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Abstract. A rule selection scheme of evolutionary algorithm is pro-
posed to design fuzzy path planner for shooting ability in robot soccer.
The fuzzy logic is good for the system that works with ambiguous in-
formation. Evolutionary algorithm is employed to deal with difficulty
and tediousness in deriving fuzzy control rules. Generic evolutionary al-
gorithm, however, evaluate and select chromosomes which may include
inferior genes, and generate solutions with uncertainty. To ameliorate this
problem, we propose a recombinant rule selection method for gene level
selection, which grades genes at the same position in the chromosomes
and recombine new parent for next generation. The method was evalu-
ated with application of designing the fuzzy path planner, where each
fuzzy rule was encoded as a gene. Simulation and experimental results
showed the effectiveness and the applicability of the proposed method.

1 Introduction

To control fast mobile robots, a simple controller is required, which satisfies the
mechanical properties such as limitations of wheel speed or translational speed
of the robot center. Efficiency of trajectories and short navigation time are also
to be ensured. When we consider dribbling and kicking action in robot soccer,
robot posture (position and orientation) is of utmost importance. This the paper
aims to address the specific problem of robot posture at the target position with
emphasis on optimizing the navigational path of the robot.

In the early stages of robot soccer, traditional navigation methods were pop-
ular, where the option was to use the simple shortest paths, Dubins path [1] or
the composition of rotation, circular motion and straight motion for the path
planning step [2,3]. Recently research interest is being focused on the application
of fuzzy logic, evolutionary computation, reinforcement learning, unified naviga-
tion method, and so on [4,5,6,7]. The use of fuzzy control and behavior-based
architectures has been intensively researched in the field of robot navigation,
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because fuzzy logic is a mathematical formulation that copes with uncertainty
in information [4].

However a commonly encountered problem is that the derivation of fuzzy
control rules is often time consuming, difficult and relies to a great extent on
process experts. An automated way to design fuzzy systems is preferable. In
this regard, numerous researches have been dedicated to exploring the use of
evolutionary algorithms (EAs) to automate the knowledge acquisition base and
construct appropriate rules for a given task [8,9,10].

The evolutionary algorithms employed for this purpose use individuals with
a single chromosome whose component genes are characterized as rules for the
fuzzy control system. During the evolutionary process, a chromosome’s perfor-
mance is tested and the best chromosomes (individuals) are selected for repro-
duction. A common drawback to this approach is that during testing, some genes
(rules) may be seldomly used. These genes contribute negligibly to a global fit-
ness function and consequently the evolutionary process is to a high degree,
insensitive to them.

This may lead to a stunted development in the evolution of certain genes as
chromosomes are typically selected for reproduction with little dependance on
these seldomly used genes. In the worst case scenario it may completely halt
development as random processes begin to dominate very slowly evolving genes.
In these situations, chromosomes can evolve that have high fitness and perform
well for most objectives, but are below par for the few that require the seldomly
used genes which have evolved poorly. This causes a variance in the consistency
of a chromosome’s performance and brings forth uncertainty in the solutions for
the real-world problem. These issues are highlighted with an illustrative path
planning example in Section 2.

In this paper, a scheme is formulated that automatically determines the sen-
sitivity of various genes in contributing to the fittest solution. A rule-scoring
mechanism ranks genes with the same role (allele) according to their perfor-
mance under scenarios in which the gene is actually utilized. The parents for
the next generation are then formed on the basis of this ranking. The method is
then finally trialled on a fuzzy path planner for developing shooting strategies
for mobile soccer robots.

This paper is organized as follows. In Section 2 we highlight the difficulties
discussed with an illustrative example. Section 3 we present our proposed mech-
anisms for the evolutionary algorithm. The proposed scheme is analyzed in both
simulations and experiments for a robot soccer system in Section 4. Finally,
concluding remarks follow in Section 5.

2 Illustrative Example - Path Planning

In this example, the path planning problem for mobile robot navigation is inves-
tigated in detail. For this task a path must be planned from a large number of
starting points contained in a discretised map of its environment to a specified
target. The rule set to be learned is simply a table of desired heading values for
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each point on the discretised map. This rule set is expected to provide a good so-
lution regardless of where the mobile robot is initially placed. This now becomes
a multi-objective optimization problem, where each objective is characterized
uniquely by the initial conditions, or posture, of the robot relative to the target.

Figure 1 illustrates three sample paths generated for a conventionally evolved
rule set that has been developed for 48 different initial conditions (starting pos-
tures). Here the path planner uses a map of its environment that has been
discretised by a fuzzy segmentation of the robot’s relative distance and angle
from the target. The fitness function used in the evolutionary algorithm is a
linear combination of sub-fitness functions for each starting posture and these
sub-fitness functions are designed so that the mobile robot approaches its target
from the left and in the shortest time possible. For path generation, we also
assume the robot uses a controller that adequately tracks the desired heading
angle determined by the evolved rule set - this allows us to focus on the path
planner.
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Fig. 1. Comparison of a chromosome’s performance for multiple objectives

For this particular scenario, rules that are located in the lower right corner of
the figure are utilized by fewer starting postures than rules elsewhere on the map,
particularly those immediately to the left of the target. For a uniformly dispersed
set of starting postures and a fitness function that weights the performance of
each starting posture equally, evolution of these rules may be poor as discussed
earlier. This is evident in figure 1 which exhibits reasonably optimal paths for
B and C but a less than optimal path for A.

These characteristics are highlighted in figure 2 by analyzing the strength and
the frequency with which the fuzzy rules are triggered for A, B and C (note that
the graph displays the normalized contribution of each fuzzy rule for a particular
trajectory - the equations used to generate these firing ratios are presented in
Section 3).

For paths B and C fewer rules are triggered - there are many redundancies in
the rule space for a particular objective. The rules that initially affect movement
from A, rules r1 to r12 (shaded grey in figure 2), have evolved poorly since very
few starting postures require them. Subsequently these contribute negligibly to
the global fitness function. They do not provide a very good solution for A, but
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Fig. 2. Firing ratios of fuzzy rules for A, B and C

they are kept since the fuzzy rule set (chromosome) in general performs very
well. Note that the evolved rule set here provides very good directions in the
immediate vicinity to the left of the target - this is to be expected as almost
every starting posture must utilize these rules for a successful approach. As a
result the global fitness function will be highly sensitive to these rules and they
evolve both rapidly and accurately.

In order to ensure improved evolution for these underdeveloped rules, a means
for determining their sensitivity in the evolutionary process is needed as well as
an alternate method ranking the performance of the chromosomes.

3 Proposed Evolutionary Technique

The conventional evolutionary algorithm used for the illustrative example uti-
lized a selection scheme based on a q-tournament. A (μ, λ)-evolution strat-
egy [11] was used and the elite chromosome saved by the elitist strategy [12].
Here, various modifications are proposed for the parent selection process that
assist in the evolution of optimal solutions for multi-objective path planning
problems.

3.1 Parent Selection Process

For a highly redundant problem, a gene (rule) may only be a necessary parameter
for the optimization of a small portion of the objectives. Consequently evolving
a gene for a more globally optimal solution by considering the performance of
objectives that do not utilize it is redundant. It introduces complexity and in
the course of an evolutionary algorithm, this will slow or halt its evolution.

The usual process of parent selection in an evolutionary algorithm is to find the
best chromosome for all genes when tested against all objectives simultaneously.
Our approach is to develop a unique scoring method that finds the highest ranked
chromosomes for each gene when tested against only the objectives that utilize
that gene. We then form the parents for the next generation from this pool of
chromosomes. Some important aspects of the process are as follows:
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– The method reverts to a conventional parent selection process if there is no
redundancy.

– The final solution will converge more rapidly for systems with redundancy.
– Where evolution of particular genes comes to a halt, increasing the rate of

gene evolution with this approach may provide an improvement in the final
solution.

3.2 Implementation

Implementing this method in an evolutionary algorithm can be broken down
into the following steps:

– Determining and prioritizing an objective’s dependence on a particular gene.
– Scoring method to find a gene’s ‘best’ chromosome.
– Forming the parents for the next generation.

Gene-Dependence. Given a chromosome and an objective, an objective’s de-
pendence on a particular gene can be found by prioritizing the frequency and
strength with which the fuzzy rule is triggered as a solution is generated for
the chromosome-objective pair. This is a process which is also gradually learned
by the evolutionary algorithm as chromosomes evolve. Figure 2 illustrated the
concept in the introductory example.

For the navigation problem, path generation is broken down into path plan-
ning and path following operations that are performed at discrete time intervals.
At each step, the chromosome is used to determine the genes that are triggered
and generate a desired path to follow. The path following controller is used to
track the desired path until the next time interval at which point the process is
repeated. By combining these discrete steps, a path is generated.

The mechanism for determining the strength and frequency with which rules
are triggered along these paths is presented as follows. Discrete time steps are
defined by ti, i = 0 . . . n where t0 = 0 and tn is the elapsed time taken for the
path to terminate. At the i-th step on the path generated for the j-th objective
(starting posture) using the k-th chromosome, we collect the normalized firing
strength of the l-th gene, the weight of each rule for center average defuzzifier
[13], is defined by

NFSi,j,k,l =
wj,k,l∑
m wj,k,m

∣
∣
∣
∣
ti

, (1)

where wj,k,l is the strength with which the l-th gene (fuzzy rule) is triggered.
The total firing strength of the l-th gene over the whole path is then

FSj,k,l =
n∑

i=1

NFSi,j,k,l. (2)

The firing ratio for the l-th gene on this path is simply the firing strength
normalized for the firing strength of all genes triggered on this path. This is
defined by
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FRj,k,l =
FSj,k,l∑
m FSj,k,m

. (3)

It is the firing ratio of each gene for a particular chromosome and starting posture
that can be seen graphically represented on the bar graph in figure 2.

Scoring Method. The next step is to rank chromosomes for each gene in a
prioritized order to find a gene’s ‘best’ chromosome. For this we define the Rule
Score of the k-th chromosome for the l-th gene with

RSk,l =
∑

j

(FRj,k,l × CWj,k), (4)

where CWj,k is the count of wins for the k-th chromosome by q-tournament for
the j-th objective (starting posture). Note that if an objective does not have any
dependence on a gene, it will not contribute to the rule score for that gene since
its firing ratio will be zero. It also works more effectively than a simple test for
each chromosome as it weights results according to the objective’s dependence
on the gene.

Forming the Parents. The final step is to assemble the parents (μ parents)
for the next generation from the existing group of highly ranked individuals (λ
chromosomes). The first parent is selected by the elitist strategy as the fittest
individual for the global solution. The remainder are formed by recombining
chromosomes at the gene level. The genes for a chromosome are ranked on the
basis of their score amongst others in the same column (allele) of chromosomes.
The genes of the first rank in each position, h, are collected into the first chro-
mosome, R′

1. The genes of the second rank form a second chromosome, R′
2 and

so forth. A single instance of this process is illustrated in figure 3. From these, an
extended family of parent chromosomes is formed that disperses itself through
the search space in a manner that allows solutions for seldomly triggered genes
(rules) to be more readily found.
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4 Experiments

4.1 Robot Soccer System

To demonstrate the effectiveness and applicability of the proposed method,
a fuzzy evolutionary system was developed for enhancing the performance of
mobile robot behaviours in the MIROSOT soccer system [14,15,16]. Behaviours
for the Mirosot system that can be enhanced with the approach presented in
this paper include passing, defending and shooting. In this experiment the path
planning approach is applied for improving the speed, reliability and consistency
of the shooting behaviour. Localisation of the robots in the MIROSOT system
is achieved via an overhead vision system connected to an external PC that de-
velops strategies and controls which are then transmitted to the robots on the
playing field.

4.2 Fuzzy System

The fuzzy system that was developed is comprised of two modules connected in
hierarchical fashion, a fuzzy path planner and a fuzzy path-following controller
[17,18]. This is illustrated in figure 4. The fuzzy path planner is responsible
for generating the desired paths from the initial posture to the ball position
that are optimized for various shooting performance criteria and also satisfy any
necessary constraints. It is again assumed the fuzzy controller can adequately
track the desired heading angle so that the focus remains on the fuzzy path
planner.

The fuzzy planner is designed to accept fuzzified information describing the
mobile robot’s relative position with respect to the ball (ρ, ϕ) as inputs for
a set of fuzzy rules that determine the appropriate desired heading angle θD

corresponding to each input. These fuzzy inputs are used to discretise the map
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of the robot’s environment and the rules are used to generate paths consisting
of singleton values for the direction at sampled positions for a trajectory to the
ball, like a univector field [19,20].

4.3 The Evolutionary Algorithm

An evolutionary algorithm with the modifications presented in Section 3 is used
to learn the fuzzy rules. The algorithm uses a (μ, λ)-strategy where the number of
parents (μ) and offspring (λ) is set to 10 and 20, respectively. The q-tournament
selects 10 competitors in each round.

Each chromosome in the algorithm represents an entire fuzzy rule set and each
gene represents an individual fuzzy rule mapping the inputs (ρ, ϕ) to the output
θD. Inputs are constrained to 0cm ≤ ρ ≤ 80cm and 0o ≤ ϕ ≤ 180o (there exists
a geometrical symmetry for the simple case containing no obstacles). A typical
chromosome is illustrated in Table 1 where each input variable is spanned by
seven membership functions (here the fuzzified ρ values range from very near to
very far and the angle ϕ from very small to very large). Subsequently, there are
in total 49 genes within the chromosome for this experiment.

Table 1. Rules for desired heading angle

θD ρ

ϕ VN AN SN MD SF AF VF
VS 11 144 119 125 76 74 206
LS 36 121 151 189 213 200 170
SS 315 169 231 234 203 239 242
MD 335 199 212 255 238 254 237
SL 153 268 269 267 301.7 276 295
AL 296 305 315 334 346.1 276 350
VL 6 344 351 349 332.3 335 331

Solutions to the evolutionary algorithm are required to be successful whilst
minimizing for elapsed time tl and vertical drift/orientation errors, ye, θe. The
x-axis represents the desired heading direction at the target. These variables
are considered to be the necessary performance criteria for shooting and are
illustrated in figure 5.

θe X

Y

ye

tl

Fig. 5. Performance factors for shooting ability
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To evaluate the fitness of the i-th chromosome for the j -th objective (initial
posture), the performance index (PI) is defined as

PIi,j = Kt · tl + Kp · |θe| + Kd · y2
e , (5)

where Kt, Kp and Kd are positive constance. The performance index of the i-th
chromosome for a group, Σ of objectives is simply defined as the cumulative sum
of its performance indexes for each objective:

PIi =
∑

j∈Σ

PIi,j (6)

This is used in both the q-tournament and as a tool to evaluate the fitness of
chromosomes once the algorithm has completed. The coefficients were manually
tuned and finalized at Kt = 10, Kp = 1 and Kd = 3. These provided almost
equal weightings for each criteria in the performance index - that is Kt · tl ≈
Kp · |θe| ≈ Kd · y2

e for nearby solutions in this experiment.
Forty-eight points (initial postures) were selected for an exercise in which all

the genes were used at least once. The evolutionary algorithm was evolved for
3,000 generations in both the conventional and proposed rule-scoring methods.
To compare results, the evolutionary algorithm was applied using both conven-
tional and proposed scoring methodologies 62 times each. Performance index
values were recorded during evolution and utilized to calculate statistical data.
For the statistical analysis, consistency of the results was also defined as an
important measure of the reliability of the evolved chromosome as a solution.
For this, the coefficient of variation (CV) was used since it provides a degree
of invariance for comparing solutions with different initial postures and travel
lengths. The coefficient of variation for a variable x is defined as

CV (x) =
Std(x)

Mean(x)
× 100 (%). (7)

Table 2 shows the simulation results for each method based on the overall
performance index of the evolved rule set. Clearly the proposed method per-
forms better with a smaller mean value and has a standard deviation less than
the one-third that of the conventional method. It also shows a decrease in the
co-efficient of variation of the PI for individual starting postures (figure 6) and
exhibits faster convergence (figure 7) than the conventional method. Moreover,
the coefficient of variation was reduced by about 50% on average, and the coeffi-
cient of variation of the performance index for each objective (training point or

Table 2. Converged global performance index

Algorithm Mean Std
Conventional selection 434.39 45.88
Recombinant selection 382.51 15.22
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Fig. 7. Comparison of global performance index (a) Convergence (b) Variance

initial condition) also improved evenly (figure 6). These results imply a tendency
for the proposed algorithm to consistently find more optimal solutions than the
conventional method.

4.4 Experiment Results

The applicability of the proposed method was physically tested on a mobile robot
where an improvement in shooting ability was desired. From the 62 fuzzy rule
sets generated by both conventional and proposed methods, 27 were randomly
selected for testing of the robot’s shooting ability. The robot was initialized from
five distinct postures with various pre-specified facings. To compensate for vari-
ation from the noise caused by physical disturbances and errors, the robot was
tested five times for each combination of starting posture and applied rule set.

The elapsed traveling time and the direction of the ball in motion were used
to evaluate path effectiveness. The direction of the ball (shooting angle error)
was used to represent the effects of both vertical drift and heading angle errors
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as these were individually difficult to measure reliably. A statistical analysis is
shown in Tables 3 and 4. The results indicate the proposed rule-scoring method
consistently generates paths that have shorter elapsed times with significantly
reduced variation (CV). These satisfied the original goals (speed and improved
reliability of shooting) whilst maintaining a heading angle error reasonable for
the dimensions of the field. Improved heading angle error can be achieved by a
suitable tuning of the weightings in the Performance Index function.

Table 3. Elapsed time for shooting in experiments (sec)

Start Conventional selection Recombinant selection
point Mean Std CV(%) Mean Std CV(%)

A 2.60 0.33 12.61 2.33 0.14 6.00
B 2.23 0.28 12.71 2.00 0.11 5.60
C 1.93 0.28 14.46 1.71 0.10 5.60
D 1.73 0.23 13.63 1.60 0.06 3.61
E 1.77 0.22 12.45 1.59 0.07 4.09

Average 2.05 0.27 13.14 1.85 0.09 4.98

Table 4. Shooting Angle error for shooting in experiments (deg)

Start Conventional selection Recombinant selection
point Mean Std CV(%) Mean Std CV(%)

A 5.11 3.72 72.78 6.46 4.24 65.75
B 4.67 3.45 73.98 6.26 3.01 48.19
C 4.41 3.19 72.19 6.20 3.46 55.78
D 4.68 3.13 66.74 6.11 3.23 52.87
E 3.95 2.62 66.24 5.28 3.66 69.21

Average 4.36 3.22 70.20 6.06 3.52 58.8

Figure 8 illustrates several shooting solutions generated by both conventional
and proposed methods. Figure 8(a) shows several trajectories generated by an ap-
plied rule set derived using the conventional method. As discussed earlier, chro-
mosomes that performed well (relatively low PI) were selected to evolve the pop-
ulation. These often had genes (rules) that were triggered for a select few paths on
which they performed poorly. Consequently evolution of these genes did not occur
and the final rules needed for these poorly evolved points remained inferior. This
is clearly seen in the figure where paths generated for D and E provide successful
solutions, however the remaining paths for A, B and C deviate undesirably.

The proposed rule-scoring method discriminates among genes using the
strength of the rules. This eliminates inferior rules and allows for uniform evo-
lution of rules across the entire input space. This is highlighted in figure 8(b).

It is worth noting that this procedure can be used to derive the fuzzy path
following controller (refer to figure 4) by determining wheel velocities given a
relative heading angle error and the radial distance from the target as the inputs.
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Fig. 8. Experiment of robot shooting

This problem exhibits the same properties as the path planner and the proposed
algorithm can assist in learning of the seldomly triggered rules.

4.5 Experimental Conclusions

One of the most important features of the path planning problem demonstrated
here is that there exists an optimal solution that is shared by all objectives (con-
sider two points in line with the target - the rule set for the rearmost point is
equally valid for the closer point). This property is typical of such path planning
problems in general. In these situations, the rule-scoring method helps identify
chromosomes that perform well for seldomly triggered rules and the gene recom-
bination used to form parents for the next generation more aggressively directs
the solution to progress towards the common goal.

For more complex nonlinear optimization problems with opposing objectives,
a pareto optimal solution must be found and an alternative process may be
needed for forming the non-elite parents of the next generation. Stochastic con-
tributions may be necessary to ensure gene recombination do not consistently
and adversely affect each other as they strive toward differing goals. This avenue
is currently being explored by the authors and is open to further research.
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5 Conclusion

Conventional evolutionary algorithms for multi-objective problems evolve genes
by ranking chromosomes for the reproduction process based on their performance
on all objectives simultaneously. This often results in poorly evolved rules for
those rules which are needed by only a few objectives. In this paper, new meth-
ods are proposed for the mobile robot path planning problem which prioritize
objectives that utilize a particular gene and rank chromosomes against these
objectives on a gene by gene basis. The reproduction process then selects the
information from the best of each of these groups and rearranges the rules for
reproducing the parents of the next generation. This enables the seldomly trig-
gered rules to evolve at a much higher rate. Experimental results on a path
planning problem in robot soccer verifies these results. Solutions evolved with
the proposed method were faster and most importantly they exhibited a higher
consistency of performance than was possible using a conventional method.
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