
Pattern Recognition 40 (2007) 2373–2391
www.elsevier.com/locate/pr

Genetic-fuzzy rule mining approach and evaluation of feature selection
techniques for anomaly intrusion detection

Chi-Ho Tsang, Sam Kwong∗, Hanli Wang
Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, PR China

Received 7 June 2005; received in revised form 10 July 2006; accepted 13 December 2006

Abstract

Classification of intrusion attacks and normal network traffic is a challenging and critical problem in pattern recognition and network
security. In this paper, we present a novel intrusion detection approach to extract both accurate and interpretable fuzzy IF–THEN rules from
network traffic data for classification. The proposed fuzzy rule-based system is evolved from an agent-based evolutionary framework and
multi-objective optimization. In addition, the proposed system can also act as a genetic feature selection wrapper to search for an optimal
feature subset for dimensionality reduction. To evaluate the classification and feature selection performance of our approach, it is compared
with some well-known classifiers as well as feature selection filters and wrappers. The extensive experimental results on the KDD-Cup99
intrusion detection benchmark data set demonstrate that the proposed approach produces interpretable fuzzy systems, and outperforms other
classifiers and wrappers by providing the highest detection accuracy for intrusion attacks and low false alarm rate for normal network traffic
with minimized number of features.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Intrusion detection based on statistical pattern recognition
approaches has attracted a wide range of interest over the last
10 years in response to the growing demand of reliable and in-
telligent intrusion detection systems (IDS), which are required
to detect sophisticated and polymorphous intrusion attacks. In
general, intrusion detection approaches are usually categorized
into misuse and anomaly detection approaches in the litera-
ture. Misuse detection approach can reliably identify intrusion
attacks in relation to the known signatures of discovered vul-
nerabilities. However, emergent intervention of security experts
is required to define accurate rules or signatures, which limits
the application of misuse detection approach to build intelli-
gent IDS. On the other hand, the anomaly detection approach
usually deals with statistical analysis and pattern recognition
problems. It is able to detect novel attacks without a priori
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knowledge about them if the classification model has the gener-
alization capability to extract intrusion pattern and knowledge
during training. Unfortunately, it commonly suffers from high
false positive rate (FPR) on classifying normal network traffic
nowadays. To overcome the anomaly intrusion detection prob-
lem, the data mining [1], machine learning [2] and immune
system [3] approaches have been proposed in recent years.

Learning classification rules from network data is one of the
most effective methods to automate and simplify the manual
development of intrusion signatures, and predict novel attacks
if the generalized knowledge can be extracted from data. One
of the key challenges in building an anomaly rule-based IDS
is to ensure that it can automatically extract optimal classifi-
cation rules from training data, and the extracted rules should
be (i) accurate and sufficient to detect both known and unseen
intrusion attacks and recognize normal network traffic, and
(ii) linguistically interpretable for human comprehension. To
extract rule-based knowledge from network data, Lee et al. [4]
propose to apply association rules to capture the behaviours
and relations in programs execution and user activities, and use
frequent episodes to model the sequential patterns in system
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audits or network data. However, since the quantitative features
in the intrusion data are partitioned into the interval with crisp
boundary, there might exist a sharp boundary problem for clas-
sification. In order to solve this problem, the fuzzy logic [5],
which provides the partial membership in set theory, is applied
in Ref. [6] to integrate with the association rules and frequent
episodes. The application of fuzzy logic in intrusion detection
can also be found in Ref. [7], which effectively detects port
scanning and denial-of-service attacks.

Genetic algorithm (GA) [8] has been successfully applied to
solve many combinatorial optimization problems. The appli-
cation of GA to the evolution of fuzzy rules can be found in
Refs. [7,9] for intrusion detection. In Ref. [9], a simple GA
is applied to generate and evolve the fuzzy classifiers that use
complete expression tree and triangular membership function
for the formulation of chromosome. To evaluate the fitness of
individual solutions, the weighted sum of fitness values of mul-
tiple objective functions is proposed in Ref. [9] where the pro-
posed weights are user-defined and cannot be optimized dynam-
ically for different cases. In Ref. [10], a large number of fuzzy
rules are first generated for each class with the use of fuzzy as-
sociation rules. After that, a boosting GA based on the iterative
rule learning approach is applied for each class to search its
fuzzy rules required for classification, in which the rules can
be extracted and included in the system for evaluation. How-
ever, it only optimizes classification accuracy and omits the ne-
cessity of interpretability optimization. In Ref. [11], a simple
GA is employed as the searching strategy in a feature selection
wrapper that applies RIPPER [12] as the induction algorithm
for rule learning and classification. The above-mentioned works
have somehow successfully demonstrated the effectiveness of
applying GA to select feature subset and generate fuzzy rule-
based IDS, however, only on the optimization of classification
accuracy.

In general, there is always a trade-off between the accuracy
and interpretability such that the acquisition of fuzzy IF–THEN
rules, which achieves good accuracy, does not imply the fuzzy
system is interpretable for human comprehension. As discussed
in Refs. [13,14], besides the importance of classification per-
formance, it is also desirable to obtain highly interpretable
knowledge in IDS to assist security experts for intrusion anal-
ysis. Therefore, the optimizations of both accuracy and inter-
pretability should be necessarily taken into account for building
anomaly rule-based IDS. To achieve this goal, a multi-objective
genetic fuzzy intrusion detection system (MOGFIDS) is pro-
posed in this work, which applies an agent-based evolutionary
computation framework to generate and evolve an accurate and
interpretable fuzzy knowledge base for classification. To the
best of our knowledge, this is the first work in applying multi-
objective genetic fuzzy system concerning with both accuracy
and interpretability for anomaly rule-based intrusion detection.

In addition, the proposed MOGFIDS can be considered as a
genetic wrapper that searches for a near-optimal feature subset
from network traffic data. This helps to reduce the computa-
tional overhead for classification and improve the generaliza-
tion capability of MOGFIDS. Feature selection (FS), which is
known to be an NP-hard problem [15], has been extensively

studied in the last two decades. Given a set of N features, the
goal is to select a desired subset of size M from 2N possible sub-
sets in order to minimize the classification error and alleviate
the curse of dimensionality for computational cost. In general,
the optimality of feature subset can substantially improve the
interpretability of rule-based classifiers since the optimal mini-
mal number of features minimizes the number of classification
rules generated from data. The FS techniques can be broadly
classified into filter-based and wrapper-based approaches in the
supervised learning paradigm. The filter-based approaches se-
lect features using estimation criterion based on the statistics
of learning data, and are independent of the induction classi-
fier. The wrapper-based approaches employ induction classifier
as a black box using cross-validation or bootstrap techniques
to evaluate the feature subset candidates suggested by different
search algorithms, such that the accuracy of the classifier can
often be maximized. Wrapper-based approaches generally pro-
duce better subsets than filter-based approaches, but they are
more computationally expensive than filter-based approaches
due to the repeated runs of classifier, in particular for very high-
dimensional feature domains. As there is no single FS tech-
nique that has proven superior for all problem domains, the
first sub-goal of this work is to search for a near-optimal fea-
ture subset using some well-known filter-based approaches as
a baseline reference, and the second sub-goal is to evaluate the
effectiveness of MOGFIDS in comparison with some wrapper-
based approaches, in searching near-optimal feature subset for
intrusion detection.

The rest of this paper is organized as follows. Section 2
highlights the interpretability issues of genetic fuzzy rule-
based system (GFRBS). Our proposed multi-objective genetic
fuzzy rule-mining approach is described in Section 3 in de-
tail. Section 4 discusses the experimental results including the
performance comparisons of MOGFIDS with other feature
selection approaches for intrusion detection. Finally, we draw
the conclusions in Section 5.

2. Genetic fuzzy rule-based systems and interpretability

Fuzzy rule-based systems, inspired by the fuzzy set theory
[5], have been successfully applied to solve many complex
and non-linear problems by constructing fuzzy IF–THEN
rules for classification and modeling control. GFRBSs employ
evolutionary approach to learn and extract knowledge from
training data. The optimization criteria in GFRBS include lin-
guistic variables, parameters of fuzzy membership functions,
fuzzy rules and the number of rules. In traditional GFRBS,
the classification performance and interpretability (also known
as transparency), which are often contradictive to each other,
are not addressed simultaneously. Redundant fuzzy rules and
fuzzy sets, as well as inappropriate fuzzy set topology would
be undesirably constructed if the interpretability criterion is not
optimized. The poor interpretability of such fuzzy systems can
potentially degrade the performance as well as the usefulness
of fuzzy rule-based IDS. In this section, we briefly discern the
interpretability with the following factors, which are discussed
in our previous work [16] in detail.
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2.1. Completeness and distinguishability

Partitioning of fuzzy sets for each fuzzy variable should be
complete and well distinguishable. For each input variable xi

in a feature vector X =[x1, x2, . . . , xn]T, there exists Mi fuzzy
sets represented by A1(x), A2(x), . . . , AMi(x). Partitioning of
fuzzy sets is complete if the following condition holds true, in
which at least one fuzzy set is triggered for each input:

∀xi ∈ Ui, i ∈ [0, . . . , n];
∃Aj(xi) > 0, j ∈ [1, . . . , Mi], (1)

where Ui is the universe of xi . Completeness and distinguisha-
bility can be interpreted by the fuzzy similarity measure [17],
which identifies (i) the similarity between two fuzzy sets for a
fuzzy variable; (ii) the similarity of a fuzzy set to the universal
set U; and (iii) the similarity of a fuzzy set to a singleton set.
The similarity between two fuzzy sets A and B can be calcu-
lated using the following computationally efficient method:

S(A, B) =
∑m

j=1[uA(xj ) ∧ uB(xj )]∑m
j=1[uA(xj ) ∨ uB(xj )] (2)

on a discrete universe U ={xj |j =1, 2, . . . , m} where ∧ and ∨
represent the minimum and maximum operations, respectively.
If S(A, B) is larger than a given threshold, then the partitioning
of these two fuzzy sets are not well distinguishable from each
other resulting in a bad topology.

2.2. Consistency, compactness and utility

Fuzzy rules are consistent if they are not contradictive. If
two or more rules with similar antecedents are triggered simul-
taneously, then their consequents should also be similar. The
detailed issues about consistency can be found in Ref. [18]. De-
gree of consistency can depend on the inclusion relation. Given
two fuzzy rules Ri and Rj :

Ri : If x1 is Ai1(x1) and x2 is Ai2(x2)

and . . . xn is Ain(xn),

then y1 is Bi1(y1) and . . . ym is Bim(ym),

Rj : If x1 is Aj1(x1) and x2 is Aj2(x2)

and . . . xn is Ajn(xn),

then y1 is Bj1(y1) and . . . ym is Bjm(ym).

Suppose their antecedents are compatible with an input vec-
tor, and the antecedents of Ri are included in those of Rj , then
Ri should be updated with a larger weight than Rj to calculate
the output. The traditional weight (fire-strength) ui of the ith
rule can be defined as follows:

ui(x) = uAi1(x1) ∧ uAi2(x2) ∧ · · · ∧ uAin
(xn),

i = 1, 2, . . . , R, (3)

where R is the number of fuzzy rules in the rule base. We
introduce an inclusion factor which is given by

�i =
∏

Rk⊆Ri

(1 − uk(x)), k = 1, 2, . . . , R, k 	= i. (4)

Fig. 1. Example of fuzzy system has three fuzzy rules and two input features
each of which has three fuzzy sets. (a) Sufficient utility and (b) insufficient
utility.

Therefore, the weight of the rule Ri with the inclusion factor
can be updated as

ŭi = �iui(x), i = 1, 2, . . . , R. (5)

Compactness of fuzzy systems plays an important role in the
interpretability of fuzzy systems [16,18–21]. A compact fuzzy
system indicates that it is easy to be comprehended. There are
three aspects which are closely related to the compactness of
fuzzy systems [20]: (i) a small number of fuzzy sets for each
fuzzy variable, (ii) a small number of fuzzy rules in rule base,
and (iii) a small number of conditions in the rule premise.
Regarding the number of fuzzy sets, it is relatively easier for
users to discern a fuzzy variable with small number of linguistic
labels. The second aspect of compactness is the number of
fuzzy rules. It is easier for users to comprehend and recognize
a compact fuzzy rule base than a rule base with more fuzzy
rules. Compactness of fuzzy rules becomes more important
when the system involves a large number of dimensions [18,19].
The third aspect of compactness is the number of conditions in
the antecedent part of fuzzy rules. If unrepresentative fuzzy sets
are not used in the fuzzy rules then the fuzzy system can become
more compact and thus easier to be understood. Based on the
foregoing analysis, high compactness is desired to improve the
interpretability of fuzzy systems and reduces the computational
cost of the fuzzy inference process. Finally, even if the fuzzy
system can be complete and distinguishable, each fuzzy set may
not be used by at least one fuzzy rule. As depicted in Fig. 1(a), a
fuzzy system is of sufficient utility if all the fuzzy sets (A1–A3,
B1–B3) are utilized as antecedents or consequents by fuzzy
rules (R1–R3). On the contrary, the utility is of insufficient if
there is at least one fuzzy set such as B2 that is not utilized
by any rule in Fig. 1(b). To better utilize fuzzy systems, it is
necessary to remove the unused fuzzy sets from rule base.

3. Agent-based genetic fuzzy rule-based knowledge
extraction

3.1. Overview of MOGFIDS

In this work, an agent-based evolutionary computation
framework is proposed to construct a GFRBS concerning with
both accuracy and interpretability for IDS. The MOGFIDS can
be viewed as a multi-agent learning system, which consists
of the fuzzy set agent (FSA) and arbitrator agent (AA). The
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Fig. 2. Multi-agent system framework and highlighted processes of agent evolution.

agent-based framework is illustrated in Fig. 2 and summarized
as follows. Each autonomous FSA employs three main strate-
gies to construct and evolve its fuzzy systems. It initializes its
own fuzzy sets information using the fuzzy sets distribution
strategy. Then the interpretable fuzzy rule base is generated
through the use of interpretability-based regulation strategy
and fuzzy rules generation strategy according to the initialized
fuzzy sets. In order to find the global optimal fuzzy rule base,
in each generation FSAs generate their offspring by coopera-
tively exchanging their fuzzy sets information, and applying
genetic crossover and mutation operations to the chromosomes
of hierarchical formulation. The fuzzy rule bases of the off-
spring FSAs are generated using the previously mentioned
strategies in a similar manner. Finally, FSAs submit their fit-
ness values about the accuracy and interpretability to the AA
for evaluation. Different from the parallel GA, our agent-based
approach does not exchange individual FSA but only ex-
changes the multi-objective information about the fuzzy sets.
The AA applies the robust multi-objective optimization algo-
rithm NSGA-II [22] to evaluate the parent and offspring FSAs
based on their fitness assessments in both accuracy and inter-
pretability criteria. As a result, the elitist FSAs are retained
and the low-fitness FSAs are removed in each generation.

3.2. Intra-behaviors of FSA

In this section, the three main intra-behavioral strategies are
discussed in detail.

3.2.1. Fuzzy sets distribution strategy
Minimal number of fuzzy sets and rules can be effectively

searched without a priori knowledge of the fuzzy set topology
by the use of hierarchical GA (HGA) [23–25]. In HGA each
chromosome is formulated in a multi-layer structure consisting
of control genes and parameter genes. As depicted in Fig. 3,

Fig. 3. Example of hierarchical chromosome. Three-level gene structure has
a phenotype value (7,6) as activated by the top-level control genes.

the activations of parameter genes are managed by the control
genes, e.g., a control gene with binary value “1” can activate its
associated parameter genes, and so forth. As the chromosome
and genotype structure are not fixed in HGA, it can perform
well in the structure and topology optimization, and also help
optimize the distribution of fuzzy sets.

To sufficiently represent each fuzzy variable xi , a possible
maximal number of fuzzy sets Mi is determined. For N-
dimensional problem, totally P =M1 +M2 +· · ·+MN possible
fuzzy sets require P binary-valued control genes to manage the
activation of their parameter genes. Gaussian combinational
membership functions (abbreviated as Gauss2mf) can cover
the universe sufficiently and enforce the completeness of fuzzy
systems, hence it is applied to formulate the antecedent fuzzy
sets in parameter genes. The Gauss2mf is defined by four
parameters a1, a2, a3 and a4, where a1, a2, a3 and a4 are the
lower bound, left center, right center and upper bound of the
definition domain, respectively (a1 �a2 �a3 �a4). The appli-
cation of HGA in Gauss2mf is shown in Fig. 4 for illustration.
The FSAs randomly initialize the values of both control genes
and parameter genes at the beginning of run.

3.2.2. Interpretability-based regulation strategy
Since the distinguishability of fuzzy partitioning cannot be

guaranteed in the initialization of fuzzy sets, the interpretability-
based regulation strategy is applied in the following steps to
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Fig. 4. Example of Gauss2mf encoded by control genes and parameter genes.

Fig. 5. Merging fuzzy sets A and B to form fuzzy set C.

establish a more compact fuzzy system with more appropriate
distribution of fuzzy sets.

3.2.2.1. Merging similar fuzzy sets. Recall that the similar-
ity measure defined for two fuzzy sets is given in Eq. (2). If
S(A, B) is greater than a given threshold, then the fuzzy sets
A and B will be merged and become a new fuzzy set C. Sup-
pose A and B have the membership functions uA(x; a1, a2, a3,
a4) and uB(x; b1, b2, b3, b4), the resulting fuzzy set C with
the membership function uC(x; c1, c2, c3, c4) is defined from
merging A and B by

c1 = min(a1, b1),

c2 = �2a2 + (1 − �2)b2,

c3 = �3a3 + (1 − �3)b3,

c4 = max(a4, b4). (6)

The parameters �2, �3 ∈ [0, 1] determine the relative in-
fluence of A and B on the generation of C. The threshold for
merging similar fuzzy sets plays an important role in the im-
provement of interpretability. According to our experience, val-
ues in the range [0.4,0.7] can be a good choice. We set the
threshold to 0.45 in this work. Fig. 5 illustrates a concrete ex-
ample for merging A and B to form C.

3.2.2.2. Remove fuzzy sets similar to universal set or singleton
set. Furthermore, if the similarity of a fuzzy set to the universal
set U(uU(x) = 1, ∀x ∈ X) is larger than an upper threshold
(�U) or smaller than a lower threshold (�S), then we can remove
it from the rule base. The fuzzy set in the former case is very
similar to the universal set, and in the latter case similar to
a singleton set. Neither of these cases is desired to generate

interpretable rule bases. We set �U to 0.8 and �S to 0.05 in
this work. If a fuzzy set is removed, then the corresponding
control gene will update its value from 1 to 0, and the rule
antecedents associated with this fuzzy set will be removed from
the corresponding rules.

3.2.3. Fuzzy rules generation strategy
Genetic optimizations of fuzzy rule base can be classified into

three distinct approaches, which differ in how GA is applied in
the learning process, including Michigan approach, Pittsburgh
approach and iterative rule learning approach [26]. In Pittsburgh
approach, each chromosome is encoded as an entire knowledge
base, and combination of existing rules and generation of new
rules can be easily done by genetic crossover and mutation oper-
ations. Therefore, in the current work the Pittsburgh approach is
applied to extract rules from training data. Suppose there are N
fuzzy variables, Ma

i is the number of active fuzzy sets for vari-
able xi . In addition, the “do not care” conditions are included
for incomplete rules, hence the maximum number of possible
fuzzy rules is (Ma

1 + 1) × (Ma
2 + 1) × · · · × (Ma

N + 1) for N-
dimensional problems. In order to search for a minimal number
of fuzzy rules considering both accuracy and interpretability,
FSAs perform the following tasks to achieve this goal.

3.2.3.1. Initialization of rule base population. In MOGFIDS,
each fuzzy rule is encoded as a string of length N, where the
ith element has a value ci : 0�ci �Ma

i which indicates the ci th
fuzzy set is triggered (ci > 0) or the ith fuzzy variable does
not play a role in rule generation (ci = 0). After that, FSA
defines the population size Npop, i.e., the number of fuzzy
rule sets that represent a complete rule base. Each individual
of fuzzy rule sets population is represented as a concatenated
string of the length N × Nrule, where Nrule is a predefined
integer specifying the size of the initial fuzzy rule base. In this
concatenated string, each substring of length N represents a
single fuzzy rule. The heuristic procedure [27,28] is applied to
generate the rule consequents for classification such that the
consequents are not coded as parts of the concatenated string.
The fuzzy rule sets are randomly initialized so that the value
of the concatenated string can present one of the fuzzy sets of
the corresponding fuzzy variable, or is equal to zero indicating
“do not care” conditions.
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Fig. 6. Example of crossover operation on the rule sets.

3.2.3.2. Crossover and mutation. New offspring rule sets are
generated by crossover and mutation. The one-point crossover
operation is implemented due to its simplicity, which can ran-
domly select different cutoff points for each parent to generate
offspring rule sets. An example of crossover operation is given
in Fig. 6. The mutation operation randomly replaces an ele-
ment of the rule sets with another linguistic value if a simple
probability test is satisfied. Elimination of existing rules and
addition of new rules can also be used as mutation operations.
As a result, the number of rules in the rule sets string can be
changed accordingly. Note that since crossover and mutation
operation may introduce the same redundant rules, FSA checks
the rule sets and maintains single among all the rules in order
to guarantee the consistency of fuzzy systems.

3.2.3.3. Evaluation criteria and selection mechanism. FSA
applies three criteria to evaluate fuzzy rule set candidates: (i)
Accuracy in terms of classification rate; (ii) number of fuzzy
rules; and (iii) total length of fuzzy rules, i.e., the total number
of rule antecedents in rule base. For each N-dimensional train-
ing sample Xi = [xi

1, x
i
2, . . . , x

i
N ], the fire-strength of rule Ri

considering the inclusion relation is calculated in Eq. (5), and
the sum of the fire-strength related to the rule Ri for class c is

�Class j (Ri) =
∑

Xk∈Class j

ui(X
k), j = 1, 2, . . . , c. (7)

The class Cj that has the maximum value of �Class j (Ri)

can be found as the consequent of rule Ri by

�Class ji
(Ri)

= max{�Class 1(Ri), �Class 2(Ri), . . . , �Class c(Ri)}. (8)

If the maximum value cannot be uniquely found, i.e., there
are some classes obtaining the same maximum value, then the
fuzzy rule Rj should be removed from the rule base. After
the rule base is constructed, the classification accuracy can be
calculated using a single winner rule method [29]. For each
training sample Xi , the winner rule Ri is determined as

ŭi (X
i) = max{ŭk(X

i)|k = 1, 2, . . . , R}, (9)

where R is the number of rules. If the predicted class is not the
actual class, or two or more fuzzy rules have the same maximum
fire-strength, then the classification error increases one.

All the fuzzy rule-based candidates are evaluated by FSAs
using NSGA-II algorithm. The preference for the multi-criteria
can be defined in this approach for different trade-off require-
ments. Considering the basic requirement of IDS, it is essential

to accurately classify large amount of normal traffic connections
and intrusion attacks, accuracy is set the first priority and the
other two objectives related to interpretability are set the same
second priority. Suppose there are Npop + Noffs candidates,
where Npop is the size of parent population and Noffs is the size
of offspring population resulting from crossover and mutation
operations. FSAs employ elitism strategy to select Npop best
candidates from the mixed populations.

3.3. Agents interaction

The FSAs interact with one another for exchanging their
fuzzy sets information and generating offspring agents. Assume
the number of offspring agents Na

offs is less than or equal to
that of parent agents Na

curr , Na
offs FSAs can be randomly se-

lected from the current agent population with the restriction that
they should be different with one another. Therefore, Na

offs off-
spring FSAs can be generated using crossover and mutation, in
which two parent agents generate two offspring agents. As de-
picted in Fig. 2, the offspring agents also apply interpretability-
based regulation strategy and fuzzy rules generation strategy
to generate interpretable rule bases. After that, FSAs send their
fitness information to AA, which applies NSGA-II algorithm
to evaluate both parent and offspring FSAs and selects Na

curr

best agents to be the next generation population. The elitist
FSAs considering both accuracy and interpretability can sur-
vive from the competition, while the low-fitness FSAs are
discarded.

4. Experiments and evaluations

4.1. Data description, pre-processing and performance
measurement

The KDD-Cup99 data set from UCI repository [30] is widely
used as the benchmark data for IDS evaluation. In our exper-
iments, we apply its 10% training data consisting of 494 021
connection records for training. Each connection record repre-
sents a sequence of packet transmission starting and ending at
a time period, and can be classified as normal traffic, or one of
22 different classes of attacks. All attacks fall into four main
categories:

• Denial-of-service (DOS)—Denial of the service that are ac-
cessed by legitimate users, e.g., SYN flooding.

• Remote-to-local (R2L)—Unauthorized access from a remote
machine, e.g., password guessing.
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Table 1
Feature set of preprocessed KDD-Cup99 data

Index Feature name Index Feature name Index Feature name Index Feature name

1 duration 14 flag = RSTR 27 numRoot 40 sameSrvRate
2 protocolType = tcp 15 flag = OTH 28 numFileCreations 41 diffSrvRate
3 protocolType = udp 16 srcBytes 29 numShells 42 srvDiffHostRate
4 protocolType = icmp 17 dstBytes 30 numAccessFiles 43 dstHostCount
5 flag = SF 18 land 31 numOutboundCmds 44 dstHostSrvCount
6 flag = REJ 19 wrongFragment 32 isHostLogin 45 dstHostSameSrvRate
7 flag = S0 20 urgent 33 isGuestLogin 46 dstHostDiffSrvRate
8 flag = S1 21 hot 34 count 47 dstHostSameSrcPortRate
9 flag = S2 22 numFailed 35 srvCount 48 dstHostSrvDiffHostRate

10 flag = S3 23 loggedIn 36 serrorRate 49 dstHostSerrorRate
11 flag = SH 24 numCompromised 37 srvSerrorRate 50 dstHostSrvSerrorRate
12 flag = RSTO 25 rootShell 38 rerrorRate 51 dstHostRerrorRate
13 flag = RSTOS0 26 suAttempted 39 srvRerrorRate 52 dstHostSrvRerrorRate

• User-to-root (U2R)—Unauthorized access to gain local
super-user (root) privileges, e.g., buffer overflow attack.

• Probing (Probe)—Surveillance and probing for information
gathering, e.g., port scanning.

To prevent performance deterioration due to class imbalance
problem in training, a random sub-sampling method is applied
to the three largest classes: ‘normal’, ‘Neptune’ and ‘Smurf’,
which have already contained 98% records of the whole train-
ing data set. The new training data contains 104 records of
normal class and 103 records for each of the Neptune and
Smurf classes, while the number of records of other classes
remains intact. As a result, total 20 752 records are applied
for training. To make the detection task more realistic, MOG-
FIDS is evaluated using KDD-Cup99 independent test data that
contains 311 029 records with different class probability dis-
tribution and additional 14 unseen attack types. As each net-
work connection record contains 34 continuous features and
seven nominal features, the nominal features such as protocol
(TCP/UDP/ICMP), service type (http/ftp/telnet/. . .) and TCP
status flag (SF/REJ/. . .) are first converted into binary numeric
features. Since the feature “service type” can be expanded into
71 binary features that can heavily increase the dimensional-
ity as well as the initial rule length, this single feature is not
applied in this work. Thus, totally 52 numeric features are con-
structed and normalized to the interval [0, 1] before process-
ing by the proposed MOGFIDS. They are indexed and given
in Table 1. Since the benchmark test data, similar to training
data, has the class imbalance problem with skewed class dis-
tribution, accuracy alone is not sufficient for evaluation. There-
fore, classification performance of MOGFIDS is measured by
the precision, recall and F-measure that are commonly used to
evaluate the rare class prediction. It is desirable to achieve a
high recall without loss of precision. F-measure is a weighted
harmonic mean that assesses the trade-off between them. They
can be calculated using the confusion matrix in Table 2, and
defined as follows:

Recall = TP

TP + FN
, (10)

Table 2
Confusion matrix

Predicted class

Positive class Negative class

Actual Positive class True positive (TP) False negative (FN)
Class Negative class False positive (FP) True negative (TN)

Precision = TP

TP + FP
, (11)

F-measure = (�2 + 1)(Precision · Recall)

�2 · Precision + Recall
where � = 1, (12)

Overall accuracy = TP + TN

TP + TN + FN + FP
. (13)

The receiver operating characteristics (ROC) analysis, which
is originated from the signal theory and widely applied in medi-
cal data analysis, is adopted to depict the trade-off between FPR
and true positive rate (TPR). Since the ROC analysis is insen-
sitive to the changes in class distribution, even the proportion
of positive (attack) to negative (normal) samples is changed in
IDS testing, it will not change the ROC curves. This provides a
promising index to evaluate the effectiveness of IDS classifiers.

4.2. Fuzzy systems analysis of MOGFIDS

4.2.1. Optimization results of MOGFIDS
We apply 12 FSAs each of which has 10 fuzzy rule sets so-

lutions, therefore there are 120 fuzzy systems generated in total
for initialization. The MOGFIDS is trained using 80 iterations
for the evolution of FSAs. The trends of the multiple objectives
against the number of iterations are plotted in Fig. 7(a–d), in
which the objectives include the average overall-accuracy, av-
erage number of fuzzy sets, average number of fuzzy rules and
average total-length of fuzzy rule-base among all the FSAs.
The results demonstrate that the agents can continuously im-
prove the average accuracy using the elitism strategy in each
generation. In particular, the accuracy can be greatly increased

http://ftp/telnet/
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Fig. 7. MOGFIDS using 12 FSAs. (a–d) Trends of average overall-accuracy, fuzzy sets number, rules number and total length of rule base. (e–h) Non-dominated
Pareto fronts about the fuzzy systems of MOGFIDS on KDD-Cup99 training data.

during the first 20 generations. As the first priority of opti-
mization is given for accuracy in NSGA-II, it is found that the
number of rules and their total rule length do not desirably de-
crease during the first 80 iterations, due to the complexity of
rules extraction from intrusion detection data. However, on av-
erage stable accuracies can be obtained using about 106 rules
each of which has the approximate rule length of 17 only, the
rule base is acceptable for accurate classification.

The trade-offs among the multiple objectives within the non-
dominated fuzzy system solutions are given in Fig. 7(e–h). The
results show that, out of 120 fuzzy systems, there are 19 non-
dominated solutions found from the training data. The average
overall-accuracy obtained from the agents varies from 80% to
99%, with the number of rules ranging from 30 to 300. As
widespread non-dominated solutions can be obtained in our ap-
proach considering both accuracy and interpretability, they can
assist security experts to comprehend the intrusion attacks rec-
ognized by the fired rules, based on the interpretable knowl-
edge provided therein. Regarding the accuracy as an important
criterion for intrusion detection, the best resulted fuzzy system,
which extracts 148 fuzzy rules from training data and obtains
the peak accuracy (99.2417%) and lowest false positive rate
(1.1%) for classifying normal network traffic, can be selected
and applied for testing.

4.2.2. Comparison with the MOGFIDS without agent-based
evolutionary computation framework

To demonstrate the effectiveness of agent-based evolution-
ary computation framework in MOGFIDS, two comparative
experiments are carried out to evaluate multi-agent optimiza-
tion approach and FSA intra-behavioral optimization strategies.
First, the MOGFIDS is trained with only one FSA for baseline

comparison. The FSA contains 10 fuzzy rule set solutions such
that it has exactly 10 fuzzy systems used for learning. The re-
sults given in Fig. 8(a–d) show that the average classification
accuracy is lower than that of MOGFIDS using 12 FSAs, and
the average rates of increase on both number of rules and their
total length are higher than those of 12 agents based MOG-
FIDS. As shown in Fig. 8(e–h), the non-dominated and the most
accurate fuzzy system can only obtain about 88% accuracy us-
ing an unacceptably large amount of fuzzy rules for classifica-
tion. These results demonstrate that the agent cooperation and
competition can effectively exchange fuzzy set information for
constructing accurate and compact fuzzy systems.

Second, MOGFIDS is trained without using fuzzy sets dis-
tribution strategy and interpretability-based regulation strategy
for baseline comparison. Since our proposed fuzzy sets distri-
bution strategy is not applied in this comparative experiment,
fuzzy sets are encoded in simple chromosome formulation of
simple GA instead of HGA. We apply 12 FSAs each of which
contains 10 fuzzy rule set solutions such that there are 120
fuzzy systems used for learning. To demonstrate the impor-
tance of compactness in ensuring interpretability of GFRBS,
the above-mentioned strategies that can optimize the distri-
bution and compactness of fuzzy sets are not applied in this
experiment. Fuzzy sets distribution strategy is not used in intra-
behavior of all FSAs, and interpretability-based regulation
strategy is not used in both the intra-behavior and inter-behavior
of all FSAs. The comparative results show that, although
number of fuzzy sets obtained by the proposed MOGFIDS in
Fig. 7(b) is not significantly smaller than that obtained by this
experiment in Fig. 9(b), there is a large difference between
their numbers of fuzzy rules and total rule length as shown in
Figs. 7(c–d) and 9(c–d). It indicates that the fuzzy sets ob-
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Fig. 8. MOGFIDS using one FSA. (a–d) Trends of the average performance. (e–h) Non-dominated Pareto fronts.

Fig. 9. MOGFIDS using 12 FSAs, without applying fuzzy sets distribution strategy and interpretability-based regulation strategy. (a–d) Trends of the average
performance. (e–h) Non-dominated Pareto fronts.

tained by the proposed MOGFIDS are more distinguishable,
hence the fuzzy systems are more compact, and the number of
fuzzy rules and total rule length can be desirably small.

The comparative results in Figs. 7(e–h) and 9(e–h) further
show that the non-dominated solutions of the proposed MOG-
FIDS can obtain higher accuracy using smaller number of fuzzy
rules and total rule length, as compared to the results obtained
by the non-dominated solutions in this experiment. As discussed

in Section 2, it is desired to achieve a compact fuzzy system
that has a small number of fuzzy sets, fuzzy rules and condi-
tions in the rule premise. Compact fuzzy rules are easier to be
interpreted if they can be defined by the most relevant fuzzy
variables and appropriate fuzzy sets. Compact fuzzy system is
easier to be understood if the number of fuzzy rules can be
small using high compactness of fuzzy rule base. The compara-
tive results indicate that MOGFIDS is able to obtain a compact
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set all weights W[A] = 0.0; 
for i = 1 to m do 

begin
randomly select a sample Ri;

find its k nearest misses Mj (C);
for A = 1 to N do 

∑ ∑ ∑+−
k

j=1 C≠(Rclass)

k

j=1

CP
W[A] = W[A] (A,Ri,Mj(C))] / (m⋅k);

1 − P(class(R))
)(

[(A,Ri,Hj)/(m⋅k)

end

find its k nearest hits Hj;
for each class C≠class (Ri) do 

diff diff

Fig. 10. Relief-F algorithm.

fuzzy system, which is interpretable for human user to analyze
and understand the high-level knowledge of the classification
results.

4.3. Experiments and evaluations on filter-based approaches

4.3.1. Brief descriptions of filter-based approaches
The feature selection experiments are first conducted using

filter-based approaches on the training data. The objective of
this experiment is to find out which filter can achieve the best
performance for intrusion detection data, and to suggest a good
feature subset that contains relevant features with relative order
of importance for baseline reference. Various filtering criteria
and a well-known feature selection algorithm are applied in this
experiment to measure the relevance of features from training
data. Hence, the features can be ranked according to their rele-
vance values, in order to determine their orders of importance.
These filtering criteria are briefly discussed as follows:

• Information gain (IG), which is also known as mutual infor-
mation, measures the expected reduction in entropy of class
before and after observing features. Larger difference indi-
cates that the selected feature is more important to contain
the class discriminatory information. IG is measured as

InfoGain(S, F ) = Entropy(S)

−
∑

v∈V (F)

|Sv|
|S| · Entropy(Sv), (14)

where S is the pattern set, |S| is the number of samples in
S, v is value of feature F, and Sv is the subset of S where
feature F has value v. The entropy of class before observing
features is defined as

Entropy(S) =
∑

c∈C

−|Sc|
|S| · log2

|Sc|
|S| , (15)

where C is the class set and Sc is the subset of S belonging
to class c. IG is the fastest and simplest ranking method,
however, the drawback is that it flavors the features with
many number of values.

• Gain ratio (GR) normalizes the IG by dividing it by the
entropy of S with respect to feature F, in order to discourage
the selection of features with many uniformly distributed
values. GR is measured as

GainRatio(S, F ) = InfoGain(S, F )/SplitInfo(S, F ), (16)

SplitInfo(S, F ) =
n∑

i=1

−|Si |
|S| · log2

|Si |
|S| , (17)

where Si is the subset of S where feature F has its ith possible
value, and n is the number of subclasses split by feature
F. The drawback of this method is that if many Si have a
particular value for a feature F, then the SplitInfo value will
be very small, and hence GainRatio value will be undesirably
large.

• Chi-square (CS) measures the well-known �2 statistics of
each individual feature with respect to the classes. The fea-
tures are ranked by the descending order of their �2 values,
in which large �2 values obtained by the features reveal their
strong correlation with the classes. The �2 of a feature F is
measured as

�2(F ) =
m∑

i=1

k∑

j=1

(Aij − Eij )
2

Eij

, (18)

Eij = Ri · Cj

|S| , (19)

where m is the number of intervals discretized from the nu-
merical values of F, k is the number of classes, Aij is the
number of samples in the ith interval with jth class, and Eij

is the expected occurrence of Aij in which Ri is the num-
ber of samples in the ith interval and Cj is the number of
samples in the jth class.
These information-theoretical and statistical criteria have
been empirically proved to be effective to select relevant
features from some high-dimensional real-world domains,
however, the major limitation of their applications is that
they assume the independence property of features. As the
interaction of relevant features is not taken into account,
filtering on highly correlated features might degrade perfor-
mance of classifiers.

• Relief-F is an instance-based feature-ranking algorithm that
deals with noisy data and multi-class problem. The algorithm
flavors the features that differentiate samples from different
classes and have same values for samples from the same
class. The high-level description of algorithm is depicted in
Fig. 10. Besides that Relief-F is computationally efficient,
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it can also identify irrelevant features and take into account
the interaction of relevant features. However, it cannot iden-
tify the redundant features and determine a useful subset
from many weakly relevant features, since distance metric
combines measurements for all features in nearest neighbor
algorithms, and weakly relevant features bias the similarity
measure away from strongly relevant features.

4.3.2. Experimental results and analysis
The features listed in Table 1 are ranked using the filtering

criteria described in the previous subsection, and the ranking re-
sults are given in Table 3. To evaluate the effectiveness of these
filtering criteria, four well-known classification algorithms are
employed, including (i) C4.5 decision tree; (ii) Naïve Bayes
(NB); (iii) k-nearest neighbor (k-NN) and (iv) support vector
machine (SVM). Note that the C4.5 is run with tree pruning,
attempting to alleviate the over-fitting problem. In k-NN the
parameter k is set to 5, and the SVM is trained with a fast se-
quential minimal optimization method [31] and a polynomial
kernel of order 3. The classification accuracies obtained with
these various classifiers using the ranked features are compared
in Fig. 11. The results show that C4.5, k-NN and SVM clas-
sifiers can obtain high accuracy using the top 15–30 features
ranked by IG, CS and Relief-F filtering criteria. In particular,
IG outperforms all the others in terms of both the rate of ac-
curacy improvement and minimum number of ranked features
that contributes the peak accuracy for different classifiers. The
accuracies obtained with classifiers using GR ranking often
start with the lowest value, grow slowly, and do not catch up
with that using other ranking filters until a relative large num-
ber of features are used. Therefore, GR is not effective to filter
the features of network packets due to the possible drawback
as discussed in the previous subsection. All ranking filters, ex-
cept GR, can lead to the continuous growth of accuracy as the
number of ranked features increases. It can be found that the
increasing trend of accuracy is retarded and a steady state is
reached when the number of features exceeds 30, implying that
the last 22 individual features are not significantly relevant for
classification. In particular, the last nine features ranked by IG,
GR and CS are identical (in which over half of them are also the
last ranked features in Relief-F ranking) and cannot improve
classification accuracy. Hence, they are considered as the most
irrelevant features.

As different classifiers consistently achieve high accuracy us-
ing the top 30 relevant features ranked by IG, CS and Relief-F
criteria, a simple positional-scoring method—Borda preference
rule [32] is applied to assign weights to these features, in order
to find a collective feature subset that can be voted by these fil-
ters. It is interesting to note that the features of this collective
subset, which are the commonly top features ranked by differ-
ent filters as given in Table 3, are identical to the top 30 features
in IG ranking. These results suggest that IG criterion is admis-
sibly robust to filter network traffic features. While Relief-F is
outperformed by IG, it reflects that many features of network
packets tend to be weakly relevant for classification, and hence
Relief-F cannot accurately assign relevant weights to them. In
addition, as compared with both C4.5 and k-NN classifiers that Ta
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Fig. 11. Classification accuracy obtained with (a) C4.5, (b) Naïve Bayes, (c) k-NN, where k = 5 and (d) SVM using different number of features as ranked by
different filtering criteria based on 10-fold cross-validation on KDD-Cup99 training data. The number of features is increasing with the inclusion of gradually
less relevant features, according to the rankings in Table 3.

achieve high accuracies, the accuracies obtained with NB us-
ing different filtering criteria are relative low (< 88%), and
their trends fluctuate when the number of features increases.
As NB strongly assumes the features are statistically indepen-
dent, it can be robust with respect to irrelevant features but
susceptible to correlated features. Therefore, it indicates that
some packet features are highly correlated for classification
(indeed for a particular class prediction as discussed in next
subsection) such that NB cannot yield significant improvement
on accuracy using minimum number of features ranked by
filters.

4.4. Experiments and evaluations on wrapper-based
approaches and MOGFIDS

4.4.1. Brief descriptions of wrapper-based approaches and
feature selection in MOGFIDS

Various wrappers using different classification algorithms
and searching strategies are employed in this experiment for
baseline reference. The objective of this experiment is to eval-
uate the effectiveness of MOGFIDS by comparing it with the
baseline wrappers and well-known classifiers in terms of the
feature selection performance and the classification results, re-
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Table 4
Parameter settings of GA applied in the baseline wrappers

Parameter Value

Population size 80
One-point crossover probability 0.8
Mutation probability 0.01
Selection scheme Tournament selection of size 2
Number of generation 100

spectively. In our proposed MOGFIDS, the fuzzy variables are
selected and removed through the crossover and mutation op-
erations on the control genes during the FSAs evolution, such
that the MOGFIDS can heuristically search a desired feature
subset that minimizes the classification error and improves the
interpretability of fuzzy system accordingly. In the wrapper-
based approaches, the C4.5, NB, k-NN and SVM are employed
as the classification algorithms for comparison. As the optimal
feature subsets can only be guaranteed by applying exhaustive
or branch-and-bound search, four heuristic search strategies are
adopted in the wrappers to find near-optimal feature subsets
from training data. They are briefly discussed as follows:

• Best first (BF) search starts with empty feature set and ex-
plores all possible feature subsets by adding features one by
one. The feature subset with highest accuracy is then fur-
ther expanded until no improvement is found. After that, BF
backtracks the second best subset and expands it iteratively.
If no improvement is found in the limited k expansion, the
search will be terminated and the best subset is returned.

• Forward sequential selection (FSS) starts with empty feature
subset and adds features one by one in the growing set.
The best subset with highest accuracy is considered as the
base subset in next iteration. The search will be terminated
after the accuracy of current subset cannot be increased with
adding feature.

• Backward sequential selection (BSS), on the contrary, starts
with full feature subset and removes features one by one in
the shrinking set. It iteratively removes feature that yields
the maximal performance increase.
The FSS and BSS tend to become trapped on the local max-
ima since they cannot modify the previous subsets for re-
evaluation. Hence, many evolutionary algorithms have been
proposed to search global optimal feature subsets.

• GA is first proposed in Ref. [33] for feature selection. Each
chromosome represents a feature subset candidate, where
each feature is encoded as a gene with binary value. GA uses
the classification accuracy as the fitness value and selects the
fittest chromosomes to survive in the next generation. Fea-
ture subsets are explored and exploited by applying genetic
operators, such as crossover and mutation operators, proba-
bilistically on the chromosomes. In this work, the parameters
of GA applied in the wrappers are given in Table 4.

4.4.2. Experimental results and analysis
Table 5 presents the feature subsets found by different wrap-

pers using various search strategies, their overall classification

accuracy (ACC), and the FPR on classifying normal traffic
from training data. The detailed classification performances are
shown in Table 6 for different wrappers using GA search strat-
egy and MOGFIDS on both the training and test data. Table 7
summarizes the available results obtained with other recently
proposed classifiers in the IDS literature. The confusion matri-
ces obtained with MOGFIDS in training and testing are given
in Table 8. Following are the detailed analysis about the exten-
sive experimental results.

4.4.2.1. Feature selection results of baseline wrappers and
MOGFIDS. Regarding the results obtained with classifiers
C4.5, k-NN and SVM in Table 5, BSS and GA outperform BF
and FSS, in terms of both ACC and FPR measures. Among
all the searching strategies, even though GA search may not
improve ACC significantly, it is very effective to remove the
irrelevant features for different wrappers due to the following
two reasons. First, the size of optimal subsets searched by GA
is smaller than that of the entire feature sets while ACC is
improved simultaneously. Second, the FPR on classifying nor-
mal network packets can be obviously reduced by GA. These
can substantially reduce large amount of false intrusion alarms
and improve the real-time performance of IDS, in particular
for the high-speed network with bulk of daily normal packets
nowadays.

Among all the baseline wrappers, the application of C4.5 and
GA produces a compact subset that results in the lowest clas-
sification error (0.6%) and FPR (1.4%) on KDD-Cup training
data as shown in Table 5. However, the result in Table 6 shows
that C4.5 with tree pruning encounters learning difficulty on
the attack classes with small number of training samples, which
also coincides with its common issue of over fitting, causing
the Recall and F-measure on classifying DOS and R2L attacks
in test samples are relatively lower than those of other base-
line wrappers and MOGFIDS. According to Table 5, regard-
less of the search strategies, NB surprisingly obtains very high
FPRs among all the wrappers, demonstrating that it fails to re-
tain features that could be highly correlated for classifying nor-
mal network traffic. Both the k-NN and SVM wrappers give
satisfactory but insignificantly improved ACC using different
search strategies. The size of their feature subsets and the FPR
are, respectively, larger than and higher than those of C4.5 and
MOGFIDS. The MOGFIDS encouragingly obtains the second
highest ACC (99.24%) as well as the lowest FPR (1.1%) among
all the wrappers during training.

In addition, it is shown that only 27 out of 52 features are
searched by MOGFIDS, indicating that the other 25 removed
features are not significantly relevant for classification using
fuzzy rules. The smallest size of subset (20 features) is found
by C4.5 using GA, instead of MOGFIDS. It is due to the fact
that MOGFIDS optimizes both the accuracy and interpretabil-
ity simultaneously, causing feature selection bias towards the
inclusion of both strongly and weakly relevant features. Com-
paring with the relevant and irrelevant features identified by the
filters in Section 4.3, MOGFIDS includes 20 out of 30 relevant
features in Borda ranking, and excludes 8 out of 9 irrelevant
features ranked by IG, GR and CS. In Ref. [34], a k-NN/GA
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Table 6
Recall, precision, F-measure, overall accuracy and classification cost using cost matrix [35] obtained with different wrappers/GA and MOGFIDS on classifying
training and test data

Metric C4.5 NB k-NN (k = 5) SVM MOGFIDS
(20-feature) (28-feature) (35-feature) (43-feature) (25-feature)

Train Test Train Test Train Test Train Test Train Test

Probe Recall 99.6286 88.4782 96.3169 78.0125 99.4738 81.9251 99.0715 86.6779 99.6104 88.5982
{4107: Precision 99.5978 73.8234 96.9773 49.8161 99.5046 61.8970 99.1943 77.3565 99.1277 74.4003
4166} F-measure 99.6132 80.4892 96.6460 60.8045 99.4892 70.5165 99.1329 81.7524 99.3685 80.8809

DOS Recall 99.8124 97.0799 99.5544 82.4488 99.7655 97.3413 99.6717 97.4679 99.8537 97.2017
{5467: Precision 100 99.9319 98.5376 97.9967 99.5088 99.6646 99.8590 99.8707 99.3810 99.8963
229853} F-measure 99.9061 98.4853 99.0434 89.5529 99.6370 98.4893 99.7653 98.6547 99.6168 98.5306

U2R Recall 80.7692 16.2281 67.3077 13.1579 48.0769 14.0351 53.8462 10.0877 78.8462 15.7895
{52: Precision 80.7692 2.6185 42.6829 2.7855 80.6452 3.5281 96.5517 54.7619 93.1818 61.0169
228} F-measure 80.7692 4.5094 52.2388 4.5977 60.2410 5.6387 69.1358 17.0370 85.4167 25.0871

R2L Recall 98.7342 3.3788 97.9204 5.4173 98.7342 5.0590 98.0108 3.3603 99.2007 11.0137
{1126: Precision 99.0027 28.2980 94.8336 38.6344 97.2395 55.4127 97.3070 46.2192 94.6610 68.3928
16189} F-measure 98.8683 6.0368 96.3523 9.5022 97.9811 9.2715 97.6576 6.2651 96.8777 18.9722

Normal Recall 98.6000 98.1318 80.7000 89.9972 96.3000 95.7668 96.5000 98.0080 98.8700 98.3645
{10000: Precision 97.6238 74.8907 88.4868 50.5989 96.8813 73.7941 93.9630 73.4802 99.7881 74.7370
60593} F-measure 98.1095 84.9503 84.4142 64.7779 96.5898 83.3568 95.2146 83.9900 99.3269 84.9382

Overall accuracy 99.3992 92.2332 96.1566 79.7996 98.9123 91.9638 98.7051 92.4663 99.2434 92.7672
Classification cost 0.2426 0.4853 0.2459 0.2474 0.2317

The wrappers are trained with 10-fold cross-validation. The numbers of records of each class category in training and test data are given under the category
name in the format of {training:test}, the best results under testing are bold-faced, and the second best results are underlined, with respect to each performance
metric for each class category.

Table 7
Recall, precision, F-measure, overall accuracy and classification cost obtained with the recently proposed classifiers in the literature

Metric KDD-Cup 99 Bayesian CART RIPPER Improved EFRID Multi-classifier
Winner [35] network [36] [36] [13] PNrule [13] [37] [38]
(all-feature) (17-feature) (12-feature) (all-feature) (all-feature) (all-feature) (all-feature)

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

Probe Recall — 83.30 98.57 — 97.71 — 100 81.16 99.61 89.01 50.35 — — 88.70
Precision — 64.81 — — — — 99.37 77.92 99.56 82.11 — — — —
F-measure — 72.90 — — — — 99.68 79.51 99.58 85.42 — — — —

DOS Recall — 97.10 98.16 — 85.34 — 100 22.06 100 21.74 98.91 — — 97.30
Precision — 99.88 — — — — 99.83 95.75 99.88 96.68 — — — —
F-measure — 98.47 — — — — 99.91 35.86 99.94 35.50 — — — —

U2R Recall — 13.20 60.00 — 64.00 — 98.08 11.84 90.38 11.40 88.13 — — 29.80
Precision — 71.43 — — — — 89.47 55.10 94.00 53.06 — — — —
F-measure — 22.28 — — — — 93.58 19.49 92.15 18.77 — — — —

R2L Recall — 8.40 98.93 — 95.56 — 99.47 8.33 99.20 13.05 7.41 — — 9.60
Precision — 98.84 — — — — 99.56 81.85 97.47 82.37 — — — —
F-measure — 15.48 — — — — 99.51 15.12 98.33 22.53 — — — —

Normal Recall — 99.50 96.64 — 100 — — — — — 92.78 — — —
Precision — 74.61 — — — — — — — — — — — —
F-measure — 85.28 — — — — — — — — — — — —

Overall accuracy – 92.71 — — — — — — — — — — — —
Classification cost 0.2331 — — — — — 0.2285

Note that they are provided for reference instead of direct comparison, as their sampling on training and test data are different from one another. For example,
[36] applies KDD-Cup99 training data set for both training and test such that the results are cited in the column “Train”. The best results under testing are
bold-faced, the second best results are underlined, and the hyphen marks indicate that results are not reported in the papers.
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Table 8
Confusion matrix obtained with MOGFIDS in (left) training and (right) testing

Probe DOS U2R R2L Normal

Training
Probe 4091 4 0 4 8
DOS 4 5459 0 1 3
U2R 2 0 41 2 7
R2L 3 1 2 1117 3
Normal 27 29 1 56 9887

Testing
Probe 3691 127 4 83 261
DOS 349 223 421 0 276 5807
U2R 134 0 36 12 46
R2L 361 3 9 1783 14 033
Normal 426 102 10 453 59 602

wrapper approach is proposed to search the top five relevant
features for each attack category (total 14 features), in which 11
out of the 14 ranked features are also overlapped in the feature
subset selected by MOGFIDS. Due to the space limit, among
27 feature variables selected by MOGFIDS the fuzzy distribu-
tions of only two of them with index numbers 46 and 51 are
shown in Fig. 12. These two features represent the percentage
of connections made to different services provided in differ-
ent hosts, and the percentage of connections made to different
hosts that have “REJ” errors within 100 connection windows,
respectively. It demonstrates that our MOGFIDS can generate
distinguishable fuzzy sets distributions easily understandable
by human beings. The distributions of other features are also
consistent with those shown in Fig. 12.

4.4.2.2. Classification results of baseline wrappers and MOG-
FIDS on different class categories. Considering the rare classes
such as U2R and R2L attacks, their probability distributions of
training data are different from those of test data. In particu-
lar for R2L attacks, there is a large ratio (1:14) of its sample
size on training data to test data. Table 6 shows that MOGFIDS
outperforms all the baseline wrappers in terms of Recall, Pre-
cision and F-measure for R2L attacks, and also achieves the
highest Precision and F-measure among all the wrappers for
U2R attacks, indicating that MOGFIDS can relatively alleviate
the over-fitting problem when it is learned with small training
samples of rare classes and evaluated with large test samples
containing novel attacks.

Regarding the major classes such as Probe and DOS attacks,
Table 6 shows that both SVM and MOGFIDS can achieve high
F-measure rates in testing, as compared with those of C4.5,
NB and k-NN wrappers. On the recognition of normal network
traffic, C4.5 and MOGFIDS outperform the wrappers and ob-
tain very good prediction results. Among all the wrappers NB
does not perform well in testing and gives unacceptably high
FPR (10.00%) for normal class. As discussed previously, it is
due to the fact that there is a high correlation of features used
for recognizing the normal network traffic. It is found that k-
NN and SVM do not give significantly good results for the
normal class. As MOGFIDS achieves high Recall (98.36%)

and Precision (74.74%) on classifying normal network traffic,
it demonstrates that MOGFIDS only generates small amount
of false intrusion alarms, and most unseen and novel intrusion
attacks are not classified as normal network traffic. In addition,
Table 6 shows that among all the wrappers MOGFIDS achieves
the highest overall-accuracy (92.77%) and the lowest classi-
fication cost (0.2317) based on the cost matrix. The detailed
classification results on different class categories can be found
in Table 8, which shows that most of the normal network con-
nections can be correctly classified as normal by MOGFIDS in
testing.

4.4.2.3. Comparison with other approaches. The MOGFIDS
is further compared with the winner of KDD-Cup99 and six
well-known classifiers reported in the IDS literature. Accord-
ing to Table 7, the KDD-Cup99 winner [35] gives the lowest
FPR on classifying normal network connections, however, it is
outperformed by our MOGFDIS in all the attack classes pre-
diction, in terms of Recall, F-measure, overall-accuracy and
classification cost. Since the six classifiers do not apply the ex-
actly same data set as used by KDD-Cup99 participants and
MOGFIDS for training and testing purposes, their sampling on
training and test data are different from one another such that
the comparison is provided for reference only. From Table 7, it
is found that the Bayesian Network [36], CART [36], RIPPER
[13] and EFRID [37] classifiers do not give significantly good
results. Although the classification performances of both RIP-
PER and PNrule [13] are found to be better than MOGFIDS in
training, their test performances indicate that they suffer from
the over-fitting and generalization problem during learning. The
performance of PNrule is better than MOGFIDS in Probe and
R2L attack classes in testing, however its classification results
for DOS attack is found disappointing among all the classifiers.
The multi-classifier model [38] combines multi-layer percep-
tion neural network, Gaussian classifier and k-means clustering
algorithms to maximize the classification accuracy for each at-
tack category individually such that it can obtain high Recall
rates on Probe, DOS and U2R attack classes. However, it does
not take into account the minimization of FPR on classifying
normal network traffic and seriously lacks interpretability for
security analysis.

4.4.2.4. ROC analysis. To better understand the trade-off be-
tween the FPR and TPR of MOGFIDS and other baseline clas-
sifiers, they are evaluated by the ROC curves, which are ob-
tained by varying their decision thresholds for classification. In
general, the amount of intrusion attacks (positive samples) is
usually smaller than that of normal traffic (negative samples),
which dominates in the intrusion detection domain, so that the
performance curve near to the northwest point (0,1) of ROC
graph becomes particularly important. The ROC curve can also
be used to determine the performance of IDS for different op-
erating points so that different configurable thresholds can be
used for different IDS deployment locations and strategies in
a network. The results in Fig. 13 show that the ROC curve
obtained with MOGFIDS compares very favorably with those
of other baseline classifiers over the KDD-Cup99 test data. It
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Fig. 12. Distribution of fuzzy sets of feature with (a) index #46 and (b) index #51.

Fig. 13. ROC curves of different baseline classifiers and MOGFIDS evaluated on KDD-Cup99 test data. For clear illustration, the false alarm rate in the ROC
graph is shown with (a) a full interval [0,1] and (b) a remarkable interval [0,0.1].

is found that the NB and k-NN classifiers suffer from high
false alarm rates when they obtain high attack detection rates.
The C4.5 outperforms SVM in overall performance, however,
it is outperformed by the MOGFIDS that gains the largest area
under ROC and obtains the lowest false alarm rate when all
the intrusion attacks are correctly classified. A fortiori, these
comparative results demonstrate the robust performance can be
achieved by the proposed MOGFIDS on detecting both known
and unseen attacks with high ACC, and recognizing the normal
network traffic with low FPR.

5. Conclusions

In this work, we have addressed two important issues for
anomaly intrusion detection: (i) generating accurate and in-
terpretable fuzzy systems for classification and (ii) evaluating
the feature selection techniques for intrusion detection domain.

Automatic generation of rule-based knowledge by data mining
approaches has been widely adopted owing to its considerable
classification accuracy. However, attention has not been paid to
the interpretability optimization of rule-based systems, which
is also important for intrusion analysis and human comprehen-
sion. We have presented a novel intrusion detection approach
that extracts accurate and interpretable fuzzy rule-based knowl-
edge from network traffic data using an agent-based evolution-
ary framework. The experimental results demonstrate that the
agent cooperation and competition are effective to exchange
fuzzy set information such that the widespread non-dominated
fuzzy systems can be obtained in our approach considering both
accuracy and interpretability.

Feature selection can be used not only to alleviate the curse
of dimensionality and minimize classification errors, but also
to improve the interpretability of rule-based classifiers. To eval-
uate the effectiveness of our approach in the aspect of feature
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selection, it is compared with some well-known feature selec-
tion filters and wrappers in terms of the feature selection per-
formance and classification results. It is found that the feature
subset searched by our approach retains the relevant features
and removes most of the irrelevant features found by different
baseline filters. In addition, when our approach is compared
with different classifiers and wrappers, it shows that the over-
fitting problem can be relatively alleviated if it is required to
learn with small training samples of rare classes and evaluate
with large test samples containing novel attack classes. The
results demonstrate that our approach encouragingly outper-
forms all the baseline classifiers and wrappers by providing the
highest detection accuracy and the lowest classification cost. In
terms of the F-measure, it scores the best on the U2R and R2L
class categories, and also the second best on the Probe, DOS
and normal class categories. As our approach can obtain the
largest area under ROC curve as well as the lowest false alarm
rate when all the intrusion attacks can be correctly classified in
the ROC graph, it further supports the robust performance of
our approach. The extensive experimental results in this paper
have shown the successful classification of sophisticated intru-
sion attacks and normal network traffic, hence there is much
scope for future work to apply our approach to other complex
problem domains such as face recognition and DNA comput-
ing, which can be studied with accurate and interpretable fuzzy
systems.
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