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Abstract

Many fuzzy rule induction algorithms have been proposed during the past decade or

so. Most of these algorithms tend to scale badly with large dimensions of the feature

space and in addition have trouble dealing with different feature types or noisy data. In

this paper, an algorithm is proposed that extracts a set of so called mixed fuzzy rules.

These rules can be extracted from feature spaces with diverse types of attributes and

handle the corresponding different types of constraints in parallel. The extracted rules

depend on individual subsets of only few attributes, which is especially useful in high

dimensional feature spaces. The algorithm along with results on several classification

benchmarks is presented and how this method can be extended to handle outliers or noisy

training instances is sketched briefly as well.
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1. Introduction

Building models from data has started to raise increasing attention, especially

in areas where a large amount of data is gathered automatically and manual

analysis is not feasible anymore. Also applications where data are recorded on-

line without a possibility for continuous analysis are demanding for auto-

matic approaches. Examples include such diverse applications as the automatic
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monitoring of patients in medicine (which requires an understanding of the un-

derlying behavior), optimization of industrial processes, and also the extraction
of expert knowledge from observations of their behavior. Techniques from di-

verse disciplines have been developed or rediscovered recently, resulting in an

increasing set of tools to automatically analyze data sets (an introduction to the

most important of these techniques can be found in [1]). Most of these tools,

however, require the user to have detailed knowledge about the tools’ underlying

algorithms, to fully make use of their potential. In order to offer the user the

possibility to explore the data, unrestricted by a specific tool’s limitations, it is

necessary to provide easy to use, quick ways to give the user first insights. In
addition, the extracted knowledge has to be presented to the user in an under-

standable manner, enabling interaction and refinement of the focus of analysis.

Learning rules from examples is an often used approach to achieve this goal.

However, most existing rule learning algorithms are limited to a uniform type

of features [2–6], in these cases numerical values. Other approaches can only

handle a pre-defined partitioning of the numeric features [7], or generate a

semi-global partitioning of the feature space, such as decision trees [8–11]. Very

often, the extracted rules also rely on constraints on all available features [12–
15], an approach not feasible for large dimensions. This is similar to clustering

techniques which rely on a distance function defined over all dimensions to

extract a set of representative prototypes [16]. Approaches to extract fuzzy

rules from clusters have also been proposed [17] but they have similar prob-

lems, that is, the resulting rules are constrained on all available features and a

distance metric defined over all dimensions is required, which again makes it

hard to apply this type of techniques to feature spaces with diverse types of

attributes. However, in order to be able to interpret the results, such rule based
representations are usually preferable. More complicated structures offer

greater flexibility but are often computationally very inefficient [18,19].

The approach presented in this paper can deal with various types of features

in parallel (in [20] the term mixed rules was introduced for rules of this type)

and in addition constrains only those features that are needed for each rule

individually. Therefore rules in different regions of the feature space can focus

on different features, effectively letting each rule decide for itself which features

to utilize. In addition, the presented algorithm combines specializing and
generalizing rule induction. In effect, the algorithm traverses the version space

(see [21,22] for a detailed introduction) from the top (in that it specializes its

rule set) and through a smaller part of the version space also from the bottom

(in that it generalizes within each rule as well). Therefore the resulting rules

have an area of evidence as well as an area of support. Both constraints to-

gether lead to a measure of confidence for the area covered by a rule, an im-

portant property for real world applications.

An additional problem that severely affects the performance of many rule
induction algorithms are outliers or distorted attributes. They heavily interfere

68 M.R. Berthold / Internat. J. Approx. Reason. 32 (2003) 67–84



with the goal to extract meaningful representations. Most methods to deal with

outliers try to completely ignore them, which can be potentially harmful since
the very outlier that was ignored might have described a rare but still extremely

interesting phenomena.

To address this problem we also describe an extension to the proposed algo-

rithm that aims to build a compact and interpretable model while still main-

taining all the information in the data. This is achieved through a two stage

process. A first phase builds an outlier-model for data points of low relevance,

followed by a second stage which uses this model as filter and generates a simpler

model, describing only examples with higher relevance, thus representing a more
general concept. The outlier-model on the other hand may point out potential

areas of interest to the user. Experiments indicate that the twomodels in fact have

lower complexity and sometimes even offer superior performance.

The remainder of this paper is organized as follows: in Section 2 we intro-

duce the concept of mixed rules and describe the basic algorithm, followed by

results on some well-known benchmark data sets. We continue by describing

some aspects of the algorithm such as subsampling conflicts (Section 3) and

detection of potential outliers (Section 4). After a brief conclusion (Section 5)
Section 6 describes some potential extensions of this work.

2. Mixed fuzzy rule induction

2.1. Mixed fuzzy rules

Mixed fuzzy rules as used here are rules that handle different types of fea-

tures. We restrict ourselves to the description of the algorithm with respect to

continuous, granulated, and nominal features but other types of features can

be handled similarly as well. Each mixed rule is defined through a fuzzy region

in the feature space and a class label. (See [23] for a description of a related

algorithm in the context of function approximation using fuzzy graphs.)

The feature space D consists of n dimensions. Each dimension Di (16 i6 n)
can be one of the following:

• continuous, that is Di � R,

• granulated, that is Di ¼ flj j16 j6mig, or

• nominal, that is Di ¼ fvalj j16 j6mig,
where lj : R ! ½0; 1� are the membership functions that specify the used

granulation and valj represent the nominal values.

Example 2.1. A three-dimensional feature space contains a numerical feature

‘temperature’ in the range ½0; 100�, a feature ‘pressure’ which is divided into two

partitions (llow – pressure smaller than 10 psi, lhigh – pressure larger than 10

psi), and one feature ‘color’ which can have three values: red, green, and blue.

This would result in:
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• dimension n ¼ 3,

• D1 ¼ ½0; 100�,
• D2 ¼ fllow; lhighg, where llowðxÞ ¼ 1 for x � 10, llowðxÞ ¼ 0 for x � 10, and

some transition from 0 to 1 around x ¼ 10 (the precise shape of these mem-

bership functions is irrelevant for the examples), lhigh is exactly the opposite

in this case, i.e. lhighðxÞ ¼ 1 
 llowðxÞ, and

• D3 ¼ fred; green; blueg

A mixed rule R operates on a feature space D and is defined through a fuzzy

set which assigns a degree of fulfillment. In order to compute this fuzzy set
efficiently, two vectors of constraints are used. Vector ~ccsupp ¼ ðcsupp

1 ; . . . ; csupp
n Þ

describes the most general constraint (the support region), whereas ~cccore ¼
ðccore

1 ; . . . ; ccore
n Þ indicates the most specific constraint (the core region) for this

particular rule. Each one-dimensional constraint ci defines a subset of the

corresponding domain Di it is responsible for. Constraints can be true, that is,

they do not constrain the corresponding domain at all.

Example 2.2. A rule could be valid for temperatures below 50, colors red and
blue, and feature ‘‘temperature’’ has no influence:

• csupp
1 ¼ ½0; 50Þ � D1,

• csupp
2 ¼ true, and

• csupp
3 ¼ fred; blueg � D3

In addition, let us assume that the available data actually only contained ex-

amples for this rule of temperatures in ½20; 45�, pressures below 10 psi, and for

color red, that is:

• ccore
1 ¼ ½20; 45� � csupp

1 ,
• ccore

2 ¼ fllowg, and

• ccore
3 ¼ fredg � csupp

3

Assuming that we already have an entire set of rules we can now classify

new patterns. For this, the two different constraints can be used in several

ways. Obviously only the specific or more general constraints can be

used.

• Optimistic classification. Here the more general support-area of the rule is
used:

Rð~xxÞ ¼
n̂

i¼1

ðxi 2 csupp
i Þ:

The disadvantage is a heavy portion of overlap between support regions of

different rules. This leads to cases where no final classification is possible

because rules of several different classes are activated.

• Pessimistic classification. The smaller, more specific core region of the rule is

used:
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Rð~xxÞ ¼
n̂

i¼1

ðxi 2 ccore
i Þ:

The disadvantage here is that a large area of the feature space is not covered

and – similar to the above case – no decision can be made.

Hence it is obviously much more desirable to combine the two con-

straints, resulting in a degree of membership for each rule. This solves the

problem in areas of heavy overlap or no coverage at all.

• Fuzzy classification. Compute a degree of match for each rule and a corre-
sponding input pattern ~xx. One possibility to combine the one-dimensional

membership values is using as T-norm the minimum-operator:

lðR;~xxÞ ¼ min
n

i¼1
lifcsupp

i ; ccore
i ; xig

� �
;

where the particular form of liðÞ depends on the type of domain Di. For the

choice of membership functions, various alternatives exist. For the nominal

features one could simply assign the maximum degree of membership for
patterns that fall inside the core region and the minimum degree of mem-

bership to the ones that only lie in the support region. One could also use an

underlying ontology and actually compute a degree of match between the

constraint and the input vector. For the granulated features pre-defined

fuzzy membership functions can be used, which assign degrees of member-

ship to input patterns. And for the numerical domains most commonly a

trapezoidal membership function is used, which assigns values of 1 to pat-

terns that fall inside the core region and linearly declines until it reaches 0
when they fall outside of the support region of the corresponding rule.

For the benchmark comparisons in the following sections, a winner-take-all

scenario was used, that is, the class with maximum degree of membership was

assigned as prediction to a new pattern.

2.2. Induction of mixed fuzzy rules from data

The extraction of mixed rules as described above from example data is done
by a sequential, constructive algorithm. Each pattern is analyzed subsequen-

tially and rules are inserted or modified accordingly. 1 Several such epochs (i.e.,

presentations of all patterns of the training set) are executed until the final rule

set agrees with all patterns. In normal scenarios this stable status is reached

after only few epochs, usually around five. An advantage over many other

algorithms is the clear termination criterion as well as the possibility to prove

formally that the algorithm does indeed terminate for a finite training set.

1 Later in this paper we will also briefly discuss how a subsampling procedure can improve the

performance of this pattern-by-pattern approach.
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Let us now concentrate on the underlying behavior of the rule induc-

tion algorithm. For internal use each rule maintains two additional parame-
ters:

• a weight w which simply counts how many patterns are explained by this

particular rule, and

• a so-called anchor~kk which remembers the original pattern that triggered cre-

ation of this rule.

For each pattern ð~xx; k), where ~xx is the input vector and k indicates the corre-

sponding class, 2 three cases are distinguished.

• Covered. A rule of the correct class k exists which covers this pattern, that is,
pattern~xx lies inside the support region specified by the vector of constraints

ðcsupp
1 ; . . . ; csupp

n Þ. That is, pattern ~xx has a degree of membership greater

then 0 for this rule. This fact will be acknowledged by increasing the core re-

gion of the covering rule in case it does not already cover~xx, which in effect in-

creases the degree of membership to 1. In addition this rule’s weight w is

incremented.

Example 2.3. If the rule from Example 2.2 encounters another pattern
~xx ¼ ð15; 5; blueÞ (which is obviously covered by the support region of the
rule), the core regions for x1 and x3 would need to be adjusted as follows:

ccore1 ¼ ½15; 45� and ccore3 ¼ fred; blueg.
• Commit. If no rule of correct class k exists which covers pattern~xx, a new rule

needs to be inserted into the rule base. This rule’s support region will initially

cover the entire feature space, that is, csupp
i ¼ true for all i ¼ 1; . . . ; n. The

core region will only cover ~xx itself, that is, ccore
i ¼ ½xi; xi� for numerical fea-

tures, ccore
i ¼ fxig for nominal features, and in case of granulated features,

the one partition which covers the component best, will appear in the con-
straint. The new rule’s weight w is set to 1 and the anchor is set to remember

the original pattern ~kk ¼~xx.
Example 2.4. The rule from the example above encounters another pattern

(5,5,green), which is obviously not covered by the existing rule. A new rule

will therefore be created, having an unconstrained support region:

csupp1 ¼ csupp2 ¼ csupp3 ¼ true, and a specific core region which covers only

the new pattern: ccore1 ¼ ½5; 5�, ccore2 ¼ fllowg, ccore3 ¼ fgreeng.
• Shrink. For both of the above cases, a third step is used to ensure that no

existing rule of conflicting class l 6¼ k covers ~xx. This is done by reducing

the support regions ~ccsupp for each rule of class l 6¼ k in such a way that ~xx
is not covered by the modified rule, i.e., results in a degree of membership

of 0. We can distinguish two cases:

2 The presented algorithm can also be used to handle different degrees of membership to several

classes, for simplicity we concentrate on mutually exclusive classes. In [23] it is shown how

overlapping classes can be used in the context of function approximation, however.
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� ~xx lies inside the support region, but outside of the core region: ~xx 2~ccsupp

and ~xx 62~cccore. In this case, we can avoid the conflict without loos-
ing coverage of previous patterns. We simply reduce the support area

just enough so that ~xx is not covered anymore. For this, all features

for which the corresponding component of ~xx does not lie in its core re-

gion are considered. From those features, the one is chosen that results

in a minimal loss of volume. This constraint is then modified accord-

ingly.

Example 2.5. Let us consider the rule in Example 2.3. If the next pattern
~xx ¼ ð10; 20; redÞ is of different class, this rule needs to be refined to avoid
the resulting conflict. In this case, it is sufficient to alter the support

region. For this we have two choices, either csupp1 or csupp2 can be modified

(csupp3 is not an option since red 2 ccore3 ): c0supp1 ¼ csupp1 n ½0; 10� ¼ ð10; 50Þ,
or c0supp2 ¼ csupp2 n flhighg ¼ fllowg. The choice between these two alter-

natives is made based on the respective loss in volume.

� ~xx lies inside the support region and inside of the core region:~xx 2~ccsupp and
~xx 2~cccore. In this case, it is not possible to avoid the conflict without loos-

ing coverage of previous patterns. 3 Similar to the above solution, one
feature is chosen that results in a minimal loss of volume and both, the

support and the core region are modified accordingly.

Example 2.6. Let us again consider the rule in Example 2.3. If the next

pattern~xx ¼ ð25; 5; redÞ is of different class, this rule needs to be refined to

avoid the resulting conflict. In this case, it is not sufficient to alter the

support region since~xx lies inside the core region as well. Now we have three

choices. For feature 1 two choices exist, the support region can be

constrained either on the left or right side: c0 supp1 ¼ csupp1 n ½0; 25� ¼ ð25; 50Þ,
or c00 supp1 ¼ csupp1 n ½25; 50Þ ¼ ½0; 25Þ. Feature 2 does not allow us to avoid

the conflict since we would create an empty constraint, thus rendering this

rule useless. Feature 3 can be used since two nominal values are still

contained in the core region: c0 supp3 ¼ csupp3 n fredg ¼ fblueg. The choice

between these three alternatives is againmade basedon the respective loss in

volume.

In both cases, the loss in volume needs to be computed. Since we are

dealing with disjunctive constraints, the resulting computation is straight
forward. The volume of a rule R is specified by the volumes of the core

and support regions:

volðRÞ ¼ ðvolð~ccsuppÞ; volð~cccoreÞÞ;

3 Those patterns will result in creation of a new rule during subsequent epochs.
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where the volume of a constraint can be computed as follows:

volð~ccÞ ¼
Yn
i¼1

volðciÞ

with

volðciÞ ¼
1 : ci ¼ true;
ci�max
ci �min
Di�max
Di �min

: Di is numeric;
jci j
jDij : Di is granulated or nominal:

8><
>:

Obviously other choices are possible as well. Using a volume-based heuristic

ensures that the resulting rules cover as much as possible of the feature

space. But one could, for example, also include a weighting scheme that
prefers constraints on certain features or use a built-in preference for certain

types of constraints. Note that in the case described above, the algorithm is

based on a greedy strategy. What results in a minimal loss of volume for one

conflicting pattern at a time might not be a good solution for the overall set

of conflicts. Further below, we will discuss how a subsampling of conflicts

can address this issue.

After presentation of all patterns for one epoch, all rules need to be reset.

This is done by resetting the core-region of each rule to its anchor (similar to
the original commit-step), but maintaining it’s support region and by resetting

its weight to 0. This is necessary to ensure that modified rules only model

patterns in their core and weight that they cover with their modified support

region. This also solves potential problems with cores that are bigger than their

corresponding support. After the final epoch this effect is not possible.

After presentation of all patterns for a (usually small) number of epochs, the

rule set will stop to change and training can be terminated. It is actually

possible to prove that the algorithm will terminate guaranteed, for a finite set
of training examples. A worst-case analysis finds that the maximum number of

epochs is equivalent to the number of training examples, but in practice less

than 10 epochs are almost always sufficient to reach equilibrium of the rule set.

2.3. Experimental results

The evaluation of the proposed methodology was conducted using eight

data sets from the StatLog project [24]. Table 1 shows the properties of these
data sets as well as the results of the proposed algorithm (column MRL ¼
mixed rule learner) in comparison to other, well-known classification tech-

niques (results from [24,25]). In addition to k nearest neighbor, a multi-layer

perceptron, and the decision tree algorithm c4.5 [9], we have used a con-

structive training algorithm for probabilistic neural networks [25] (column

DDA–PNN) to enable comparison with another local, constructive algorithm.

As usual, the new method does not outperform existing algorithms on every
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data set. Depending on the nature of the problem, the mixed rule induction

method performs better, comparable, and sometimes also worse than existing
methods.

It is interesting to see that for the Shuttle data set, the proposed method-

ology achieves results that are substantially better than any of the other al-

gorithms, in fact, the new algorithm has a better generalization performance

than all techniques evaluated in the StatLog project. This is due to the axes

parallel nature of the generated rules. The Shuttle data set has one class

boundary where patterns of two different classes lie arbitrarily close to an axes

parallel border. Such a scenario is modeled well by the underlying rules. But
also for the other data sets the performance is comparable to standard algo-

rithms. Only for the DNA data set does the proposed algorithm generate a rule

set which performs substantially worse than all other methods. This is an effect

due to the used heuristic for avoiding conflicts. In case of the DNA data set

almost 60% of all features are useless, and, even worse, exhibit random noise.

This leads the conflict avoidance heuristic to choose features to constrain al-

most randomly. The resulting rule set consists of almost 1500 rules, a clear

indication that no generalization took place. For such a scenario, the under-
lying heuristic would obviously need to be adjusted. A similar effect might

cause the difference in performance for the vehicle data, where the algorithm

discussed here is outperformed by a multi-layer perceptron but performs

comparable to the other methods listed in Table 1. A more thorough analysis

such as the one in [26] might help to investigate which characteristics of a data

set are well suited to be modeled by the proposed technique.

In the context of rule extraction, pure numerical performance is, however,

very often not the only concern. In the following, we will demonstrate how the
use of granulated features can result in rule sets that enable the user to un-

derstand the structure of the extracted model.

2.4. Using granulated features

Using the Iris data set [27], we will demonstrate how feature granulation can

guide the rule extraction process. If all four features are granulated into three

equidistant linguistic values ‘‘low’’, ‘‘medium’’, and ‘‘high’’, the proposed al-
gorithm finds seven rules. In the following, we list the three rules with the

highest weight, all together covering over 90% of all training patterns: 4

R1(25):if petal-length is low then class iris-setosa

R2(24):if petal-length is medium

4 The number in brackets following the rule symbol denotes the number of patterns covered by

this rule. In case of the used Iris data set, each class consists of 25 patterns. The other 3 � 25 ¼ 75

patterns were reserved for testing.
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and petal-width is (low or medium)

then class iris-virginica

R3(21):if petal-length is (medium or high)

and petal-width is high

then class iris-versicolor

The other four rules describe the remaining five patterns by using the two

features sepal-length and sepal-width as well. From the UCI reposi-

tory [28], it is known that the features regarding the petal size carry most of the

class-discriminative information, which is nicely complemented by the above

result.

3. Subsampling conflicts

As was visible in the previous section, some data sets result in either very

large rule sets or relatively low generalization performance. This is obviously

due to the inductive bias of the proposed algorithm but also partly due to the

used heuristic which avoids conflicts based purely on one single, conflicting
example pattern. In subsequent experiments, subsampling of conflicts was

explored. For this, each rule maintains a small list of individual conflicts and

tries to solve as many of them as possible when a certain threshold is reached.

Preliminary experiments showed promising results even for rather small

thresholds (sampling five or 10 conflicts often seems enough to achieve much

better generalization performance using smaller rule sets). For illustration, we

discuss experiments on the Monks data [29]. The task here is to extract rules

from data which was generated according to predefined rules. The data sets are
based on six nominal attributes with values 1; 2; 3; 4 (not all attributes use all

four nominal values). The first monk’s problem is defined by the underlying

concept:

MONK-1:(attr_1 ¼ attr_2) or (attr_5 ¼ 1)

and the third 5 monk’s problem is based on the concept: 6

MONK-3:(attr_5 ¼ 3 and attr_4 ¼ 1) or

(attr_5 !¼ 4 and attr_2 !¼ 3)

It is interesting to see what rule sets are generated by the initial algorithm
which avoids individual conflicts. For the first monk’s problem, seven rules are

generated describing the underlying concept. The first two rules look as fol-

lows:

5 The second monk’s problem is not discussed here, since its underlying concept is harder to

represent using only disjunctive rules. The results for that problem are similar, however.
6 For illustrative purposes we ignore the 5% additional noise in the training set that are usually

used for this problem. In the following section, we will discuss how an approach to tolerate outliers

can address noisy data.
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R1:if attr_1 is (1 or 3) and attr_2 is 1

and attr_4 is (1 or 3)

and attr_5 is (1 or 3 or 4)

then class 1

R2:if attr_5 is 1 then class 1

so, even though R2 nicely describes the second part of the condition (at-

tr_5¼1), R1 only describes a special case of the first part. This is due to the

sequential nature of the algorithm, which in this particular case chose to avoid

a conflict by restricting attr_4 instead of attr_1 or attr_2. If one changes

the conflict-avoidance heuristic to subsample 20 conflicts before a decision is
being made, the following four rules are extracted:

R1:if attr_1 is 1 and attr_2 is 1 then class 1

R2:if attr_1 is 3 and attr_2 is 3 then class 1

R3:if attr_1 is 2 and attr_2 is 2 then class 1

R4:if attr_5 is 1 then class 1

which is indeed the optimal representation of the underlying concept.

The same applies to the third monk’s problem. Without conflict subsam-

pling seven rules are generated. When conflicts are avoided based on a sub-
sampling of 20 conflicts, this reduces to the following two rules, which again

are optimal:

R1:if attr_4 is 1 and attr_5 is 3 then class 1

R2:if attr_2 is (1 or 2)

and attr_5 is (1 or 2 or 3)

then class 1

A subsampling of conflicts obviously leads to a reduction of the rule set. In the

two cases shown above, the modified algorithm in fact retrieves the true un-
derlying concepts.

4. Tolerating outliers

Most existing algorithms to construct rule-based models from data have

tremendous problems with noisy data or data containing outliers. Usually an

excessive number of rules is being introduced simply to model noise and/or
outliers. This is due to the fact that these algorithms aim to generate conflict

free rules, that is, examples encountered during training will result in a degree

of membership > 0 only for those rules of the correct class. Unfortunately in

case of outliers such an approach will, especially in high-dimensional feature

spaces, result in an enormous amount of rules to avoid these conflicts.

Many algorithms approach this problem by trying to build a simpler model

from the beginning by ignoring irrelevant patterns in the original data. Deci-

sion Trees, for example, do not split nodes anymore or prune splits on lower
levels afterwards. One disadvantage of this way to handle irrelevant data is the
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loss of information. It is usually not straight forward to extract knowledge

about which areas of the feature space are modeled insufficiently or which
example patterns were considered irrelevant. In the following a methodology is

discussed which generates two models, one describing the overall behavior of

the underlying system and a second model which describes patterns that were

considered irrelevant or uninformative.

4.1. Extracting irrelevant rules

Using an already existing set of rules, we can in many cases easily determine
parts that have low relevance, based on their weight or another parameter

which denotes individual relevance. To measure a rule’s relevance often the

weight parameter w is used which represents the number of training patterns

covered by rule R. From this a measure for the importance or relevance of each

rule can be derived, by simply using the percentage of patterns covered by this

rule:

UðRÞ ¼ w
jTj :

Other measures which are also used determine the loss of information if rule R
is omitted from the entire set of rules R:

UðRÞ ¼ IðRÞ 
 IðR n fRgÞ;

where Ið�Þ indicates a function measuring the information content of a rule set.

For our experiments we used (an extensive overview can be found in [30] and

also [31])

• the Gini-index:

IGiniðRÞ ¼ 1 

XC
c¼1

VcðRÞ2;

• and the fuzzy entropy function:

IEntropyðRÞ ¼ 

XC
c¼1

ðVcðRÞ log2 VcðRÞÞ;

where VcðRÞ indicates the volume of all rules R 2 R which are assigned to class

c. In [32,33,35] it is shown how this volume can be computed efficiently based

on a system of fuzzy rules.

The choice of relevance-measure is made depending on the nature of the

underlying rule generation algorithm, as well as the focus of analysis, i.e., the
interpretation of important vs. unimportant or useless data points. Using such

a measure of (notably subjective) relevance, we can now extract rules with low
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relevance from this model, assuming that they describe points in the data which

are outliers or sparse points:

Routlier ¼ R n fR 2 R jUðRÞ < houtlierg:
Using this ‘‘outlier’’-model as filter for a second training phase will then

generate a new rule-based model which has less rules with higher significance.

In fact, the original training data T is filtered and only data points which are

not covered by the outlier model will be used to construct the new model:

Tclean ¼ ~xx;~lltarget

 �

2 T j8R 2 Routlier : lRð~xxÞ
n

6 hfilter

o

Fig. 1 shows the flow of this procedure.

Note, how the initial model is being used to extract the outlier-model. This

model is then in turn used as a filter for the existing training data to generate

the final model. In the following, we will show how this affects the size of the

rule sets on two real-world datasets.

4.2. Experimental results

Experiments on two datasets from the StatLog-archive [24] were performed

to demonstrate the effect of the proposed methodology. The relevance function

UðRðjÞÞ ¼ wðjÞ with a threshold of houtlier ¼ 5 was used, that is rules which cover

less than five patterns were considered irrelevant. The filtering threshold hfilter

was chosen to be 1, in effect removing patterns that lie within the cores of ir-

relevant rules only.

The first dataset contains images from Satellites (Satimage-dataset). Patterns
with 36 attributes have to be separated into six different classes and 4435

training and 2000 test patterns were used. Table 2 (left) shows the results. Here

‘‘Stand’’ stands for the normal algorithm which generates rules in one run. H1

indicates the general model generated through the algorithm explained above

and H2 denotes the outlier model. The number of rules for both models is

shown in the last column. The number before the brackets indicates the size of

Fig. 1. The role of the two models during training.
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the rule-set of the general model H1, whereas the number in brackets denotes

the number of rules of the outlier model H0. It is interesting to see how already

without any additional distortion (0.0%) the two-stage model shows slightly

better performance using a considerable smaller number of rules (270 vs. 393).

Note also how the error rate on the unseen test data increases much slower

with increases in distortion for the two-stage model. The gap between the sizes

of the two models widens as well.

The second dataset is the Segment data from the same archive where 19
inputs and 7 classes are used with 2079 training and 220 test patterns. Table 2

(right) shows the results on this dataset. Here the effect in performance is not as

obvious. Still noticeable, however, is the difference in model size. While the size

of the separate outlier-model increases with increasing distortion, the size of

the model representing the more general behavior grows much slower.

It is obvious that this methodology can be applied to other rule induction

algorithms as well. As long as it is possible to evaluate and extract local parts of

a model easily such a filtering procedure can be used. For Neural Networks
and also Decision Trees such an approach is not as easily applicable, however.

Pruning parts of a such structures can affect the decision function in potentially

large areas of the feature space.

5. Conclusions

We have presented a new method for fuzzy rule formation. The generated
rules handle different types of attributes and through their individual assignment

of constraints it is possible to extract these rules also from high-dimensional data

sets – the resulting rule will only use a small individual subset of features which

were considered important in this particular part of the feature space. The

Table 2

Results on the satimage and segment datasets

Level of distort. (%) Used model Satimage data Segment data

Error (%) No. of rules Error (%) No. of rules

0.0 Stand. 15.9 393 3.5 96

H1ðH0Þ 13.5 270 (60) 3.0 80 (12)

1.0 Stand. 17.1 394 5.2 108

H1ðH0Þ 13.5 313 (81) 4.3 86 (22)

2.0 Stand. 18.1 404 6.9 113

H1ðH0Þ 12.9 295 (109) 5.6 83 (30)

5.0 Stand. 18.1 479 6.1 144

H1ðH0Þ 12.4 334 (145) 3.8 107 (37)

10.0 Stand. 22.3 578 6.5 151

H1ðH0Þ 15.2 379 (199) 6.5 106 (45)
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classification performance of the new algorithm was demonstrated on bench-

marks from the well-known StatLog project. We also demonstrated the inter-
pretability of the extracted rules using the Iris and Monks data. Two extensions

to the algorithm were outlined. First, a method to improve the underlying online

heuristic was presented that operates by subsampling conflicts in order to make

better decisions about local feature importance. Second an approach to model

(not only discard!) potential outliers was presented and evaluated on two

benchmark data sets with various degrees of artificially created outliers.

We believe that rule induction algorithms as demonstrated here have tre-

mendous potential in the areas of data mining and explorative data analysis. In
addition to extraction of models that inhibit good generalization performance,

rule models enable the user to actually understand the underlying behavior.

This brings rule induction methods a large step towards explorative and real

intelligent data analysis.

6. Future work

Extensions of this work focus mainly on two directions. Obviously building

a two-stage hierarchy is only the beginning. In order to enable explorative data

analysis an entire hierarchy of models at different levels of granulation will be

beneficial. Rather than trying to find global and local trends in the same model

such a hierarchy would enable the user to zoom in and out of the model, of-

fering precisely the level of detail needed at the moment. In addition, work has

been started in the areas of visualization of the extracted models. Rather than

showing the user one long list of rules, a visual representation helps to intu-
itively understand the underlying relationships. In [34] a first step in this di-

rection has been reported.
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