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Abstract— In the early days a policy was a set of simple

rules with a clear intuitive motivation that could be formalised

to good effect. However the world is now much more complex.

Subtle risk decisions may often need to be made and people

are not always adept at expressing rationale for what they do.

Previous research has demonstrated that Genetic Programming

can be used to infer statements of policies from examples of

decisions made [1]. This allows a policy that may not formally

have been documented to be discovered automatically, or an

underlying set of requirements to be extracted by interpreting

user decisions to posed “what if” scenarios. This study compares

the performance of three different approaches in using Genetic

Programming to infer security policies from decision examples

made, namely symbolic regression, IF–THEN rules inference

and fuzzy membership functions inference. The fuzzy mem-

bership functions inference approach is found to have the best

performance in terms of accuracy. Also, the fuzzification and

de-fuzzification methods are found to be strongly correlated;

incompatibility between them can have strong negative impact

to the performance.

I. INTRODUCTION

I
N computer systems, a security policy is essentially a

set of rules specifying the way to secure a system for

the present and the future. Forming a security policy is a

challenging task: the system may be inherently complex with

many potentially conflicting factors. Traditionally security

policies have had a strong tendency to encode a static view

of risk and how it should be managed [2], typically in

a pessimistic or conservative way. Such an approach will

not suffice for many dynamic systems which operate in

highly uncertain, inherently risky environments. In many

military operations for example we cannot expect to predict

all possible situations.

Much security work is couched in terms of risk but in

the real world there are benefits to be had. In military

operations you may be prepared to risk a compromise of

confidentiality if not doing so could cost lives. There is a

need for operational flexibility in decision making, yet we
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cannot allow recklessness. Decisions need to be defensible

and so must be made on some principled basis. People are

typically better at making specific decisions than in providing

abstract justification for their decisions. It is very useful to

be able to codify in what a “principled basis” consists of

since this serves to document “good practice” and facilitates

its propagation.

The above discussion has been couched in terms of human

decision making. In some environments the required speed

of system response may force an automated decision. Such

automated decisions must also be made on a “principled

basis” and some of these decisions may be very tricky.

Automated support must be provided with decision strategies

or rules to apply.

In this paper we investigate how security policy rules

can be extracted automatically from examples of decisions

made in specified circumstances. This is an exercise in policy

inference. The automation aspect of the inference is doubly

useful: automated inference techniques can discover rules

that humans would miss; and policies can be dynamically in-

ferred as new examples of tricky decisions become available.

Thus the current policy can evolve to reflect the experience

of the system. For example, if a human determines what

the proper response should be based upon the information

available, either in real-time or post facto, a conclusion is

drawn that similar responses should be given under sim-

ilar circumstances. Essentially, we attempt to partition the

decision space such that each partition is associated with a

response that is commensurate with the risk vs. benefit trade-

off for that partition.

In practice, different decision makers may come to dif-

ferent decisions in the same circumstances, particularly if

the decisions are tricky. Decision makers may use data

that are not available to the inference engine to reach a

decision, or else one decision-maker may simply have a

different appetite for risk. Any inference technique must be

able to handle sets of decision examples that do not seem

entirely consistent. Genetic Programming (GP) is used for

the experiments presented in this paper. Previous research has

demonstrated that this approach is promising; security rules

can be extracted automatically from examples of decisions

made [1].

In this paper we present a comparison of three approaches

in using Genetic Programming to infer statements of policies

from decision examples made. In the first experiment, we

take the view that policy is a function that maps decision

making factors to a decision. Each individual is a candidate

representation of this function. Essentially, this is an exercise
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of symbolic regression; determining the mapping function

using previous decision examples as the guiding points.

In the second experiment, we assume that policy can be

represented with a set of IF <condition> THEN <action>
rules. The condition is a list of logical predicates in terms

of decision making factors, comparators and values (e.g.

TrustV alue > 5 AND RiskV alue ≤ 4). Each GP run is

used to determine the condition for 1 decision; N runs of

GP are required to search for a policy with N possible

decisions. In the third experiment, we incorporate the fuzzy

membership concept by considering each of the N decisions

to be a fuzzy set. GP is used to search for the fuzzy

membership functions for each fuzzy set. Again, N runs of

GP are required to search for a policy. Then, an additional

de-fuzzification step is employed to determine from the N
membership functions the most appropriate decision. The

work presented here significantly extends the work presented

in [1].

The results show that the fuzzy membership functions

inference approach has the best performance in terms of

accuracy. Also, the fuzzification and de-fuzzification methods

are found to be strongly correlated; incompatibility between

them can have strong negative impact to the performance.

The organisation of this paper is as follows: Section

II presents the related work. Section III presents a brief

introduction about the chosen policy – Fuzzy MLS policy

model, which serves as the target policy to be learnt. Sections

IV to VI presents the experiment designs and results of

three different approaches, namely, the symbolic regression,

IF–THEN rules inference, and fuzzy membership inference.

In Section VII, we compare and discuss the experimental

results. Lastly, Section VIII concludes the report with a sum-

mary of the experiment results and possible future researches.

II. RELATED WORK

Security policies are mostly written in high level forms and

later followed by a series of transformations and refinements.

Improvement in easing this process include automated trans-

formation of high level human understandable rules to low

level machine executable rules, automated policy conflicts

and coverage checking and resolution. Despite many im-

provements achieved in these techniques, there are no known

attempts in generating the policy automatically from previous

decision examples using machine learning techniques. Our

present study is a radical attempt to address an important

problem (similar concept is mentioned in [3] but no published

work have been released so far).

On the other hand, rule inferencing techniques have been

around for many years in the machine learning domain.

There are various approaches proposed, e.g. decision tree

induction, Genetic Algorithm (GA), Genetic Programming

(GP), Artificial Immune Systems (AIS), etc. In this paper,

emphasis is placed on GP. In [4], a grammar-based genetic

programming system called LOGENPRO (The LOGic gram-

mar based GENetic PROgramming system) is proposed. In

the performance test conducted, it is found that LOGENPRO

outperforms some Induction Logic Programming (ILP) sys-

tems. In [5], a GP experiment on co-evolution between rules

and fuzzy membership of variables is designed. The result

shows that the output set of rules and variables are well

adapted to one another. In [6], an attempt is made to invent

a generic rule induction algorithm using grammar based GP.

The result is shown to be competitive with well known

manually designed rule induction algorithms. However, in

all the above mentioned cases, there have been no previous

known research on rule inferencing technique in the our

domain of interest – security policy.

III. FUZZY MLS MODEL

The Fuzzy MLS policy model [7] is used throughout the

experiments to illustrate the concept of policy evolution.

Fuzzy MLS model is an adaptive extension to traditional

MLS (multi-level security) Bell-LaPadula policy model [8].

In the traditional model, every subject or object is assigned

a security label (〈 sensitivity level, categories set 〉). For a

read access, r, the policy can be summarised as follows:

IF sl ≥ ol AND sc ⊇ oc THEN r is allowed

IF sl < ol OR sc �⊇ oc THEN r is denied (1)

where sl and ol are subject and object sensitivity levels and

sc and oc are subject and object category sets. In other

words, a subject can access an object iff the subject is

trustworthy enough (sl ≥ ol) and has the legitimate “need-

to-know” (sc ⊇ oc) to access the object. In terms of risk, the

traditional MLS policy can be viewed as setting a fixed trade-

off between risk of information disclosure versus the benefit

an organisation can gain from it. As indicated in [7], it is

a non-adaptive, binary access control decision model where

accesses have been pre-classified as having either acceptable

or unacceptable risk and only accesses with acceptable risk

are allowed.

The Fuzzy MLS model uses this risk based rationale, but

extends the MLS model to be based on risk management

rather than risk avoidance inherent in the binary decision

process [2]. The Fuzzy MLS model takes a more flexible

and sophisticated view by computing quantified estimates

of the risk from unauthorised disclosure of information and

using these estimates to build a risk scale shown in Figure

1. The risk scale is divided into multiple bands. Each band

is associated with a decision. The risk in the bottom band

is considered low enough so the decision is simply allow

whereas the risk in the top band is considered too high so

the decision is deny. Each band between the top and bottom

is associated with a decision allow with band-specific risk

mitigation measures.

The Fuzzy MLS model defines risk as the expected value

of damage caused by unauthorised disclosure of information:

risk = (expected value of damage)× (2)

(probability of unauthorised disclosure)

The value of the damage is estimated from the object’s

sensitivity level. The probability of unauthorised disclosure
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Fig. 1. Risk adaptive access control on a risk scale [7]

is estimated by quantifying two “gaps”: one between the

subject’s and the object’s sensitivity levels and the other

between the subject’s and the object’s category sets. For

simplicity, this experiment looks only at the sensitivity levels

and assumes the categories sets are the same1, thus risk

becomes a function of subject and object sensitivity levels

only. For more detail on risk quantification, see [7], [9].

In [1], a way to partition the risk bands (which is in turn

associated with a decision) is defined to map an estimated

risk to a risk band:

band(risk(sl, ol)) = min(�log10(risk(sl, ol))	, N − 1)
(3)

The band numbers start from 0, N is the number of bands

desired on the scale and the function risk(sl, ol) is defined

in Appendix according to [7]. The intuition of using base-10
logarithm in (3) is to use a risk band number to represent

the order of magnitude of risk. Since each band is associated

with a decision, a risk band number computed using formula

3 represents a possible decision in the policy.

Based upon this model, experiments have been conducted

to assess the performance of three different Genetic Program-

ming based approaches in inferencing policies from decision

examples. The following sections describe experiments done

based upon each of these approaches in detail.

IV. EXPERIMENT 1: SYMBOLIC REGRESSION APPROACH

In this experiment, we view a policy as a function

that maps decision making factors to a decision itself.

For example, the “no read up” part of traditional MLS

Bell-LaPadula model can be viewed as a boolean function

access(sl, ol, sc, oc) which maps to True iff sl ≥ ol and

sc ⊇ oc. In the Fuzzy MLS model, this mapping function

is the composition band and risk function in (3). GP is

1Therefore the gap between categories sets is 0.

used to search for an equivalent function of this composition

function. This is an exercise of symbolic regression based

upon the decision examples.

A. Individual representation

Each individual represents a candidate function that cor-

responds to a policy. Since only the sensitivity levels are

considered, the terminal set T has only two variables,

namely sl and ol and a set of real constant numbers

in the range of (−1, 1) is added to T . In the function

set, 12 basic arithmetic operators are defined. These are

+, −, ∗, /, exp, log, sin, cos, max, min, ceil and

floor. The / and exp operators defined are the conventional

protected operators; division by 0 returns 1 and the exponen-

tial function returns the maximum value defined in the IEEE-

standard double precision (64-bits) floating point number if

overflow happens.

B. Training set and testing set generation

The training sets and testing sets described here are used

throughout all 3 experiments described in this paper to allow

consistent comparison. Each example x in the training and

testing sets is a (slx, olx, bandx) triple, where bandx is

calculated using (3). In other words, all the examples used

are assumed to be correct.

3 different training sets are used in each experiment. The

first training set consists of all possible 100 (sl, ol) pairs

where sl and ol are integers in [0, 9]. This optimal setting

lends itself to act as the control. The second and third sets

consist of 100 and 500 randomly generated (sl, ol) pairs

where sl and ol are also integers in [0, 9]. Unlike in the

control, these two sets would have incomplete coverage and

uneven distribution of examples over risk bands.

After going through the evolution process, the best indi-

vidual in the population is selected to test against two sets

of examples. The first set is same as the first 100-example

training set. This testing set provides a good indication on

how much “knowledge” has been acquired by the approach

employed in a fixed number of generations. The second

testing set consists of 100 randomly generated (sl, ol) pairs

where sl and ol are real numbers in [0.0, 9.0]. Therefore,

most of these examples are unseen yet similar to training

examples. This set provides a good measure on how much

the acquired knowledge can be applied for unseen cases.

C. Fitness evaluation

Two principles are used to determine the score for a

decision made by an individual. For an example x and an

individual i, if i evaluates x to be in band j (j is i(x) rounded

to the nearest integer), then:

• For a correct decision, reward more the higher the risk

band; i.e., reward higher j more than lower j. (We care

more about higher risk bands)

• For an incorrect decision, punish more the more the

decision deviates from the target; i.e., punish more
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as |j − bandx| becomes larger. Also, punish under-

estimation of the risk band more than over-estimation

of it; i.e., punish more if bandx > j.

Based upon these principles, the fitness of an individual i,
fitness(i) is defined as follow:

fitness(i) =
∑

∀ example x

score(x) (4)

where

score(x) =

⎧⎪⎨
⎪⎩

bandx + 1 if j ≡ bandx,

−(bandx − j) if bandx > j,

−(j − bandx)/2 if bandx < j

D. Policy resolution

The learnt function might not be perfect; sometimes the

function might map a particular (sl, ol) pair to a value that

is out of band range. When this happens, we assume that all

out-of-range values represent the highest band, i.e., in our

case, any value not in the range [0, 9] is assumed to be 9. This

is consistent with the usual attitude to security which favours

overestimation of risk rather than underestimation. In a future

run-time deployment of our inference approach it would

be possible to involve human interaction. An alert would

be given to the security administrator and the administrator

would decide which band an input should be mapped to.

Then, this decision can be used as a new training example.

E. Summary

The experiment setup is summarised in Table I. This

experiment is carried out using the ECJ Framework v16 [10]

and the default values are used for unmentioned parameters.

Objective Search for the nearest equivalent function
of band(risk(sl, ol)) in (3)

Terminal set T {sl, ol} ∪ {r| − 1.0 < r < 1.0}
Function set F {+,−, ∗, /, exp, log, sin, cos

max, min, ceil, floor}
Fitness function fj(i) fitness(i) in (4)

Number of generation 500

Population size 1024 (default)

Population initialisation Ramp half and half method with the min-
imum and maximum height of the tree set
to be 2 and 6 respectively (default)

Genetic Operators crossover, mutation, reproduction (de-
fault)

Maximum height of tree 17

TABLE I

SUMMARY OF EXPERIMENT 1 SETUP

V. EXPERIMENT 2: IF–THEN RULES INFERENCE

APPROACH

We take an alternative view here on policy as a set

of IF <condition> THEN <action> rules. Each decision

action is considered as a set, we shall use GP to search

for the condition corresponding to some particular decision

action (e.g. “allow read”). Essentially, the security policy

inference problem is transformed into a N -classes classi-

fication problem, in which N is the number of rules in

the policy. GP is used to search for the condition part

of each rule. Therefore, the number of GP runs increases

linearly with the policy size. This is not as daunting as it

seems to be. As all these searches are independent from one

another, this design approach can benefit from the multi-core

processor revolution and execute searches in parallel. With

only 1 processor, the binary decomposition method2 can be

employed to solve this problem in N − 1 GP runs.

In the Fuzzy MLS model, the risk scale is divided into

10 bands numbered from 0 to 9. Therefore, 10 GP runs are

required to search for conditions for all the bands. The target

condition for band j, TCj to be learnt is:

TCj(sl, ol) = (band(risk(sl, ol)) ≡ j) (5)

A. Individual representation

As each individual reassembles the condition expression

in the IF–THEN rules, the root node in a tree must evaluate

to a Boolean. At the highest (nearest to the root) layer,

there are composition operators, AND, OR and NOT . The

second layer consists of logic relational operators such as <
or =. The next layer consists of arithmetic operators such

as + or sin and the leaf nodes at the bottom layer are

elements of the terminal set T . Thus, no boolean nodes can

have real numbers as their ancestors. Strongly Typed Genetic

Programming (STGP) [11] is used to ensure this structure.

Figure 2 shows an example of well-typed individual.
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Fig. 2. An example of the well-typed individual

The terminal set T has only two variables, namely sl
and ol and a set of real constant numbers in the range

of (−1, 1) is added to T . These elements are real num-

bers. There is an additional set of boolean constants;

True and False added to T . For real numbers, 15 op-

erators are defined: 3 relational operators (=, < and >),

each returns a boolean value and 12 arithmetic oper-

ators (+,−, ∗, /, exp, log, sin, cos, max, min, ceil, floor),

2Binary decomposition method decomposes the N classes classification
problem into N − 1 binary classification problems. The first classification
problem is (c1, c1′ ≡ P − c1), second problem is (c2, c2′ ≡ c1′ − c2),
N−1 problem is (cN−1, cN−1

′ ≡ cN−2
′−cN−1 ≡ cN ). The nth binary

classification problem can only be solved after the n previous problems are
solved. The algorithm is inherently sequential.
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each returns a real number. Again, the / and exp operators

defined are the conventional protected operators as described

in Experiment 1. For the boolean values, there are 3 opera-

tors, AND, OR and NOT defined, each returns a boolean

value.

B. Fitness evaluation

As in Experiment 1, different scores are given to different

kinds of decisions made by an individual according to the

following four principles; two of them are the same as

the principles in Experiment 1, the other two are added

following the fact that this design allows us to distinguish

between positive and negative decisions. In the search for

the condition of band j, TCj , let di,x be the decision made

by i for an example x, then:

• For a correct decision, reward more if

– the risk is higher for security concerns; i.e., reward

more for a larger j.

– the decision is true positive (hits the target); i.e.,

reward more when bandx ≡ j. This is to overcome

the effect of having relatively few examples in band

j when j �= 0 (less than 10% on average).

• For an incorrect decision, punish more if

– the decision is false positive (di,x ≡ True and

bandx �≡ j) and is more off the target; i.e., punish

more as | j − bandx | becomes larger. Also, for

security concerns, punish more if this false positive

decision underestimates the risk; i.e., punish more

if bandx > j.

– the decision is false negative (di,x ≡ False and

bandx ≡ j) when the risk is higher for security

concerns; i.e., punish more for a larger j.

Based upon these four principles, the fitness score for

an individual in the search for the condition of band j,

fitnessj(i) is defined as:

fitnessj(i) =
∑

{x|bandx≡j}

wtp{di,x ≡ True} +

∑
{x|bandx �≡j}

wtn{di,x ≡ False} −

∑
{x|bandx �≡j}

wfp{di,x ≡ True} −

∑
{x|bandx≡j}

wfn{di,x ≡ False} (6)

where

wtp = j + 1,

wtn = (j + 1)/10,

wfp =

{
bandx − j if bandx > j,

(j − bandx)/2 if bandx < j,

wfn = j + 1

C. Policy resolution

When two or more TC evaluated to True, the highest

band with TC ≡ True is selected for security concerns.

Formally, if TCj ≡ True and TCk ≡ True and j > k, then

band j instead of band k is used. Also, if there is no TC
evaluated to True, the highest band is used again for the

same reason. An alternative implementation which involve

human decision making as described in Section IV-D can

also be used instead. Then, this decision can be used as a

new training example.

D. Summary

The experiment setup is summarised in Table II. As in

Experiment 1, this experiment is carried out using the ECJ

Framework v16 [10] and the default values are used for

unmentioned parameters.

Objective Search for the equivalent functions of TC
for all bands, ∀j ∈ [0, 9], TCj in (5)

Terminal set T {sl, ol} ∪ {r| − 1.0 < r < 1.0}
∪{TRUE, FALSE}

Function set F {+,−, ∗, /, exp, log, sin, cos
max, min, ceil, floor}
∪{AND, OR, =, >, <}

Fitness function fj(i) fitness(i) in (6)

Number of generation 500

Population size 1024 (default)

Population initialisation Ramp half and half method with the min-
imum and maximum height of the tree set
to be 2 and 6 respectively (default)

Genetic Operators crossover, mutation, reproduction (de-
fault)

Maximum height of tree 17

TABLE II

SUMMARY OF EXPERIMENT 2 SETUP

VI. EXPERIMENT 3: FUZZY MEMBERSHIP APPROACH

In this section we aim to provide some degree of smooth-

ing to our search space by adopting a fuzzy-inspired ap-

proach. We shall seek for each target band j a fuzzy

membership function Mj(sl, ol), whose response reflects the

likelihood of a given risk should be assigned that band. Later

we shall use these band membership functions to determine

the most appropriate band for given input (sl, ol).

A. Fuzzification

To guide the learning of the fuzzy set membership function

for band j, Mj(sl, ol), the target membership of each of the

10 bands in the band j fuzzy set is first defined. Essen-

tially, these 10 pre-defined points characterise the shape and

location of the Mj curve. The learning process becomes a

curve fitting exercise to search for a curve that best fits the 10
points, using all the examples in the training set. Curve fitting

is naturally more tolerant of incomplete coverage in the

training set because it uses interpolation and extrapolation to

compensate for the “missing points”. It is also more resilient

to a few out-liars in the training set.
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Furthermore, the fuzzy membership range is changed to

[−1.0, 1.0] with 0.0 represents full membership. This is dif-

ferent from the traditional fuzzy membership range, [0.0, 1.0]
with 1.0 representing full membership. The expansion on the

negative range allows the information about the direction (left

or right to the target band) to be encoded. For example, for

M5(sl, ol), the target membership of each band, starting from

band 0, can be defined as:

[−0.5,−0.4,−0.3,−0.2,−0.1, 0.0, 0.1, 0.2, 0.3, 0.4]

Band 5 has membership 0. The target memberships for

other Mj �=5 can be defined similarly. With all 10 membership

functions learnt, one can determine the band of an input

by feeding the input to all 10 functions and computing

the band number by examining the 10 membership values

returned by these functions. For example, if each membership

value indicating that “the distance between the input and my

band places the input close to band 5”, then with very high

confidence we can say the input belongs to band 5. This is

analogous to examine the input from 10 different perspectives

to draw the final conclusion, which is more likely to be

accurate than examining the input from one perspective.

Two setups with different pre-defined target memberships

are carried out to validate this concept. In the first setup the

10 target memberships for Mj are defined as :

Mj(k) ≡ (k − j)/10, k = 0 to 9 (7)

This is like mapping a traditional triangle fuzzy membership

function, which has the range [0, 1] and Mj(j) ≡ 1 as the tip

of the triangle, to a straight-line membership function with

the range [−1, 1] and Mj(j) ≡ 0. Figure 3 shows the target

membership curves for all 10 bands using (7). In the second

setup, bell-shaped Gaussian distribution curves are mapped in

a similar fashion and Figure 4 shows the membership curves

for all 10 bands.

Fig. 3. The linear (modified triangle) membership functions, Mlinear for
of all the bands

B. De-fuzzification

Once all 10 membership functions are learnt and feeding

an input x ≡ (slx, olx) to these functions, a de-fuzzification

Fig. 4. The curve (modified Gaussian distribution) membership functions,
MGaussian for of all the bands

mechanism is required to map all 10 values returned by these

functions to a risk band number. Two voting based algorithms

are used for de-fuzzification: One (Algorithm 1) uses the

direction knowledge only [1] and the other one (Algorithm

2) uses both the direction and distance knowledge.

initialise an array v[10] with all elements set to 0
forall example x do

forall band j do

if Mj(slx, olx) > 0.05 then

forall k > j do

v[k]← v[k] + 1

else if Mj(slx, olx) < − 0.05 then

forall k < j do

v[k]← v[k] + 1

else if −0.05 ≤ Mj(slx, olx) ≤ 0.05 then

v[j]← [j] + 1

choose v[i] with the maximum value

outputs i as the risk band number

Algorithm 1: Direction based de-fuzzification [1]

C. Individual representation

In this experiment, the terminal set T consists of sl,
ol and a set of random real constant numbers in the

range of (−1, 1) whereas the function set F is reduced to

{+,−, ∗, /, exp, log, sin, cos max, min, ceil, f loor} just as

in Experiment 1. The individual structure used here is also

similar as in Experiment 1, but they represent two differ-

ent things. Each individual here resembles the membership

function for the band in question whereas an individual in

Experiment 1 resembles a function that corresponds to the

policy as a whole.

D. Fitness evaluation

The fitness function uses per-band normalised distance: let

Mj,i represent an individual i in the search for the member-
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initialise an array v[10] with all elements set to 0
forall example x do

forall band j do

if Mj(slx, olx) > 0.05 then

p← j + Mj(x) ∗ 10
k ← min(�p + 0.5	, 9)
v[k]← v[k] + 3
if k > p then

v[k − 1]← v[k − 1] + 2
v[k + 1]← v[k + 1] + 1

else

v[k − 1]← v[k − 1] + 1
v[k + 1]← v[k + 1] + 2

else if Mj(slx, olx) < − 0.05 then

p← j + Mj(x) ∗ 10
k ← max(p− 0.5�, 0)
v[k]← v[k] + 3
if k < p then

v[k + 1]← v[k + 1] + 2
v[k − 1]← v[k − 1] + 1

else

v[k + 1]← v[k + 1] + 1
v[k − 1]← v[k − 1] + 2

else if −0.05 ≤ Mj(slx, olx) ≤ 0.05 then

v[j]← v[j] + 3
v[j + 1]← v[j + 1] + 1
v[j − 1]← v[j − 1] + 1

choose v[i] with the maximum value

outputs i as the risk band number

Algorithm 2: Direction and distance based de-fuzzification

ship function for band j, the individual fitness, fitnessj(i)
is defined as follow:

fitnessj(i) =
∑

∀ bands k=0 to 9

scorek(x) (8)

where

scorek(x) =

∑
∀ x in band k |Mj,i(slx, olx)−Mj(bandk)|

total number of band k examples

Thus, the fitnessj(i) represents the sum of normalised

distances between the Mj,i and Mj .

In contrast to the previous two experiments, here smaller

fitnessj(i) means better fit.

E. Summary

The experiment setup is summarised in Table III. This

experiment is carried out using the ECJ Framework v16 [10]

and the default values are used for unmentioned parameters.

VII. RESULT AND DISCUSSION

Each experiment is repeated for 10 times using different

random seeds. The average of the policy performances over

the 10 runs in terms of the distance from the target band is

Objective Search for the fuzzy membership func-
tions for all bands, ∀j ∈ [0, 9], Mj char-
acterised by the examples in the training
set

Terminal set T {sl, ol} ∪ {r| − 1.0 < r < 1.0}
Function set F {+,−, ∗, /, exp, log, sin, cos

max, min, ceil, floor}
Fitness function fj(i) fitnessj(i) in (8)

Number of generation 500

Population size 1024 (default)

Population initialisation Ramp half and half method with the min-
imum and maximum height of the tree set
to be 2 and 6 respectively (default)

Genetic Operators crossover, mutation, reproduction (de-
fault)

Maximum height of tree 17

TABLE III

SUMMARY OF EXPERIMENT 3 SETUP

summarised in the Table IV. The training sets and testing

sets are explained in Section IV-B.

In general, the experiments using fuzzy membership ap-

proach consistently perform the best in terms of accuracy on

both the discrete and continuous testing sets, the experiments

using IF–THEN rules approach have good performances on

discrete testing set, but poor performances on continuous

testing set and the experiments using the symbolic regression

approach have poor performances on both testing sets.

The poor performances of the experiments using the

symbolic regression approach can be explained from the

function used in partitioning the risk scale (3) which results

in uneven distribution of the examples in the training sets.The

output band is strongly correlated to one of the inputs, ol.
Approximately half of the training examples are mapped to

band equal to ol. This becomes a high local optimum point

which is difficult to escape. Indeed, a careful analysis on

result reveals it is the case that the best function (policy)

learnt maps every possible input pairs to ol in one third of

the total runs. Another local optimum is the function that

maps every possible input pairs to band 0.

In the experiments using IF–THEN rules inference ap-

proach, the performance of the policies improve significantly

on the discrete testing set (Testing Set 1). The policy per-

formances also improve as the training set size increases.

In particular, the policy learnt using 500 random examples

performs extremely well, it maps 93.8 examples in average to

the bands correctly and the mean distance between the target

bands and the results is 0.348. This is because the high local

optimum points present in the last approach are removed

by design (band = ol) or the use of the weighted function

(band = 0). However, the performance of the policies on

continuous testing set (Training Set 2) does remain similar

to the policies learnt using symbolic regression approach.

Furthermore, analysis on the outputs of these two ap-

proaches show that there are numerous unusual cases such

that some (sl, ol) pairs with (high, low) values are mapped

to band 9 (the highest band in our case). This suggests

that the policy resolution mechanism has taken placed. In
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other words, policies learnt are incomplete. This necessarily

pessimistic policy resolution mechanism degrades the perfor-

mance significantly.

The experiments using fuzzy membership functions in-

ference approach consistently have the best performance

in terms of accuracy on both the discrete and continuous

testing sets. Also, the de-fuzzification method that uses both

direction and distance information improves the performance

of the experiments using the mapped triangle based fuzzifica-

tion, the mean distance from the target for all cases is reduced

to less than 0.8. However, this new de-fuzzification method

degrades the performance of the experiments using the

mapped Gaussian curve based fuzzification. This is because

the de-fuzzification method makes the assumption that the

distance from the target increases linearly in respect to the

membership value. This is not the case in Gaussian curve

based fuzzification. A possible further work is to design a

compatible de-fuzzification mechanism using both distance

and direction for Gaussian curve fuzzification.

VIII. CONCLUSION AND FURTHER WORK

This report presents a comparison of three different Ge-

netic Programming based approaches in which policies can

be inferred from a set of previously made decision exam-

ples. These approaches are symbolic regression, IF–THEN

rules inference and fuzzy membership functions inference

approaches. The fuzzy membership functions inference ap-

proach is found to have the best performance in terms of

accuracy. Also, the fuzzification and de-fuzzification methods

are found to be strongly correlated; incompatibility between

them can have strong negative impact on the result, e.g. the

incompatibility between the Gaussian curve based fuzzifica-

tion and linear distance based de-fuzzification.

Security policy inference is a new domain in which

evolutionary algorithms can be employed. Envisaged future

work are:

1) Injection of false examples – Instead of just using

training examples with correct decisions, we could

include some examples with wrong decisions to see

if this learning approach is sufficiently robust.

2) Multi-objective genetic programming – In our exper-

iments, a weighted sum is used to calculate the indi-

vidual fitness. The weights are defined based upon the

approximated distances from the expected result. This

is not always possible in other policies. For example,

a binary-decision model like the Bell-LaPadula model

only determines whether a decision is right or wrong,

but can not tell how good (or bad) a decision is, i.e.,

the distance is constant. Also, the weight is difficult

to justify. A radical way to put this matter forward

is to employ multi-objectives genetic programming

(MOGP).

3) Other evolutionary paradigms – Most of the real world

policy can be much bigger than the Fuzzy MLS model.

For security concerns, it is good to have a defined

structure for the policy to make it more analysable.

Grammatical Evolution which uses a set of grammar

rules to define the individual structure and an evolu-

tionary algorithm to evolve a string of indices which

is then used to index which grammar rules to be

“expanded” can be a good starting point.

4) Fuzzification – While the policies learnt using fuzzy

membership functions inference approach have supe-

rior performance compares to others, different fuzzifi-

cation methods seem to result different performances.

A possible avenue of further work include the way

in choosing these pre-defined points in a systematic

fashion.

Our GP-based inference approach has the potential to make

a significant contribution to the field of policy inference.

Everyone accepts that policy specification is currently hard,

and things are set to worsen as systems are deployed in ever

more complex environments with increasing sophistication

and subtlety of decision making needed. The work reported

here and in [1] shows that the technique has very consider-

able promise. We recommend this important application area

to fellow researchers.

APPENDIX A: RISK COMPUTATION

In [7], the risk resulted from the “gap” between a subject’s

and an object’s sensitivity levels (sl and ol) is estimated using

the following formula:

risk(sl, ol) = V al(ol)× P1(sl, ol) (9)

V al(ol) is the estimate value of damage and is defined in

[7] as

V al(ol) = aol, a > 1

The object sensitivity level is considered to be the order of

magnitude of damage and hence V al(ol) is defined as an

exponential formula. In our experiments we set a to be 10.

P1(sl, ol) is the probability of unauthorised disclosure and

is defined in [7] as a sigmoid function:

P1(sl, ol) =
1

1 + exp(−k(TI(sl, ol)−mid))

TI(sl, ol) is called the temptation index which indicates

how much the subject with sensitivity sl is tempted to leak

information with sensitivity level ol; it is defined as:

TI(sl, ol) =
a(ol−sl)

M − ol

The intuition for P1(sl, ol) and TI(sl, ol) can be found in

[7]. The value mid is the value of TI that makes P1 equal

0.5; the value k controls the slope of P1. The value M is the

ultimate object sensitivity and the temptation TI approaches

infinity as ol approaches M ; the intuition is that access to

an object that is as sensitive as or more sensitive than M
should be controlled by human beings and not machines. In

our experiments, the maximum value for sl and ol is 10; the

settings for k, mid and M are k = 3, mid = 4, M = 11.
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Experiment Training set Testing set
Distance from target band

Mean distance
0 1 2 ≥ 3

Symbolic Regression

1
1 62.3 9.6 6.0 22.1 1.248

2 43.6 20.7 7.3 28.4 1.703

2
1 71.9 8.0 4.2 15.9 0.895

2 52.3 21.0 5.7 21.0 1.411

3
1 63.2 10.7 5.7 20.4 1.203

2 38.5 29.5 7.5 24.5 1.667

IF–THEN Rules

1
1 88.1 0.4 0.7 10.8 0.797

2 48.1 19.0 5.5 27.4 1.831

2
1 82.7 3.7 2.3 11.3 0.746

2 52.7 20.9 5.4 21.0 1.500

3
1 93.8 0.4 0.0 5.8 0.348

2 49.6 20.9 4.5 25.0 1.824

Mapped triangle (Direction only)

1
1 50.7 26.4 11.5 11.4 0.868

2 40.5 33.0 13.1 13.4 1.076

2
1 56.3 23.9 9.2 10.6 0.826

2 45.0 31.7 8.6 14.7 1.056

3
1 53.9 23.5 11.1 11.5 0.863

2 43.4 36.6 10.9 9.1 0.921

Mapped Gaussian curve (Direction only)

1
1 63.9 20.6 8.3 7.2 0.620

2 51.8 29.7 12.7 5.8 0.757

2
1 56.9 20.9 14.4 7.8 0.772

2 41.8 25.4 18.9 13.9 1.173

3
1 71.4 19.4 6.7 2.5 0.414

2 60.1 24.2 9.2 6.5 0.638

Mapped triangle

1
1 91.6 4.8 1.0 2.6 0.178

2 62.2 23.5 3.6 10.7 0.781

2
1 76.0 13.3 3.6 7.1 0.514

2 62.1 23.9 4.8 9.2 0.634

3
1 78.5 10.8 2.5 8.2 0.535

2 58.8 27.3 3.4 10.5 0.782

Mapped Gaussian curve

1
1 65.5 14.4 9.6 10.5 0.696

2 52.6 18.8 12.7 15.9 1.013

2
1 62.6 14.6 9.2 13.6 0.916

2 47.9 17.6 11.9 22.6 1.492

3
1 65.4 14.5 9.0 11.1 0.707

2 50.3 19.7 12.3 17.7 1.097

TABLE IV

PERFORMANCE SUMMARY OF THE LEARNT POLICIES USING DIFFERENT APPROACHES
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