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Abstract- This paper compares fuzzy rules with interval rules 
through computational experiments on benchmark data sets 
from the UCI database using an evolutionary multiobjective 
rule selection method. In the design of fuzzy and interval rule-
based systems for classification problems, we use three types of 
partitions: homogeneous fuzzy partitions, inhomogeneous 
entropy-based interval partitions, and inhomogeneous fuzzy 
partitions derived from the interval partitions. A large number 
of rule-based systems are designed from each type of partitions 
using our evolutionary multiobjective rule selection method with 
three objectives: to maximize the number of correctly classified 
training patterns, to minimize the number of rules, and to 
minimize the total number of antecedent conditions. 
Experimental results show that the fuzzification of interval rules 
improves their generalization ability for many data sets. 

I. INTRODUCTION 

 One goal in the design of fuzzy rule-based classification 
systems is to extract interpretable knowledge for human users 
in the form of fuzzy if-then rules. High interpretability of 
extracted knowledge is the main advantage of fuzzy rule-
based classification systems over other non-linear systems 
such as neural networks and support vector machines. It is, 
however, very difficult to design fuzzy rule-based systems 
with both high accuracy and high interpretability due to the 
tradeoff between accuracy and interpretability (i.e., the 
tradeoff between the accuracy maximization and the 
complexity minimization of fuzzy rule-based systems). In the 
1990s, a large number of learning methods were proposed to 
improve the accuracy of fuzzy rule-based systems. Those 
techniques were often based on learning algorithms of neural 
networks and optimization techniques in evolutionary 
computation. Such an attempt to improve the accuracy of 
fuzzy rule-based systems, however, tends to degrade their 
interpretability. In the 2000s, the importance of not only the 
accuracy but also the interpretability in the design of fuzzy 
rule-based classification systems was pointed out by some 
researchers (e.g., see [1], [2]). For further discussions on the 
accuracy-interpretability tradeoff, see Casillas et al. [3], [4]. 
 One of the first attempts to simultaneously perform the 
accuracy maximization and the complexity minimization of 
fuzzy rule-based classification systems was GA-based rule 
selection of Ishibuchi et al. [5], [6] in the mid-1990s. They 
used the following fitness function in fuzzy rule selection: 

)()()( 2211 SfwSfwSfitness ,             (1) 

where S is a set of fuzzy rules, )(1 Sf  is the number of 
correctly classified training patterns by S, )(2 Sf  is the 
number of fuzzy rules in S, and 1w  and 2w  are positive 
constants. A standard single-objective genetic algorithm was 
used to maximize the fitness function in (1). The GA-based 
rule selection was extended to the case of two objectives in 
[7] where a simple multiobjective genetic algorithm was used 
to find a large number of non-dominated rule sets of the 
following two-objective rule selection problem: 

Maximize )(1 Sf  and minimize )(2 Sf .          (2) 

This formulation was further extended to the case of three 
objectives in [8], [9] as follows: 

Maximize )(1 Sf  and minimize )(2 Sf  and )(3 Sf ,     (3) 

where )(3 Sf  is the total number of antecedent conditions of 
fuzzy rules in S. Since the number of antecedent conditions 
of each rule is often referred to as the rule length, )(3 Sf  can 
be viewed as the total rule length. 
 The three-objective fuzzy rule selection method in [9] 
consists of candidate rule generation and genetic rule 
selection. First a data mining technique is used to efficiently 
generate a prespecified number of promising candidate rules 
based on a heuristic rule evaluation measure. Then an 
evolutionary multiobjective optimization algorithm is used to 
find a large number of non-dominated subsets of candidate 
rules with respect to the three objectives in (3). This two-
stage approach is also applicable to the design of non-fuzzy 
interval rule-based classification systems [10]. 
 In this paper, we compare fuzzy and interval rule-based 
classification systems with each other through computational 
experiments using the two-stage rule selection method [9], 
[10]. We use three types of partitions of continuous attributes 
to generate candidate rules: homogeneous (i.e., uniform) 
fuzzy partitions, inhomogeneous entropy-based interval 
partitions, and inhomogeneous fuzzy partitions derived from 
the interval partitions. Using each type of partitions, a 
prespecified number of candidate rules are generated based 
on a heuristic rule evaluation measure. Then an evolutionary 
multiobjective optimization algorithm is used to find a large 
number of non-dominated rule sets with respect to the three 
objectives in (3) from the candidate rules. By examining the 
classification performance of obtained non-dominated rule 
sets, we compare the three types of partitions. 
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II. THREE TYPES OF PARTITIONS 

 Let us assume that we have m labeled patterns px
)...,,( 1 pnp xx , mp ...,,2,1  from M classes as training data 

(i.e., we have an n-dimensional M-class pattern classification 
problem with m training patterns). We use if-then rules of the 
following type for our n-dimensional pattern classification 
problem: 

Rule qR : If 1x  is 1qA  and ... and nx  is qnA
      then Class qC  with qCF , rule...,,2,1 Nq ,   (4) 

where qR  is the label of the q-th rule, )...,,( 1 nxxx  is an 
n-dimensional pattern vector, qiA  is an antecedent fuzzy set 
or interval, qC  is a consequent class, qCF  is a rule weight, 
and ruleN  is the number of fuzzy rules. The consequent class 

qC  and the rule weight qCF  of each rule qR  are specified 
from compatible training patterns with its antecedent part 

qA )...,,( 1 qnq AA  in a heuristic manner [11]-[13]. The 
rule weight qCF  is used as the strength of qR  when new 
patterns are to be classified by the rule-based system with the 

ruleN  rules in (4). In the case of fuzzy rules, classification 
boundaries can be adjusted by changing the rule weight of 
each fuzzy rule without modifying the membership functions 
of antecedent fuzzy sets [11]-[13]. On the other hand, 
classification boundaries can not be adjusted by the rule 
weight of each rule in the case of interval rules. In this case, 
the discretization of each attribute into antecedent intervals 
has a dominant effect on classification boundaries. 
 Homogenous fuzzy partitions were frequently used in the 
design of fuzzy rule-based classification systems with high 
interpretability. Examples of such fuzzy partitions are shown 
in Fig. 1. One advantage of homogeneous fuzzy partitions 
over inhomogeneous ones is high linguistic interpretability of 
each antecedent fuzzy set. Since an appropriate granularity of 
fuzzy partitions is not usually known for each attribute, we 
simultaneously use multiple fuzzy partitions with different 
granularity. In our computational experiments, we use the 
four fuzzy partitions in Fig. 1 (i.e., 14 fuzzy sets) and “don’t 
care”. Thus the total number of possible combinations of 
antecedent fuzzy sets is n15  for our n-dimensional problem. 
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Fig. 1. Homogeneous fuzzy partitions. 
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Fig. 2. Illustration of interval partitions.  

 In the area of machine learning, a number of discretization 
methods of continuous attributes into disjoint intervals have 
been proposed in the literature [14]-[17]. We use the 
following class entropy measure [14] to divide a continuous 
attribute into K intervals: 
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where jA  is an interval, jD  is the set of training patterns in 
the interval jA , and jhD  is the set of training patterns from 
Class h in jD . The cardinality of each subset of training 
patterns is denoted by ||  such as || jD  in (5). Using an 
optimal splitting method [17], we can efficiently find the 
optimal )1(K  cutting points that minimize the class entropy 
measure in (5). As in Fig. 1, we simultaneously use multiple 
interval partitions for generating interval rules. In our 
computational experiments, we use five partitions in Fig. 2 
corresponding to 5,4,3,2,1K  where 1K  means “don’t 
care” since the domain interval is not divided in this case. 
 The number of possible combinations of antecedent 
intervals is n15  for our n-dimensional problem since each 
antecedent interval qiA  in (4) can assume one of 15 intervals 
in Fig. 2. It should be noted that each antecedent interval qiA
can be viewed as having the following membership function.  

otherwise,0
if,1)(

U
qii

L
qi

iqiA
AxAx ,          (6) 

where L
qiA  and U

qiA  are the lower and upper bounds of the 
antecedent interval qiA , respectively. Using (6), we can 
handle fuzzy and interval rules in the same framework. 
 As shown in Fig. 3, inhomogeneous fuzzy partitions can be 
derived from interval partitions [18]. We also examine such 
inhomogeneous fuzzy partitions in this paper. 
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Fig. 3. Inhomogeneous fuzzy partitions. 

The 2005 IEEE International Conference on Fuzzy Systems431



III. MULTIOBJECTIVE RULE SELECTION 

 Our evolutionary multiobjective rule selection method [9], 
[10] consists of the two stages: candidate rule generation and 
genetic rule selection. Each stage is briefly explained in the 
following subsections. 

A. Candidate Rule Generation 
 In this stage, a prespecified number of promising rules are 
chosen from possible rules (e.g., n15  rules in computational 
experiments) based on a heuristic rule evaluation measure. A 
number of heuristic rule evaluation measures (e.g., support, 
confidence and their product) were examined in our former 
study [19]. We use the following measure in this paper: 

M

qCh
h

qqqq hsCsRf
1

SLAVE )Class()Class()( AA ,

                         (7) 
where )(s  is the support measure of fuzzy or interval rules, 
which is defined as follows: 

hp
pqq m

hs
Class

)(1)Class(
x

A xA .       (8) 

In this formulation, )( pq xA  is the compatibility grade of 
each training pattern px  from Class h with the antecedent 
part )...,,( 1 qnqq AAA . We use the product operator to 
calculate the compatibility grade as 

)(...)()( 11 pnqnApqApq xxxA ,        (9) 

where )(qiA  is the membership function of the antecedent 
fuzzy set (or interval) qiA . The heuristic rule evaluation 
measure in (7) is a modified version of a rule evaluation 
criterion used in an iterative fuzzy GBML (genetics-based 
machine learning) algorithm called SLAVE [20]. 
 We only examine short rules with a few antecedent 
conditions when we choose a prespecified number of 
candidate rules for each class. This is because we want to 
construct interpretable rule-based systems (i.e., because it is 
very difficult for human users to intuitively understand long 
rules with many antecedent conditions). More specifically, 
we choose 300 rules with the largest values of the rule 
evaluation measure in (7) for each class among short rules of 
length three or less in computational experiments except for 
the case of the sonar data set with 60 attributes. For the sonar 
data set, we only examine short rules of length two or less. 
The total number of candidate rules is M300  where M is the 
number of classes. 

B. Genetic Rule Selection 
 Let us assume that N (i.e., MN 300 ) rules have been 
extracted as candidate rules using the rule evaluation measure 
in (7). A subset S of the N candidate rules is handled as an 
individual in genetic rule selection, which is represented by a 
binary string of length N as NsssS 21  where 1js  and 

0js  mean that the j-th candidate rule is included in S and 
excluded from S, respectively. The classification performance 
of each rule set S is evaluated by classifying all the given 
training patterns by S. We use a single winner rule-based 
method where each pattern px  is classified by a single 
winner rule wR  chosen from the rule set S as 

}|)(max{)( SRCFCF qqpqwpw xx AA .   (10) 

The winner rule wR  has the maximum product of the 
compatibility grade )( pq xA  and the rule weight qCF  in 
the rule set S. If multiple rules have the same maximum 
product but different consequent classes for px , the 
classification of px  is rejected. The classification is also 
rejected if no rule is compatible with px  (i.e., 0)( pq xA
for SRq ).
 For executing multiobjective rule selection with respect to 
the three objectives in (3), we use a well-known state-of-the-
art evolutionary multiobjective optimization algorithm called 
NSGA-II [21]. In the NSGA-II algorithm, we use two 
problem-specific heuristic tricks. One is biased mutation 
probabilities where a larger probability is assigned to the 
mutation from 1 to 0 than that from 0 to 1. This heuristic trick 
is used to efficiently decrease the number of rules in each 
rule set by the mutation operation. The other is the removal 
of unnecessary rules. Since we use the single winner-based 
method for classifying each pattern, some rules in S may be 
chosen as winner rules for no pattern. We can remove those 
rules without degrading the number of correctly classified 
training patterns (i.e., )(1 Sf ). At the same time, the removal 
of such an unnecessary rule decreases the number of rules 
(i.e., )(2 Sf ) and the total rule length (i.e., )(3 Sf ). Thus we 
remove all rules that are not selected as winner rules for any 
training pattern from the rule set S. The removal of 
unnecessary rules is performed for each rule set after )(1 Sf
is calculated and before )(2 Sf  and )(3 Sf  are calculated. 
 A large number of non-dominated rule sets with respect to 
the three objectives are found by a single run of the NSGA-II 
algorithm with the two heuristic tricks. Some rule sets have 
high accuracy and low interpretability, and other rule sets 
have low accuracy and high interpretability. 

IV. COMPUTATIONAL EXPERIMENTS 

 Through computational experiments on five data sets in 
Table 1 from the UC Irvine Machine Learning Repository, 
we compare the three types of partitions in Section II (i.e., 
homogeneous fuzzy partitions, inhomogeneous entropy-
based interval partitions, and inhomogeneous fuzzy partitions 
derived from the interval partitions). The last two columns of 
Table 1 show the reported error rates in [17] where several 
versions of the C4.5 algorithm were examined. We use the 
ten-fold cross-validation (10-CV) technique to examine the 
generalization ability (i.e., accuracy on unseen test patterns). 
In each iteration in the 10-CV technique, 300 candidate rules 
are extracted from training patterns (90% of the whole data 
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set) for each class using one of the three types of partitions. 
Then the NSGA-II algorithm is applied to the M300
candidate rules to find a number of non-dominated rule sets. 

TABLE 1. DATA SETS IN COMPUTATIONAL EXPERIMENTS. 

C4.5 in [17]Data set Attributes Patterns Classes Best Worst
Breast W 9   683* 2 5.1 6.0

Glass 9 214 6 27.3 32.2
Heart C 13   297* 5 46.3 47.9
Sonar 60 208 2 24.6 35.8
Wine 13 178 3 5.6 8.8

* Incomplete patterns with missing values are not included. 

 The NSGA-II algorithm is executed using the following 
parameter specifications: 
  Population size: 200 strings, 
  Crossover probability: 0.8 (uniform crossover), 
  Biased mutation probabilities:  
    Mp 300/1)10(m   and  )01(mp 0.1, 
  Stopping condition: 5000 generations. 

When the execution is terminated, a number of non-
dominated rule sets are obtained. The classification rate of 
each non-dominated rule set is calculated for the training 
patterns and the remaining test patterns. We also examine the 
classification performance of an ensemble classification 
system of non-dominated rule sets where the final 
classification decision on each pattern is made by the simple 
majority vote by the non-dominated rule sets. The 10-CV 
technique is applied to each data set 10 times using different 
divisions into ten subsets of the same size. That is, our 
multiobjective rule selection method is executed 100 times 
(i.e., 10 10-CV) for each data set. This means that we obtain 
100 collections of non-dominated rule sets. A single 
ensemble classification system is constructed from each 
collection. The average classification rate is calculated over 
non-dominated rule sets with the same number of rules and 
the same total rule length for training patterns as well as for 
test patterns. The average classification rate is also calculated 
over 100 ensemble classification systems.  
 In Table 2 and Table 3, we show the average error rates by 
ensemble classification systems constructed from each type 
of partitions. From Table 2, we can see that the best error 
rates on training patterns are obtained from the interval 
partitions on the average. On the other hand, good results are 
obtained for test patterns from the inhomogeneous fuzzy 
partitions derived from the interval partitions and the 
homogeneous fuzzy partitions in Table 3. These observations 
suggest that the fuzzification of the interval partitions 
improves the generalization ability of interval rules for test 
patterns while it decreases the accuracy on training patterns. 

TABLE 2. ERROR RATES ON TRAINING PATTERNS BY ENSEMBLE 
CLASSIFICATION SYSTEMS. THE BEST RESULT FOR EACH DATA 
SET IS SHOWN BY BOLDFACE. 

Data set Homogeneous 
fuzzy Interval Inhomogeneous 

fuzzy
Breast W 1.76 1.27 1.50 

Glass 20.98 16.49 15.63 
Heart C 28.40 16.36 19.61 
Sonar 9.91 6.46 8.53 
Wine 0.01 0.01 0.39 

TABLE 3. ERROR RATES ON TEST PATTERNS BY ENSEMBLE 
CLASSIFICATION SYSTEMS. THE BEST RESULT FOR EACH DATA 
SET IS SHOWN BY BOLDFACE. 

Data set Homogeneous 
fuzzy Interval Inhomogeneous 

fuzzy
Breast W 3.63 3.32 3.34 

Glass 38.94 32.73 31.56 
Heart C 47.68 47.62 46.46 
Sonar 22.59 24.56 22.93 
Wine 4.38 4.73 4.72 

 Next we examine the relation between the accuracy and 
the complexity of obtained rule sets in detail. Experimental 
results on the Cleveland heart disease data set (Heart C) are 
shown in Fig. 4 for training patterns and Fig. 5 for test 
patterns. In these figures, a single spot (i.e., open circle, 
triangle, or closed circle) shows the average error rate of 
obtained rule sets with the same number of rules and the 
same total rule length. In Fig. 4, we can observe the tradeoff 
between the classification accuracy on training patterns and 
the complexity of rule sets. That is, the error rates on training 
patterns monotonically decrease with the number of fuzzy 
rules in Fig. 4. Since not only the number of fuzzy rules but 
also the total rule length are taken into account in our 
multiobjective rule selection method, several non-dominated 
rule sets have the same number of rules as shown in Fig. 4. 
They are different from each other in the total rule length. 
With respect to the comparison among the three partitions, 
better results are obtained from the interval partitions and the 
inhomogeneous fuzzy partitions than the homogeneous fuzzy 
partitions in Fig. 4. Fuzzification of the interval partitions 
slightly increases the error rates on training patterns. 
 Totally different results are obtained for test patterns in Fig. 
5. While the error rates on training patterns monotonically 
decrease with the number of rules in Fig. 4, the increase in 
the number of rules degrades the classification accuracy on 
test patterns in Fig. 5. That is, we can observe the overfitting 
to training patterns in Fig. 5. We can also see in Fig. 5 that 
the fuzzification of the interval partitions improves the 
generalization ability of interval rules. 
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Fig. 4. Error rates on training patterns of the Cleveland heart 
disease data set (Heart C in Table 1). 
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Fig. 5. Error rates on test patterns of the Cleveland heart 
disease data set (Heart C in Table 1). 

 In Fig. 6 and Fig. 7, we show experimental results on the 
sonar data set. As in Fig. 4, we can observe the tradeoff 
between the error rates on training patterns and the number of 
rules in Fig. 6. The best results on training patterns are 
obtained from the interval partitions in Fig. 6. On the other 
hand, Fig. 7 on test patterns is different from Fig. 5. The 
deterioration in the error rates due to the increase in the 
number of rules is not clear in Fig. 7 on the sonar data set 
(i.e., there is no clear overfitting). 
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Fig. 6. Error rates on training patterns of the sonar data set 
(Sonar in Table 1). 
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Fig. 7. Error rates on test patterns of the sonar data set (Sonar 
in Table 1). 

 As we can see from the comparison between Fig. 5 and Fig. 
7, the relation between the generalization ability and the 
complexity of rule-based systems is problem-dependent. We 
can examine such a problem-specific characteristic feature 
for each classification problem using our multiobjective rule 
selection method. This is because a large number of non-
dominated rule sets with different accuracy and different 
complexity are obtained by its single run while only a single 
rule set is usually obtained by single-objective approaches. 
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V. CONCLUSIONS 

 In this paper, we compared three types of partitions of 
continuous attributes in the design of rule-based classification 
systems: Homogeneous fuzzy partitions, inhomogeneous 
entropy-based interval partitions, and inhomogeneous fuzzy 
partitions derived from the interval partitions. It was shown 
through computational experiments that the fuzzification of 
the interval partitions improved the generalization ability of 
interval rules while it slightly deteriorated the classification 
accuracy on training patterns. An interesting observation is 
that the homogeneous fuzzy partitions were not always 
inferior to the inhomogeneous ones when they were 
compared in terms of the generalization ability for unseen 
test patterns. 
 As we have already stressed in this paper, the advantage of 
our multiobjective approach is that a large number of non-
dominated rule sets with different accuracy and different 
complexity can be obtained by its single run. From those rule 
sets, we can visually examine the relation between the 
accuracy and the complexity of rule-based systems. Such 
knowledge on the accuracy-complexity tradeoff structure is 
useful for human users in the design (or choice) of a final 
rule-based classification system for a particular pattern 
classification problem at hand because the accuracy-
complexity tradeoff structure is strongly problem-dependent. 
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