
FOCUS

Parallel distributed genetic fuzzy rule selection

Yusuke Nojima Æ Hisao Ishibuchi Æ Isao Kuwajima

Published online: 21 August 2008

� Springer-Verlag 2008

Abstract Genetic fuzzy rule selection has been success-

fully used to design accurate and compact fuzzy rule-based

classifiers. It is, however, very difficult to handle large data

sets due to the increase in computational costs. This paper

proposes a simple but effective idea to improve the scala-

bility of genetic fuzzy rule selection to large data sets. Our

idea is based on its parallel distributed implementation.

Both a training data set and a population are divided into

subgroups (i.e., into training data subsets and sub-popula-

tions, respectively) for the use of multiple processors. We

compare seven variants of the parallel distributed imple-

mentation with the original non-parallel algorithm through

computational experiments on some benchmark data sets.

Keywords Genetic fuzzy rule selection �
Parallel distributed implementation � Data subdivision �
Fuzzy rule-based classifier

1 Introduction

Recently genetic algorithms (GAs) have frequently been

used in the field of data mining and knowledge extraction

(Freitas 2002). Their scalability to large data sets, however,

is not high. This is because computational costs become

expensive when GAs are applied to large data sets. There

are two well-known approaches to the decrease in com-

putational costs for the handling of large data sets. One is

data reduction, which includes feature selection and

instance selection (Liu and Motoda 1998a, 1998b; Cano

et al. 2005, 2006). The other is parallel implementation of

genetic algorithms, which is usually based on spatial

structures such as island and cellular models (Cantu-Paz

1997; Alba and Tomassini 2002; Araujo et al. 2000; Llora

and Garrell 2001, 2002). In addition to the reduction in

computational costs, each approach has other benefits. For

example, parallel implementation often improves the glo-

bal search ability of GAs by maintaining the diversity of

individuals (i.e., by avoiding premature convergence). On

the other hand, data reduction in some cases improves the

generalization ability of extracted knowledge by avoiding

the overfitting to training data.

Genetic fuzzy rule selection is an effective approach to

the design of accurate and compact fuzzy rule-based clas-

sifiers (Ishibuchi et al. 1995, 1997; Ishibuchi and

Yamamoto 2004). It is a two-step approach. In the first

phase, a number of promising fuzzy rules are extracted as

candidate rules by a data mining technique from training

data. In this phase, rule evaluation criteria such as support

and confidence are used to prescreening candidate fuzzy

rules. In the second phase, only a small number of candi-

date rules are selected by a GA to maximize the

classification accuracy of selected candidate rules and

minimize their complexity.

One advantage of genetic fuzzy rule selection over other

fuzzy genetics-based machine learning (GBML) algorithms

(Cordon et al. 2001, 2004; Herrera 2005; Ishibuchi et al.

2001) is its algorithmic simplicity. Each rule set (i.e., fuzzy

rule-based classifier) is represented by a binary string in

genetic fuzzy rule selection. This leads to much less

implementation costs of genetic fuzzy rule selection than

other fuzzy GBML algorithms. When the number of can-

didate fuzzy rules is small, its computational costs are also

usually much less than other fuzzy GBML algorithms

(Nojima et al. 2006).

Y. Nojima (&) � H. Ishibuchi � I. Kuwajima

Graduate School of Engineering,

Osaka Prefecture University, Sakai, Osaka, Japan

e-mail: nojima@cs.osakafu-u.ac.jp

123

Soft Comput (2009) 13:511–519

DOI 10.1007/s00500-008-0365-1

Another advantage is that fuzzy rules in the designed

classifier are always meaningful in terms of their support

and confidence. This is because these rule evaluation cri-

teria are used for candidate rule prescreening in the first

phase. We can use these criteria in various manners for

candidate rule prescreening. For example, Pareto-optimal-

ity with respect to these two criteria was used to extract

candidate fuzzy rules in Ishibuchi et al. (2007) and

Ishibuchi (2007).

Genetic fuzzy rule selection can be viewed as a post-

processing procedure in fuzzy data mining for choosing

only a small number of fuzzy rules (Ishibuchi et al. 2006).

It is usually very difficult for human users to understand a

large number of extracted fuzzy rules by a data mining

technique. Thus, the selection of only a small number of

fuzzy rules helps human users to easily understand the

extracted knowledge.

Whereas genetic fuzzy rule selection usually needs

much less computational costs than other fuzzy GBML

algorithms, its computational costs become unmanageably

expensive when it is applied to large data sets. This is

because the computational time for fitness evaluation of

each individual linearly increases with the number of

training patterns.

The aim of this work is to decrease the computational

cost for genetic fuzzy rule selection without severe dete-

rioration in the accuracy of designed classifiers. To achieve

this aim, we propose a simple but effective idea to improve

the scalability of genetic fuzzy rule selection to large data

sets. Our idea is based on the subdivision of both a training

data set and a population. They are subdivided into training

data subsets and sub-populations, respectively. A training

data subset and a sub-population is assigned to each CPU.

Each individual in a sub-population is evaluated by the

corresponding training data subset assigned to the same

CPU. Thus, the computational time for the fitness evalua-

tion of a single individual decreases by the magnitude of

the number of training data subsets (i.e., the number of

CPUs). Since the fitness evaluation is performed in parallel

in each sub-population, the computational time for a single

generation decreases by the magnitude of the number of

sub-populations (i.e., the number of CPUs). That is, the

computational time of genetic fuzzy rule selection

decreases by the square of the number of CPUs in our

parallel distributed implementation.

This paper is organized as follows. First we briefly

review related studies in Sect. 2. Next we explain the ori-

ginal non-parallel algorithm of genetic fuzzy rule selection

in Sect. 3. Then we explain our idea (i.e., parallel distrib-

uted implementation) in Sect. 4. In Sect. 5, we examine

several variants of the parallel distributed implementation

in comparison with the original non-parallel algorithm

through computational experiments on some benchmark

data sets. Finally we conclude this paper in Sect. 6.

2 Related studies

In this section, we briefly review some related studies on

parallel distributed GA-based data mining for large data

sets.

Araujo et al. (2000) proposed GA-PVMINER for par-

allelizing the fitness calculation of an individual. Both a

population and a training data set are divided into sub-

groups as in our idea. A sub-population and a training data

subset are assigned to one processor. In one generation,

each sub-population passes through all the processors to

calculate the fitness of each individual. This means that

the fitness evaluation of each individual is based on the

entire training data set. Thus, the effect of parallelization

is not so high in comparison with our idea where a dif-

ferent training data subset is used for evaluating each

individual.

Llora and Garrell (2001, 2002) proposed GALE, which

is a cellular-based approach. GALE uses a 2D grid for

spreading individuals spatially. Each cell contains one or

zero individual. Genetic operations are performed in a

small neighborhood of each individual. If we can assign a

different CPU to each cell, the computational time does not

depend on the population size. As in Araujo et al. (2000),

computational time decreases by the magnitude of the

number of CPUs in Llora and Garrell (2001, 2002) whereas

it decreases by the square of the number of CPUs in our

idea.

Cano et al. (2005, 2006) proposed stratified strategies

for instance selection. At its first stage, training patterns

are divided into subgroups. Then instance selection is

performed on each subgroup in the first stage. The selected

patterns are combined and used as candidate patterns in

the second stage. The final solution is obtained in the

second stage by instance selection from the selected pat-

terns. Any data mining techniques can be used in the

second stage of this framework. This approach includes

data reduction and parallelization. Whereas all training

patterns are always used in each generation (i.e., their

subsets are used on different CPUs) in the first stage,

many patterns are disregarded in the second stage of Cano

et al. (2005, 2006).

3 Classifier design by genetic rule selection

In this section, we explain fuzzy rules, fuzzy rule extraction

and genetic fuzzy rule selection for classification problems.

512 Y. Nojima et al.

123

3.1 Pattern classification problems

Let us assume that we have m training (i.e., labeled) pat-

terns xp = (xp1, ..., xpn), p = 1, 2, ..., m from M classes in

the n-dimensional continuous pattern space where xpi is the

attribute value of the pth training pattern for the ith attri-

bute (i = 1, 2, ..., n). For the simplicity of explanation, we

assume that all the attribute values have already been

normalized into real numbers in the unit interval [0, 1].

This means that the pattern space of our pattern classifi-

cation problem is an n-dimensional unit-hypercube [0, 1]n.

3.2 Fuzzy rules for pattern classification problems

For our n-dimensional pattern classification problem, we

use fuzzy rules of the following type:

Rule Rq : If x1 is Aq1 and . . . and xn is Aqn

then Class Cq with CFq;
ð1Þ

where Rq is the label of the qth fuzzy rule, x = (x1, ..., xn) is

an n-dimensional pattern vector, Aqi is an antecedent fuzzy

set (i = 1, 2, ..., n), Cq is a class label, and CFq is a rule

weight (i.e., certainty grade). We denote the antecedent

part of the fuzzy rule Rq by the fuzzy vector Aq = (Aq1,

Aq2,..., Aqn). By using Aq, the fuzzy rule Rq is denoted as

‘‘Aq) Cq’’.

Since we usually have no a priori information about an

appropriate granularity of the fuzzy discretization for each

attribute, we simultaneously use multiple fuzzy partitions

with different granularities for fuzzy rule extraction. In our

computational experiments, we use four homogeneous

fuzzy partitions with triangular fuzzy sets in Fig. 1. We

also use the domain interval [0, 1] as an antecedent fuzzy

set in order to represent a don’t care condition. That is, we

use the 15 antecedent fuzzy sets for each attribute in our

computational experiments. Whereas we use only the

simple fuzzy partitions in Fig. 1, the use of multiple fuzzy

partitions may degrade more or less the interpretability of

designed fuzzy rule-based classifiers. This is because some

antecedent fuzzy sets are similar to each other. Although an

interpretability-accuracy issue of fuzzy rule-based classi-

fiers is not negligible (Casillas et al. 2003a, b), we skip

discussions on this issue in order to focus our attention on

parallel distributed implementation of genetic fuzzy rule

selection in this paper.

3.3 Fuzzy rule extraction

Since we use the 15 antecedent fuzzy sets for each attribute

of our n-dimensional pattern classification problem, the

total number of combinations of the antecedent fuzzy sets

is 15n. Each combination can be used as the antecedent part

of the fuzzy rule in (1). Thus, the total number of possible

fuzzy rules is also 15n. The consequent class Cq and the

rule weight CFq of each fuzzy rule Rq can be heuristically

specified by the compatible training patterns with its

antecedent part Aq in the following manner.

First we calculate the compatibility grade of each

training pattern xp with the antecedent part Aq of the fuzzy

rule Rq using the product operation as:

lAq
ðxpÞ ¼ lAq1

ðxp1Þ � � � lAqn
ðxpnÞ; ð2Þ

where lAqi
ð�Þ is the membership function of Aqi.

Next we calculate the confidence of the fuzzy rule ‘‘Aq

) Class h’’ for each class (h = 1, 2, ..., M) as follows

(Agrawal et al. 1996):

cðAq) Class hÞ ¼
P

xp2Class h lAq
ðxpÞ

Pm
p¼1 lAq

ðxpÞ
: ð3Þ

The consequent class Cq is specified by identifying the

class with the maximum confidence:

cðAq) Class CqÞ ¼ max
h¼1;2;...;M

cðAq) Class hÞ
� �

: ð4Þ

The consequent class Cq can be viewed as the dominant

class in the fuzzy subspace defined by the antecedent part

Aq. When there is no pattern in the fuzzy subspace defined

by Aq, we do not generate any fuzzy rules with Aq in the

antecedent part. When multiple classes have the same

maximum value in (4), we do not generate any fuzzy rules

with Aq in the antecedent part, either. This specification

method of the consequent class of fuzzy rules has been

used in many studies since (Ishibuchi et al. 1992).

The rule weight CFq of each fuzzy rule Rq has a large

effect on the performance of fuzzy rule-based classifiers

(Ishibuchi and Nakashima 2001). Different specifications

of the rule weight have been proposed and examined in the

literature. We use the following specification because good

results were reported by this specification in the literature

(Ishibuchi et al. 2004):

Attribute value

1

0 1

1

0 1

1

0 1

1

0 1

M
em

be
rs

hi
p

M
em

be
rs

hi
p

M
em

be
rs

hi
p

M
em

be
rs

hi
p

Attribute value

Attribute value

Attribute value

Fig. 1 Four fuzzy partitions used in our computational experiments

Parallel distributed genetic fuzzy rule selection 513

123

CFq ¼ cðAq) Class CqÞ �
XM

h¼1
h6¼Cq

cðAq) Class hÞ: ð5Þ

3.4 Fuzzy rule evaluation

Using the above-mentioned procedure, we can generate a

large number of fuzzy rules by specifying the consequent

class and the rule weight for each of the 15n combinations

of the antecedent fuzzy sets. It is, however, very difficult

for human users to handle such a large number of generated

fuzzy rules. It is also very difficult for human users to

intuitively understand long fuzzy rules with many ante-

cedent conditions. Thus, we only generate short fuzzy rules

with only a small number of antecedent conditions. It

should be noted that don’t care conditions with the ante-

cedent interval [0, 1] can be omitted from fuzzy rules.

Thus, the rule length means the number of antecedent

conditions excluding don’t care conditions. We examine

only short fuzzy rules of length Lmax or less (e.g., Lmax =

3). This restriction is to find a small number of short (i.e.,

simple) fuzzy rules.

Among short fuzzy rules, we generate only promising

rules as candidate rules in genetic fuzzy rule selection

using a heuristic rule evaluation criterion. In the field of

data mining, two rule evaluation criteria (i.e., confidence

and support) have often been used. We have already shown

the fuzzy version of the confidence criterion in (3). In the

same manner, the support of the fuzzy rule ‘‘Aq) Class h’’

is calculated as follows (Agrawal et al. 1996):

sðAq) Class hÞ ¼
P

xp2Class h lAq
ðxpÞ

m
: ð6Þ

In our computational experiments, we extracted fuzzy

rules satisfying pre-specified threshold values of support

and confidence (i.e., minimum support and minimum

confidence).

3.5 Classification in fuzzy rule-based classifiers

A subset of candidate fuzzy rules can be viewed as a fuzzy

rule-based classifier. Let S be a subset of candidate fuzzy

rules of the form in (1). A new pattern xp is classified by a

single winner rule RW, which is chosen from the rule set S

as follows:

RW ¼ arg maxflAq
ðxpÞ � CFqjRq 2 Sg: ð7Þ

As shown in (7), the winner rule RW has the maximum

product of the compatibility grade and the rule weight in S.

The classification of xp is rejected when no rules are

compatible with xp (which was counted as an error in our

computational experiments). In our genetic fuzzy rule

selection, random tiebreak is not used to efficiently search

for a small number of necessary fuzzy rules. Thus, the

classification of xp is also rejected when multiple fuzzy

rules with different consequent classes have the same

maximum value in (7).

For other fuzzy reasoning methods for pattern classifi-

cation problems, see Cordon et al. (1999) and Ishibuchi

et al. (1999, 2004).

3.6 Genetic fuzzy rule selection

Let us assume that N candidate fuzzy rules have already

been extracted. The task of genetic fuzzy rule selection is

to design an accurate and compact fuzzy rule-based clas-

sifier from the N candidate fuzzy rules.

Any subset S of the N candidate fuzzy rules can be

denoted by a binary string of length N as S = s1 s2 ... sN

where si = 1 and si = 0 mean that the ith candidate fuzzy

rule is included in and excluded from the rule set S,

respectively. Such a binary string is used as an individual

in genetic fuzzy rule selection.

In this paper, we use the following three objectives to

find an accurate and compact rule set S:

f1(S): The number of correctly classified training patterns

by S,

f2(S): The number of fuzzy rules in S,

f3(S): The total number of antecedent conditions in S.

The first objective is maximized while the second and

third objectives are minimized. The first objective is cal-

culated by classifying each training pattern xp by the rule

set S. The classification is based on the single winner-based

method explained in the previous subsection.

The second objective is calculated by just counting the

number of 1’s (i.e., the number of selected fuzzy rules) in

S. Since we use the single winner-based method without

random tiebreak to evaluate the accuracy of the rule set S,

only a single rule is responsible for the classification of

each training pattern. As a result, some fuzzy rules may be

used for the classification of no training patterns. Whereas

the existence of such an unnecessary fuzzy rule in the rule

set S has no effect on the first objective, it deteriorates the

second and third objectives. Thus, we remove from the rule

set S all the unnecessary rules responsible for the classifi-

cation of no training patterns before the second and third

objectives are calculated. The third objective is the total

number of antecedent conditions excluding don’t care

conditions of the selected fuzzy rules in S.

The above-mentioned three objectives are combined

into the following weighted sum fitness function:

fitnessðSÞ ¼ w1 � f1ðSÞ � w2 � f2ðSÞ � w3 � f3ðSÞ; ð8Þ

where w1, w2, and w3 are pre-specified non-negative

weights. This fitness function is maximized in genetic

514 Y. Nojima et al.

123

fuzzy rule selection. As a result, the accuracy is maximized

while the complexity is minimized. Of course, the final

solution (i.e., the rule set S) strongly depends on the

specification of the weight vector w = (w1, w2, w3).

Genetic fuzzy rule selection is implemented in the fol-

lowing manner to find the optimal rule set S with respect to

the weighted sum fitness function in (8).

Genetic fuzzy rule selection

Phase I: Candidate rule extraction

Step 1: Extract candidate fuzzy rules from the training

patterns using pre-specified values of the minimum

support, the minimum confidence, and the maximum

rule length. Let the number of extracted candidate

fuzzy rules be N.

Phase II: Genetic optimization of rule sets

Step 2: Randomly generate Npop binary strings of

length N as an initial population where Npop is the

population size. Calculate the fitness value of each

string using the fitness function in (8) after removing

unnecessary rules.

Step 3: Iterate the following operations Npop times to

generate an offspring population of Npop strings.

3.1: Select a pair of parent strings from the current

population by binary tournament selection with

replacement.

3.2: Recombine the selected pair of parent strings

to generate new strings by the uniform

crossover operation. One of the generated

strings is randomly chosen as an offspring.

This operation is applied with a pre-specified

probability. The crossover probability is spec-

ified as 0.9 in this paper. When the crossover

operation is not applied to the selected pair of

parent strings, one of the two parents is

randomly chosen and used as an offspring in

the following steps.

3.3: Apply a biased mutation operation to the

offspring. This operation changes 0 to 1 with

a small probability and 1 to 0 with a large

probability to decrease the number of 1’s (i.e.,

the number of selected fuzzy rules) in the

offspring. The mutation probabilities from 0 to

1 and from 1 to 0 are specified as 1/N and 0.05,

respectively, where N is the number of candi-

date rules. In our computational experiments,

N � 100.

3.4: Calculate the fitness value of the offspring

string by the fitness function in (8) after

removing unnecessary rules.

Step 4: Select the best Npop strings with respect to the

fitness function in (8) from the current and offspring

populations.

Step 5: If a pre-specified termination condition is not

satisfied, return to Step 3 with the best Npop strings

selected in Step 4 which are used as the population in

the next generation. Otherwise, terminate the execu-

tion of the algorithm.

We use the total number of evaluated strings as the

termination condition in this paper. The best rule set among

examined ones during the execution of our genetic rule

selection algorithm is returned to human users as the final

result.

4 Parallel distributed implementation

In this section, we propose a simple but effective idea to

improve the scalability of genetic fuzzy rule selection to

large data sets.

Figure 2 explains a computer system used in our com-

putational experiments in this paper. We use a cluster

computer system with a single server CPU and a number of

client CPUs (three client CPUs in our computational

experiments). We can easily set up this system using

multiple independent desktop computers and/or a single

computer with multi-core CPUs. Currently we are devel-

oping a cluster computer system with 12 client CPUs

(Nojima and Ishibuchi 2008).

Our idea to improve the scalability of genetic fuzzy rule

selection to large data sets is to divide not only a popula-

tion but also a training data set. They are divided into the

same number of sub-populations and training data subsets,

which is also the same as the number of client CPUs. Let us

assume that the number of client CPUs is three as in Fig. 2.

Data SetServer

Client 1

Genetic Rule
Selection

Genetic Rule
Selection

Genetic Rule
Selection

Rule Extraction

D1 D2 D3

Client 2 Client 3

R

(R, P1, D1) (R, P2, D2) (R, P3, D3)

DTestDTrain

pBest

Fig. 2 Cluster computer system used for parallel distributed imple-

mentation of genetic fuzzy rule selection

Parallel distributed genetic fuzzy rule selection 515

123

In this case, the training data set and the population are

divided into three training data subsets and three sub-

populations, respectively. Then each client CPU performs

genetic fuzzy rule selection using a single training data

subset and a single sub-population given by the server

CPU.

It seems that each sub-population is likely to overfit to

the corresponding training data subset. Thus, we change

the assignment of the training data subsets to the client

CPUs after a pre-specified number of generations (i.e.,

every ten generations).

Our parallel distributed implementation of genetic fuzzy

rule selection is written as follows:

Parallel distributed implementation

Phase I: Candidate rule extraction

Step1: Extract candidate fuzzy rules in the same

manner as in Sect. 3. This phase is executed on the

server CPU. Let the number of extracted fuzzy rules

be N.

Phase II: Genetic optimization of rule sets

Step 2: Randomly generate Npop binary strings of

length N as an initial population on the server CPU.

Step 3: Randomly divide the current population and

the training data set into sub-populations and training

data subsets, respectively, on the server CPU.

Step 4: Distribute the sub-populations and the training

data subsets from the server CPU to the client CPUs.

Step 5: Evaluate each string in the sub-population

using the assigned training data subset on each client

CPU.

Step 6: Execute genetic fuzzy rule selection for a pre-

specified computation load (which is specified by the

total number of evaluated strings in this paper) on

each client CPU using the assigned training data

subset and the assigned sub-population.

Step 7: Systematically change the assignment of the

training data subsets to the client CPUs (e.g., from the

first client CPU to the second one, from the second

one to the third one, and from the third one to the first

one in the case of three client CPUs).

Step 8: If a pre-specified termination condition (the

total number of evaluated strings in this paper) is not

satisfied, return to Step 5. Otherwise go to Step 9.

Step 9: Calculate the fitness value of each string in

each sub-population using the whole training data set

on the server CPU. Choose the best string as the final

solution (i.e., as the finally obtained fuzzy rule-based

classifier).

Our parallel distributed implementation decreases the

computational time by the magnitude of the square of the

number of client CPUs. For example, it is nine times faster

than the original non-parallel algorithm in Sect. 2 when we

have three client CPUs. This is because both the population

size and the number of training patterns at each client CPU

are 1/3 of those in the original non-parallel algorithm.

5 Computational experiments

Through computational experiments on some benchmark

data sets in the UCI machine learning repository, we

examined several variants of the proposed parallel dis-

tributed implementation in comparison with the original

non-parallel algorithm.

Table 1 shows the benchmark data sets used in our

computational experiments. Whereas these data sets in

Table 1 are not actually very large, they can be used to

demonstrate the effectiveness of the proposed idea. We

evaluated the generalization ability of obtained fuzzy rule-

based classifiers by iterating the tenfold cross validation

procedure two times (i.e., 2 9 10CV).

We first extracted candidate fuzzy rules using the min-

imum confidence, the minimum support, and the maximum

rule length. The maximum rule length was specified as

three for all the data sets. Table 2 shows the minimum

support and the minimum confidence used for each data

set. We also show the average number of extracted can-

didate rules and the average CPU time for rule extraction

(hour:minute:second) in Table 2. Since the candidate rule

extraction phase was performed using the entire training

data set, the same candidate rules were extracted in all

variants examined in our computational experiments. Then

genetic fuzzy rule selection was performed. The weight

vector in the weighted sum fitness function in (8) was

specified as w = (100, 1, 1). We used three client CPUs.

The population size Npop was specified as 300 (i.e., the size

of each sub-population was 100).

The total number of evaluated strings for each variant

was specified as 300300. This is equal to an initial popu-

lation with 300 strings plus 1,000 generation updates in the

case of non-parallel genetic fuzzy rule selection.

Table 1 Data sets used in our computational experiments

Data set Attributes Patterns Classes

Wine 13 178 3

Breast W 9 683a 2

Yeast 8 1,484 10

Pendig 16 10,992 10

a Incomplete patterns with missing values are not included

516 Y. Nojima et al.

123

We examined the following eight variants of genetic

fuzzy rule selection (one original non-parallel algorithm

and seven parallel distributed ones).

Type 0: The original non-parallel algorithm, which was

executed at a single server CPU.

Type 1: A parallel distributed algorithm, which was

executed at a cluster system with a single sever CPU and

three client CPUs. The assignment of training data

subsets to the client CPUs was not changed.

Type 2: The same algorithm as Type 1 except that the

assignment of training data subsets was changed every

100 generations.

Type 3: The same algorithm as Type 1 except that the

assignment of training data subsets was changed every

10 generations.

Type 4: The same algorithm as Type 1 except that the

assignment of training data subsets was changed every

generation.

Type 5: The same algorithm as Type 3 (i.e., the

assignment of training data subsets was changed every

10 generations) except that the population subdivision

was randomly performed every 200 generations. This

means that 300 strings in the current population (i.e.,

three sub-populations) were randomly reassigned to the

three client CPUs every 200 generations.

Type 6: The same algorithm as Type 5 except that the

population subdivision was randomly performed every

100 generations.

Type 7: The same algorithm as Type 5 except that the

population subdivision was randomly performed every

10 generations.

The last three types (i.e., Types 5–7) can be viewed as

the incorporation of a very simple migration procedure into

our parallel distributed implementation.

The CPU time was measured on a workstation with two

Xeon 3.0 GHz dual processors (i.e., four CPU cores). We

used one of them as a server CPU. The others were used as

client CPUs.

Tables 3, 4, 5 and 6 show the average training data

accuracy, the average test data accuracy, the average

number of selected fuzzy rules, the average total rule

length, and the average CPU time (hour:minute:second)

over two iterations of the tenfold cross validation proce-

dure (i.e., over 20 runs). We performed statistical tests

(Sheskin 2007) for examining the statistical significance of

the difference between the original non-parallel algorithm

(i.e., Type 0) and our parallel distributed implementation

(i.e., Types 1–7) in the training data accuracy and the test

data accuracy. We used a paired student’s t-test when the

distribution of experimental results can be regarded as a

normal distribution. Otherwise, we used a Wilcoxon

signed-ranks test. Average classification rates which are

significantly different with the significance level a = 0.01

from the results by Type 0 are highlighted by bold face in

each table.

Table 2 Minimum confidence and support levels, the average num-

ber of generated candidate rules, and the average CPU time for

candidate rule extraction for each data set

Data set Confidence Support Rules Time

Wine 0.8 0.1 2137.7 0:00:08

Breast W 0.9 0.2 6882.6 0:00:09

Yeast 0.5 0.002 12338.8 0:00:15

Pendig 0.5 0.04 18297.9 0:19:12

Table 3 Results on the Wine data set

Training Test Rules Length Time

Type 0 100.00 93.82 5.80 11.05 0:02:52

Type 1 98.06 91.80 5.65 11.05 0:00:26

Type 2 98.84 92.43 5.35 12.10 0:00:27

Type 3 99.97 95.18 5.80 12.15 0:00:33

Type 4 100.00 93.25 6.65 12.85 0:03:15

Type 5 100.00 94.33 5.55 11.50 0:00:33

Type 6 99.84 93.76 5.20 10.40 0:00:33

Type 7 98.53 94.95 6.35 11.85 0:00:35

Table 4 Results on the Breast W data set

Training Test Rules Length Time

Type 0 98.55 96.12 5.75 12.50 0:26:53

Type 1 97.75 96.93 5.45 11.10 0:03:20

Type 2 97.84 96.41 5.25 10.95 0:03:19

Type 3 98.42 95.90 5.25 11.45 0:03:33

Type 4 98.27 96.34 5.45 12.00 0:06:10

Type 5 98.41 96.27 5.55 12.40 0:03:49

Type 6 98.34 96.20 5.10 10.75 0:03:33

Type 7 97.82 96.27 5.40 11.35 0:03:35

Table 5 Results on the Yeast data set

Training Test Rules Length Time

Type 0 63.77 56.93 37.85 107.20 2:11:24

Type 1 60.91 56.31 25.65 72.00 0:15:06

Type 2 61.51 56.14 23.00 67.50 0:14:33

Type 3 63.23 57.42 22.45 65.45 0:14:56

Type 4 61.31 56.71 22.85 65.50 0:17:48

Type 5 63.41 57.25 23.15 66.95 0:15:03

Type 6 63.26 57.18 23.50 68.60 0:14:57

Type 7 60.67 56.27 24.15 69.25 0:15:24

Parallel distributed genetic fuzzy rule selection 517

123

As shown in Tables 3, 4, 5 and 6, our parallel distributed

implementation without too frequent assignment changes

for a small data set (i.e., except for Type 4 on the Wine

data set) decreased the average CPU time of Type 0 (i.e.,

the original non-parallel algorithm). The decrease in the

CPU time was more significant in the case of larger data

sets (i.e., Yeast and Pendig data sets). This observation

shows that our parallel distributed implementation can

improve the scalability of genetic fuzzy rule selection to

large data sets.

As we can see from many bold-face fonts in the second

column labeled as ‘‘training’’ in Tables 3, 4, 5 and 6, the

training data accuracy was significantly degraded by the

parallel distributed implementation in many cases. This is

because genetic fuzzy rule selection was performed at each

client CPU by using only a part of training data. We can

also see that the periodical reassignment of training data

subsets to the client CPUs (i.e., Types 2, 3) and the pop-

ulation re-subdivision (i.e., Types 5, 6) somewhat

improved the training data accuracy of Type 1 with no

reassignment. This is because these procedures can help

genetic fuzzy rule selection to adapt the entire training

data. On the contrary, the reassignment and re-subdivision

at every generation (i.e., Types 4, 7) did not work well. Too

frequent reassignment and re-subdivision may disturb the

genetic search for good rule sets.

Whereas the training data accuracy was significantly

degraded by the parallel distributed implementation in

many cases in Tables 3, 4, 5 and 6, the test data accuracy

was not significantly degraded with only a few exceptions.

Almost the same test data accuracy was obtained from the

original non-parallel algorithm and the parallel distributed

implementation in many cases. This observation clearly

shows the usefulness of our parallel distributed imple-

mentation since the average CPU time was drastically

decreased by our parallel distributed implementation.

We can further observe that the complexity (i.e., the

number of fuzzy rules and the total rule length) was also

decreased by our parallel distributed implementation,

especially for large data sets. This is a by-product of the

training data subdivision.

6 Conclusions

In this paper, we proposed a parallel distributed imple-

mentation of genetic fuzzy rule selection to improve its

scalability to large data sets. Through computational

experiments, it was shown that the proposed parallel dis-

tributed implementation found fuzzy rule-based classifiers

with almost the same test data accuracy as the original non-

parallel algorithm while it drastically decreased the average

CPU time. It was also shown that the reassignment of

training data subsets helped our parallel distributed

implementation to find good fuzzy rule-based classifiers

with high generalization ability.

The extension of parallel distributed genetic fuzzy rule

selection to evolutionary multiobjective optimization

(Abraham et al. 2005; Coello 1999; Coello et al. 2002;

Deb 2001; Jin 2006) is an interesting future research issue.

This work was partially supported by Foundation for

C&C Promotion and Grant-in-Aid for Young Scientists

(B): KAKENHI (18700228).

References

Abraham A, Jain L, Goldberg R (eds) (2005) Evolutionary multiob-

jective optimization. Springer, London

Agrawal R, Mannila H, Srikant R, Toivonen H, Verkamo AI (1996)

Fast discovery of association rules. In: Fayyad UM et al (eds)

Advances in knowledge discovery and data mining. AAAI Press,

Menlo Park, pp 307–328

Alba E, Tomassini M (2002) Parallelism and evolutionary algorithms.

IEEE Trans Evol Comput 6(5):443–462

Araujo DLA, Lopes HS, Freitas AA (2000) Rule discovery with a

parallel genetic algorithm. In: Proceedings of GECCO Work-

shop on Data Mining with Evolutionary Computation, pp 89–92

Cano JR, Herrera F, Lozano M (2005) Stratification for scaling up

evolutionary prototype selection. Pattern Recognit Lett

26(7):953–963

Cano JR, Herrera F, Lozano M (2006) On the combination of

evolutionary algorithms and stratified strategies for training set

selection in data mining. Appl Soft Comput 6(3):323–332

Cantu-Paz E (1997) A survey of parallel genetic algorithms, IlliGAL

Report No. 95003

Casillas J, Cordon O, Herrera F, Magdalena L (eds) (2003a)

Interpretability issues in fuzzy modeling. Springer, Berlin

Casillas J, Cordon O, Herrera F, Magdalena L (eds) (2003b) Accuracy

improvements in linguistic fuzzy modeling. Springer, Berlin

Coello CAC (1999) A comprehensive survey of evolutionary-based

multiobjective optimization techniques. Knowl Inform Syst

1(3):269–308

Coello CAC, van Veldhuizen DA, Lamont GB (2002) Evolutionary

algorithms for solving multi-objective problems. Kluwer, Boston

Cordon O, del Jesus MJ, Herrera F (1999) A proposal on reasoning

methods in fuzzy rule-based classification systems. Int J Approx

Reason 20(1):21–45

Table 6 Results on the Pendig data set

Training Test Rules Length Time

Type 0 80.94 80.32 40.35 117.60 24:43:27

Type 1 80.38 79.81 30.80 89.35 2:42:14

Type 2 80.79 80.32 28.25 82.95 2:43:14

Type 3 80.75 80.26 29.70 86.20 2:55:12

Type 4 80.12 79.64 28.25 82.05 2:57:34

Type 5 80.75 80.13 30.00 87.20 2:54:11

Type 6 80.82 80.11 30.30 88.05 2:54:22

Type 7 80.38 79.98 29.40 85.75 2:48:37

518 Y. Nojima et al.

123

Cordon O, Herrera F, Hoffman F, Magdalena L (2001) Genetic fuzzy

systems. World Scientific, Singapore

Cordon O, Gomide F, Herrera F, Hoffmann F, Magdalena L (2004)

Ten years of genetic fuzzy systems: current framework and new

trends. Fuzzy Sets Syst 141(1):5–31

Deb K (2001) Multi-objective optimization using evolutionary

algorithms. Wiley, Chichester

Freitas AA (2002) Data mining and knowledge discovery with

evolutionary algorithms. Springer, Berlin

Herrera F (2005) Genetic fuzzy systems: Status, critical consider-

ations and future directions. Int J Comput Intell Res 1(1):59–67

Ishibuchi H. Nojima Y, Kuwajima I (2006) Genetic rule selection as a

postprocessing procedure in fuzzy data mining. In: Proceedings

of 2006 International Symposium on Evolving Fuzzy Systems,

pp 286–291

Ishibuchi H (2007) Evolutionary multiobjective design of fuzzy rule-

based systems. In: Proceedings of First IEEE Symposium on

Foundations of Computational Intelligence, pp 9–16

Ishibuchi H, Nakashima T (2001) Effect of rule weights in fuzzy rule-

based classification systems. IEEE Trans Fuzzy Syst 9(4):506–

515

Ishibuchi H, Yamamoto T (2004) Fuzzy rule selection by multi-

objective genetic local search algorithms and rule evaluation

measures in data mining. Fuzzy Sets Syst 141(1):59–88

Ishibuchi H, Nozaki K, Tanaka H (1992) Distributed representation of

fuzzy rules and its application to pattern classification. Fuzzy

Sets Syst 52(1):21–32

Ishibuchi H, Nozaki K, Yamamoto N, Tanaka H (1995) Selecting

fuzzy if-then rules for classification problems using genetic

algorithms. IEEE Trans Fuzzy Syst 3(3):260–270

Ishibuchi H, Murata T, Turksen IB (1997) Single-objective and two-

objective genetic algorithms for selecting linguistic rules for

pattern classification problems. Fuzzy Sets Syst 89(2):135–150

Ishibuchi H, Nakashima T, Morisawa T (1999) Voting in fuzzy rule-

based systems for pattern classification problems. Fuzzy Sets

Syst 103(2):223–238

Ishibuchi H, Nakashima T, Murata T (2001) Three-objective genetics-

based machine learning for linguistic rule extraction. Inform Sci

136(1–4):109–133

Ishibuchi H, Nakashima T, Nii M (2004) Classification and modeling

with linguistic information granules: advanced approaches to

linguistic data mining. Springer, Berlin

Ishibuchi H, Kuwajima I, Nojima Y (2007) Use of Pareto-optimal and

near Pareto-optimal rules as candidate rules in genetic fuzzy rule

selection. In: Melin P et al (eds) Analysis and design of

intelligent systems using soft computing techniques (Advances

in Soft Computing 41). Springer, Berlin, pp 387–396

Jin Y (ed) (2006) Multi-objective machine learning. Springer, Berlin

Liu H, Motoda H (1998a) Feature selection for knowledge discovery

and data mining. Kluwer, Dordrecht

Liu H, Motoda H (1998b) Instance selection and construction for data

mining. Kluwer, Dordrecht

Llora X, Garrell JM (2001) Knowledge-independent data mining with

fine-grained parallel evolutionary algorithms. In: Proceedings of

the Genetic and Evolutionary Computation Conference, pp 461–

468

Llora X, Garrell JM (2002) Coevolving different knowledge repre-

sentations with fine-grained parallel learning classifier systems.

In: Proceedings of the Genetic and Evolutionary Computation

Conference, pp 934–941

Nojima Y, Ishibuchi H (2008) Computational efficiency of parallel

distributed genetic fuzzy rule selection for large data sets. In:

Proceedings of Information Processing and Management of

Uncertainty in Knowledge-Based Systems, pp 1137–1142

Nojima Y, Ishibuchi H, Kuwajima I (2006) Comparison of search

ability between genetic fuzzy rule selection and fuzzy genetics-

based machine learning In: Proceedings of 2006 International

Symposium on Evolving Fuzzy Systems, pp 125–130

Sheskin D (2007) Handbook of parametric and nonparametric

statistical procedures, 4th edn. Chapman & Hall, London

Parallel distributed genetic fuzzy rule selection 519

123

	Parallel distributed genetic fuzzy rule selection
	Abstract
	Introduction
	Related studies
	Classifier design by genetic rule selection
	Pattern classification problems
	Fuzzy rules for pattern classification problems
	Fuzzy rule extraction
	Fuzzy rule evaluation
	Classification in fuzzy rule-based classifiers
	Genetic fuzzy rule selection

	Parallel distributed implementation
	Computational experiments
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

