 

X CF~/ > 0 at xp, that pattern Xp cannot be classified. 
Examples of generated fuzzy rules and the corresponding classification result are shown in Fig. 7. Fig. 7(a) 

shows the 5 x 5 fuzzy rules in $55: 

S 55= {R~ 5" i=  1 , 2 , 3 , 4 , 5 ; j = 1 , 2 , 3 , 4 , 5 }  (15) j • 

In Fig. 7(a), hatched areas and dotted areas represent the following: 
(i) Hatched area: The consequent class of the generated fuzzy rule in this area is Class 1 (closed circles). 

(ii) Dotted area: The consequent class of the generated fuzzy rule in this area is Class 2 (opened circles). 
Fig. 7(b) shows the classification boundary obtained by specifying S = S 55 in Procedure 2. In Fig. 7(b), four 

patterns in Class 2 (open circles) are misclassified. 
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(a) Fuzzy rules in S s5 
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(b) Classification boundary 

Fig. 7. Fuzzy rules in the rule set S ~5 and the corresponding 
classification boundary. 
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(b) Classification boundary (a) Fuzzy rules in 566 

Fig. 8. Fuzzy rules in the rule set S 66 and the corresponding 
classification boundary. 

By using a finer fuzzy partition, we can increase the classification rate. For example, all the given patterns 
can be correctly classified by specifying S = $66 :  

S 66 = {R66"i= 1,2, 3,4,5, 6;j = 1,2, 3,4,5,6} (16) d • 

The 6 x 6 fuzzy rules in S 66 and the classification boundary obtained by these rules are shown in Fig. 8(a) 
and (b), respectively. From Fig. 8(b), we can see that all the given patterns are correctly classified. 

3. Rule selection by genetic algorithms 

While all the given patterns are correctly classified in Fig. 8(b), the number of the fuzzy rules in Fig. 8(a) is 
not small. As shown in Fig. 5, the number of fuzzy rules can be reduced by selecting significant fuzzy rules 
with rectangular fuzzy subspaces. In this section, we show how genetic algorithms can be employed to select 
significant fuzzy rules for constructing a compact fuzzy classification system with a small number of 
rectangular fuzzy rules. 

The main aim of this section is to show the feasibility of applying genetic algorithms to our rule selection 
problem. Therefore, the structure of genetic algorithms used in this section is very simple. It may not be 
entirely consistent with the emerging trends in recent research of genetic algorithms. This is because our aim 
is not to investigate genetic algorithms themselves but to show the applicability of genetic algorithms to our 
rule selection problem in a simple manner. By the same reason, we do not carefully adjust the parameter 
specifications for genetic algorithms. Therefore, simulation results in this paper will be improved if we use 
more sophisticated algorithms with carefully adjusted parameter values. 

3.1. Formulation of a rule selection problem 

Our rule selection problem is to find a compact rule set S that has high classification power. Therefore, our 
problem has the following two objectives: 

(i) The first objective is to maximize the number of correctly classified patterns by the fuzzy rules in S. 
(ii) The second objective is to minimize the number of the fuzzy rules in S. 
By combining these two objectives, we formulate the following problem. 

maximize W N C  P X NCP(S) - Ws x ]SI, (17) 

subject to S_~ S^LL, (18) 
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where WNCP and Ws are positive weights such that Ws 4, WNCP, NCP(S) is the number of correctly classified 
patterns by S, and I Sl is the number of the fuzzy rules in S. While the same problem was formulated in our 
former studies [9, 10], the definition of SALL is different. SALL in our former studies consisted of only square 
fuzzy rules, but SALL in this paper includes rectangular fuzzy rules. 

In general, a fuzzy rule in a coarse fuzzy partition can classify more patterns than that in a fine fuzzy 
partition. Therefore, the former is more desirable for constructing a compact fuzzy classification system than 
the latter. If we try to construct a fuzzy classification system of fuzzy rules in a fine fuzzy partition, a large 
number of fuzzy rules may be required (see Fig. 8(a)). A fuzzy rule in a coarse fuzzy partition is also desirable 
from a point of view of knowledge acquisition because it is a general rule that can be valid in a large subspace 
of the pattern space. Therefore, we modify the rule selection problem (17) and (18) by assigning a different 
weight to each fuzzy rule. 

Let us define an index of the fineness of each fuzzy rule as 

Fineness(R~]) = I + J .  (19) 

This index can be viewed as the fineness of the fuzzy partition where the fuzzy rule is generated. That is, the 
finer a fuzzy partition is, the larger the fineness of fuzzy rules in that fuzzy partition is. In order to select fuzzy 
rules in coarse fuzzy partitions (i.e., those with small fineness values), we modify the objective function of the 
rule selection problem as follows. 

maximize WNCP x NCP(S) - Ws x y'  Fineness(R~f). (20) 
R~jeS  

3.2. Genetic operations 

In genetic algorithms in this paper, a rule set S is treated as an individual. The value of the objective 
function in (20) is the fitness value of each individual. That is, the fitness function f ( S )  is defined as 

f ( S )  = WNCP X NCP(S) - Ws x ~ Fineness(R[/). (21) 
R,','~s 

In genetic algorithms, each individual should be represented as a string. In this paper, let us represent 
a rule set S as S = s~s2. . .sN where N = (1 + 2 + ... + Imax)X(1 + 2 + -'" +./max) is the number of the 
fuzzy rules in SALE, and s, = 1, - 1 or 0 denotes the following: 

s, = 1 means that the rth rule is included in the rule set S, 
s, = - 1 means that the rth rule is not included in the rule set S, 
s, = 0 means that the rth rule is a dummy rule. 
The index r of each rule is specified as shown in Fig. 9 (see also Fig. 6 for the label of each rule). In general, 

the index r of the fuzzy rule Ri* ] is calculated as 

r = ( 1  + 2 +  . . - + J -  1 + j -  1)x(1 + 2 +  ... + I m a , ) + ( 1  + 2 +  "" + I -  1 + i ) .  (22) 

Since dummy rules have no effect on the fuzzy inference for classifying new patterns in Procedure 2, they 
should be excluded from a rule set S. Therefore, they are represented as s, = 0 in the coding process in order 
to prevent S from including them. Dummy rules are preserved only to maintain the rule ordering consistency. 
This consistency makes the programming much easier if compared with a coding that excludes dummy rules 
from strings. While dummy rules make the representation of an organism (i.e., string) larger, they do not 
increase the search space because they are given a special encoding. If there were a great many of them, they 
would introduce some unpredictable biases in the genetic algorithm search. 

A string S = s 1 s 2 . . .  S N is decoded as 

S = {g~]: s, = 1; r = 1,2 . . . . .  S } .  (23) 
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Fig. 9. The index of each fuzzy rule in the case of Imax = 3 and J,,ax = 3. 

The following genetic opera t ions  are employed  to generate and handle a set of  strings (i.e., a popula t ion)  in 
genetic a lgor i thms of this paper  (Steps 1-5 are i terated until a prespecified s topping condit ion is satisfied). 

[Genetic algorithm for the rule selection problem] 
Step 0 (Initialization). Genera te  an initial popula t ion  containing Npo p strings where Npo p is the number  of 

strings in each populat ion.  In this operat ion,  each string is generated by assigning 0 to d u m m y  rules and 
r andomly  assigning 1 or  - 1 to the other  rules. 

Step 1 (Selection). Select Npop/2 pairs of strings f rom the current  populat ion.  The selection probabi l i ty  
P(S) of string S in a popula t ion  7 j is specified as 

f (S )  - fmin(~/) 
P(S) = S' (24) 

X s ' ~ ' { f (  ) - - f m i ° ( ~ ) } '  

where 

fmin(l l  [I) ~-- m i n { f ( S ) :  S ~ } .  (25) 

Step 2 (Cross-over). Fo r  each selected pair, r andomly  choose bit positions. Each bit posi t ion is chosen 
with the probabi l i ty  of  0.5. In terchange the bit values at  the chosen posit ions in the selected pair. 

Step 3 (Mutation).  Fo r  each bit value of the generated strings by the cross-over  operat ion,  apply  the 
following muta t ion  operat ion:  

sr = 1 ~ s, = - 1 with the muta t ion  probabi l i ty  Pro(1 ~ -- 1), (26) 

sr = - 1 ---, sr = 1 with the muta t ion  probabi l i ty  Pro( -- 1 ---' 1). (27) 
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P a r e n t l :  s I s 2 s~ sa s 5 s 6 s 7 ... s N 

Parent  2: f~ ~ ~ ~4 fit f~ f~ .-. ~N 

Pos i t ions :  * * * 

C h i l d l :  ~l s~ fi~ s 4 s~ f6 s7 .-. sN 

Chi ld  2: s~ fi2 s~ f~ ~5 s6 ~7 .-, fin 

F ig .  10. I l l u s t r a t i o n  o f  t h e  c r o s s o v e r  o p e r a t i o n .  Bit  v a l u e s  at  t h e  m a r k e d  p o s i t i o n s  a re  i n t e r c h a n g e d  in the  t w o  p a r e n t s  to  f o r m  t w o  

ch i ld ren .  

Step 4 (Elitist strategy). Randomly remove one string from Npo p strings generated by the above opera- 
tions, and add the string with the maximum fitness value in the previous population to the current one. 

Step 5 (Termination test). If a prespecified stopping condition is not satisfied, return to Step 1. 
The cross-over operation in Step 2 is illustrated in Fig. 10. This type of cross-over was called as the uniform 

cross-over in [20]. In Step 3, different mutation probabilities Pm(l ~ -- l) and Pro( - 1 ~ 1) are assigned to 
the mutations from 1 to - 1  and from - 1  to l, respectively. A large probability is usually assigned to 
Pm(1 --~ -- 1) than to Pro( - 1 ~ l) in order to reduce the number of fuzzy rules in each individual. The effect 
of these biased mutation probabilities was investigated in [10]. The total number of generations is used as 
a stopping condition in this paper. 

4. Simulation results 

4.1. Simulation results for numerical examples 

The genetic algorithm described in the last section was applied to the classification problem in Fig. 3. The 
rule set SALL was generated by specifying / m a x  = 6 and Jmax = 6 because all the patterns were correctly 
classified by the fuzzy rules in the fuzzy partition by the 6 x 6 fuzzy grid in Fig. 8(a). The total number of the 
fuzzy rules in SALL is (1 + 2 + 3 + 4 + 5 + 6) X(1 + 2 + 3 + 4 + 5 + 6) = 441. These fuzzy rules were 
generated as candidate rules to form a fuzzy classification system. The length of each string in the genetic 
algorithm was also 441. The positive weights WNCP and Ws in the fitness function (21) and the population size 
N p o  p w e r e  specified a s  WNC P = 1000, Ws = 1 and N p o  p = 50. The mutation probabilities were specified as 
Pro(1 ~ -- 1) = 0.01 and Pro( - 1 ~ 1) = 0.001. The algorithm was terminated after 2000 populations were 
generated. 

We applied the genetic algorithm with these parameters specifications to the classification problem in 
Fig. 3. Computer simulations were performed 10 times with different initial populations. In nine trials out of 
the 10 simulations, the same rule set with five fuzzy rules was selected. The selected five fuzzy rules are shown 
tin Fig. 11 (a)-(c) where hatched areas and dotted areas denote the selected fuzzy rules. Fig. 11 (d) shows the 
classification boundary obtained by the selected fuzzy rules. From Fig. 1 l(d), we can see that all the given 
patterns are correctly classified by the selected fuzzy rules. The selected fuzzy rules are also shown in Fig. 12 
where meshed rectangles represent the antecedent fuzzy set A ~ (i.e., unit interval). This A ~ plays a special role 
in fuzzy rules. In fuzzy rules with A~ for one feature and a different fuzzy set (e.g., A 6 ) for the other feature, 
the feature with A~ does not matter. The fuzzy rule R~] with AI for both features is used only when none of 
the other rules have a sufficiently large compatibility to an input pattern. Therefore, each fuzzy rule in Fig. 12 
can be interpreted as the following linguistic rules: 
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(a) I=1 and J=6 

(b) I=6 and J=l 
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(d) Classification boundary 

Rule RI6: If x/, 1 is ! and xp2 is 

I then x/, belongs to Class 1 with CF=0.45, 
I 
i Rule RI2: Ifxpl is ~ and Xp2 is 

then x/, belongs to Class 1 with CF=0.45, 

Rule R611 : IfXpl is ~ and Xp2 is 

then xp belongs to Class 1 with CF=0.45, 

Ru le  R661: If x/, I is ~ and Xp2 is 

then xp belongs to Class I with CF=0.45, 

Rule RIi I: l fxpl i s  ~ andxp2is 

then x;, belongs to Class 2 with CF=0.34. 

Fig. 11. Selected five fuzzy rules in nine trials and the corres- 
ponding classification boundary. 

Fig. 12. Selected five fuzzy rules in nine trials. 

(a) I=1 and J=6 
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(e) I=3, and J=4 

(c) 1=1 and J--2 (f) Classification boundary 

Fig. 13. Selected eight fuzzy rules in the other trial and the 
corresponding classification boundary. 
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(d) I=5 and J :3  
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(e) Classification boundary 

(c) I=3 and J--3 

Fig. 14. Selected fuzzy rules under the parameter specifications 
of l,,,,x = 5 and J,,,x = 5 and the corresponding classification 
boundary. 
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(d) Classification boundary 

Fig. 15. Selected fuzzy rules under the parameter specifications of/max = 4 and Jrnax = 4 and the corresponding classification boundary.  

(1) Rule R~ 6 (the bottom rule in Fig. 1 l(a)): If Xp2 is very small then xp belongs to Class 1 (medium certainty). 
(2) Rule R116 (the top rule in Fig. 1 l(a)): If Xp2 is very large then xp belongs to Class 1 (medium certainty). 
(3) Rule R611 (the left rule in Fig. 1 l(b)): If xpl is very small then xp belongs to Class 1 (medium certainty). 
(4) Rule R66~ (the right rule in Fig. 1 l(b)): Ifxp~ is very large then xp belongs to Class 1 (medium certainty). 
(5) Rule R~] (the rule in Fig. ll(c)): xp belongs to Class 2 (small certainty). 
If we try to intuitively derive classification rules from the given patterns in this numerical example, we will 

have similar linguistic rules. Therefore, we can conclude that the selected fuzzy rules coincide with our 
intuitive pattern recognition. 

One trial out of the 10 simulations could not find the rule set in Fig. 11. The simulation results of this trial 
are shown in Fig. 13. In Fig. 13, all the given patterns are correctly classified by the selected eight fuzzy rules. 
From the comparison between Fig. 1 l(a) and (b) and Fig. 13(a) and (b), we can see that the same four fuzzy 
rules with Class 1 in the consequent part were selected in all the 10 trials. 

In order to examine the effect of the specification of the rule set SALL on the result by the genetic algorithm, 
we also performed computer simulations with different two specifications of SALL. One rule set was generated 
by specifying/max = 5 and J m a x  = 5. In this case, the total number of the fuzzy rules in SALL is (1 + 2 + 3 + 
4 + 5) X (1 + 2 + 3 + 4 + 5) = 225. The other rule set was generated by specifying Imax = 4 and Jmax = 4 
(100 fuzzy rules were generated). The best result in 10 trials with each specification of SALL is shown in Figs. 14 
and 15 where all the given patterns are correctly classified by the selected seven and eight fuzzy rules, 
respectively. From Figs. 11, 13-15, we can see that the selected rule sets are similar to each other. 

We also applied the genetic algorithm to the classification problem in Fig. 16. It was shown in [8] that this 
classification problem cannot be handled by a single fuzzy rule table with square fuzzy rules such as Fig. 1. 
The selected fuzzy rules and the classification boundary are shown in Fig. 17. From this figure, we can see 
that all the given patterns are correctly classified by the selected four fuzzy rules. 

4.2. Simulation results for the iris data 

In order to examine the ability of the proposed approach in high-dimensional classification problems, 
we applied the genetic algorithm to the iris data of Fisher (three-class classification problem in a 
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Fig. 16. Classification problem. 
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(e) Classification boundary 

Fig. 17. Selected four fuzzy rules and the corresponding classification boundary. 

four-dimensional pattern space [2]). Our approach described in the previous sections for two-dimensional 
problems can be easily extended to the case of high-dimensional classification problems. For example, the 
fuzzy rules in (5) are modified for handling the four-dimensional classification problem as 

OtSKL' If is A[ and is s is A t  and is A~ Rule ~' i jk l  " Xp1 Xp2 Aj and xv3  x v 4  

r l S K L  r W Z S K L  (28) then x v belongs to Class "~ukt with C F  = ~ - u k ~  , 
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where xp = (xpl, xp2, xp3, Xp4). The definitions of flcT in (6) and ac t  in (13) are modified as 

J flcr = ~ I~[(xo,) × I~j (xpz) × #~(xp3) ×/~k(xp4), (29) 
.~p ~CT 

r~-IJKL, r~ZJKL ,,HKL S}. (30) ac t  = max{~t[(xp~)× ~](xp2) ×/~(Xp3) ×/~(xp4) × "~--ijkt • "~--ijk~ : Class T and ~ijkZ 

After these modifications, we applied the genetic algorithm to the iris data. We employed the same 
parameter specifications as in Section 4.1 except for the mutation probabilities and the rule set SALE. The 
mutation probabilities were specified as Pm(1 --~ -- 1) = 0.1 and Pm( - 1 -* 1) = 0.0001. The rule set SALE was 
specified as follows: 

SALL S I~IJKL" [ ' ' i j k l  ' i~-- 1 . . . .  , I ;  I =  1, 2 ,3 ,4 ; j  = 1 . . . . .  J ; J =  1,2, 3,4; k =  1 . . . .  ,K;  K =  1,2,3,4; 

l =  l, ... ,L ;  L =  l , 2 ,3 ,4  I. (31) 

The total number of fuzzy rules in SAL E is 10000 ( : (1 + 2 "-~ 3 + 4) × (1 + 2 + 3 + 4) x (1 + 2 + 3 + 4) 
× (1 + 2 + 3 + 4)). Therefore, our problem is to select significant rules from SAL E with 10000 fuzzy rules 

(including 1918 dummy rules). 
The genetic algorithm with these parameter specifications selected only five fuzzy rules that can correctly 

classify 149 patterns (99.33 % of the given 150 patterns). From the viewpoint of the number of fuzzy rules, this 
result outperforms our previous work [10] where 149 patterns were correctly classified by l0 square fuzzy 
rules. 

Each of the selected five fuzzy rules are shown in Fig. 18. From this figure, we can see that all the patterns in 
Class 1 can be correctly classified by the first rule and those in Class 3 by the last rule. From these two fuzzy 
rules, we can acquire the following linguistic knowledge: 

(i) If the first, third and fourth attribute values of a pattern are small, then that pattern belongs to 
Class 1 (maximum certainty). 

(ii) If the third attribute value of a pattern is large, then that pattern belongs to Class 3 (large certainty). 
As these results on the iris data show, the proposed approach can be viewed as a knowledge acquisition 

tool from numerical data. Since a small number of fuzzy rules with high classification power are selected, we 
can carefully examine each of the selected rules. This is almost impossible if hundreds of fuzzy rules are 
selected to form a fuzzy classification system. 

For the comparison of different cross-over operations, in Table 1 we show simulation results by the genetic 
algorithm with the uniform cross-over in Section 3 and that with a one-point cross-over. In Table 1, we 

X 1 X 2 X 3 X 4 Consequent 

Class 1 

Class 2 

Class 2 

CF Patterns* 

1.00 50 

0.41 8 

l [ ~ ] l m ~ m  0.41 18 

mm~m Class 3 0.71 50 

Patterns* : the number of patterns correctly classified 
by each fuzzy if-then rule 

Fig. 18. Selected five fuzzy rules for the iris data of Fisher. 
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Table 1 
Simulation results with different cross-over operations 

Trial Uniform cross-over One-point cross-over 
number 

No. of patterns No. of rules No. of patterns No. of rules 

1 149 5 149 5 
2 149 6 149 5 
3 148 6 150 7 
4 149 7 149 6 
5 149 7 149 6 

Average 148.8 6.2 149.2 5.8 

No. of patterns: the number of correctly classified patterns. 
No. of rules: the number of selected rules. 

cannot observe significant difference between the two cross-over operations. In Section 3, we used the 
uniform cross-over to remove unpredictable biases in the genetic algorithm search caused by our coding 
mechanism of strings (i.e., ordering of fuzzy rules). From Table 1, we can conclude that our coding 
mechanism shown in Fig. 9 had not bad biases in the genetic algorithm search even if we used a one-point 
c r o s s - o v e r .  

5. Conclusion 

In this paper, we proposed a genetic-algorithm-based approach to the construction of compact fuzzy 
classification systems with rectangular fuzzy rules. In the proposed approach, first a large number of 
rectangular fuzzy rules were generated from numerical data. Then significant rules were selected from the 
generated fuzzy rules by genetic algorithms to form a compact fuzzy classification system. By computer 
simulations on numerical examples, we demonstrated that the proposed approach can select a small number 
of fuzzy rules that coincide with our intuitive pattern recognition. The ability of the proposed approach was 
also demonstrated by the application to the iris data. That is, we showed that 149 patterns in the iris data can 
be correctly classified by only five rectangular fuzzy rules. From the point of view of the number of selected 
fuzzy rules, this result outperforms our former study [1-0] where 1-0 square fuzzy rules were selected for 
classifying 1-49 patterns. 

Due to the probabilistic nature of the genetic algorithm search, the same fuzzy rules are not always selected 
by the proposed approach. Therefore, it is recommended to apply genetic algorithms several times to 
a classification problem at hand. 

References 

[1] H,R. Berenji and P. Khedkar, Learning and tuning fuzzy logic controllers through reinforcements, IEEE Trans. Neural Networks 
3 (1992) 724-740. 

1-2] R.A. Fisher, The use of multiple measurements in taxonomic problems, Ann. Eugenics 7 (1936) 179-188. 
[3] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, MA, 1989). 
[4] J.H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, MI, 1975). 
15] S. Horikawa, T. Furuhashi and Y. Uchikawa, On fuzzy modeling using fuzzy neural networks with the back-propagation 

algorithm, IEEE Trans. Neural Networks 3 (1992) 801-806. 



H. Ishibuchi et al. / Fuzzy Sets and Systems 65 (1994) 237-253 253 

[6] H. lchihashi and T. Watanabe, Learning control by fuzzy models using a simplified fuzzy reasoning, J. Japan Society for Fuzzy 
Theory and Systems 2 (1990) 429-437 (in Japanese). 

[7] H. Ishibuchi, K. Nozaki and H. Tanaka, Distributed representation of fuzzy rules and its application to pattern classification, 
Fuzzy Sets and Systems 52 (1992) 21-32. 

[8] H. Ishibuchi, K. Nozaki and H. Tanaka, Efficient fuzzy partition of pattern space for classification problems, Fuzzy Sets and 
Systems 59 (1993) 295-304. 

[9] H. lshibuchi, K. Nozaki and N. Yamamoto, Selecting fuzzy rules by genetic algorithm for classification problems, Proc. 2nd IEEE 
Internat. Conf. on Fuzzy Systems (San Francisco, CA, March 28-April 1, 1993) 1119-1124. 

[10] H. lshibuchi, K. Nozaki, N. Yamamoto and H. Tanaka, Genetic operations for rule selection in fuzzy classification systems, Proc. 
5th IFSA World Congr. (Seoul, Korea, July 4-9, 1993) 15-18. 

[11] J.S.R. Jang, Self-learning fuzzy controllers based on temporal back propagation, IEEE Trans. Neural Networks 3 (1992) 714-723. 
[12] C.L. Karr, Design of an adaptive fuzzy logic controller using a genetic algorithm, Proc. 4th Internat. Conf. on Genetic Algorithms 

(San Diego, CA, July 13- 16, 1991) 450-457. 
[13] C.L. Karr and E.J. Gentry, Fuzzy control of pH using genetic algorithms, IEEE Trans. Fuzzy Systems 1 (1993) 46-53. 
[14] C.C. Lee, Fuzzy logic in control systems: fuzzy logic controller - Parts I and II, IEEE Trans. on Systems, Man and Cybernetics 20 

(1990) 404-435. 
[15] C.T. Lin and C.S.G. Lee, Neural-network-based fuzzy logic control and decision system, IEEE Trans. on Computers 40 (1991) 

1320 1336. 
[16] H. Nomura, I. Hayashi and N. Wakami, A learning method of fuzzy inference rules by descent method, Proc. of the IEEE lnternat. 

Conf. on Fuzzy Systems (San Diego, CA, March 8 12) 203-210. 
[17] H. Nomura, I. Hayashi and N. Wakami, A self-tuning method of fuzzy reasoning by genetic algorithm, Proc. of the 1992 Internat. 

Fuzzy Systems and Intelligent Control Conf. (Louisville, Kentucky, March 16 18, 1992) 236-245. 
[18] M. Sugeno, An introductory survey of fuzzy control, Information Sciences 36 (1985) 59 83. 
[19] M. Sugeno and T. Yasukawa, A fuzzy-logic-based approach to qualitative modeling, IEEE Trans. Fuzzy Systems 1 (1993) 7-31. 
[20] G. Syswerda, Uniform crossover in genetic algorithms, Proc. 3rd lnternat. Conf. on Genetic Algorithms (George Mason University, 

June 4 7, Morgan Kaufmann, San Mateo, CA, 1989) 2-9. 
[21 ] T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Systems, Man 

and Cybernetics 15 (1985} 116-132. 
[22] P. Thrift, Fuzzy logic synthesis with genetic algorithms, Proc 4th lnternat. Conf. on Genetic Algorithms (San Diego, CA, July 13-16, 

1991) 509-513. 
[23] M. Valenzuela-Rendon, The fuzzy classifier system: A classifier system for continuously varying variables, Proc. 4th Internat. Conf. 

on Genetic Algorithms (San Diego, CA, July 13-16, 1991) 346-353. 
[24] L.X. Wang and J.M. Mendel, Generating fuzzy rules by learning from examples, IEEE Trans. Systems, Man and Cybernetics 22 

11992) 1414 1427. 


