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Abstract

The inductive learning of a fuzzy rule-based classification system (FRBCS) is made
difficult by the presence of a large number of features that increases the dimensionality
of the problem being solved. The difficulty comes from the exponential growth of the
fuzzy rule search space with the increase in the number of features considered in the
learning process. In this work, we present a genetic feature selection process that can be
integrated in a multistage genetic learning method to obtain, in a more efficient way,
FRBCSs composed of a set of comprehensible fuzzy rules with high-classification
ability. The proposed process fixes, a priori, the number of selected features, and
therefore, the size of the search space of candidate fuzzy rules. The experimentation
carried out, using Sonar example base, shows a significant improvement on simplicity,
precision and efficiency achieved by adding the proposed feature selection processes to
the multistage genetic learning method or to other learning methods. © 2001 Elsevier
Science Inc. All rights reserved.
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1. Introduction

The inductive learning of a fuzzy rule-based classification system
(FRBCYS) starts from a set of instances or patterns, and determines a set of
fuzzy rules and a fuzzy inference method that generalises the knowledge
extracted from the data in order to classify new patterns. Each one of these
patterns is described by a set of features, also called variables or charac-
teristics.

An FRBCS learning process must solve different problems to obtain a lin-
guistic FRBCS with an accurate behaviour, such as:

1. the obtaining of a fuzzy rule set with an adequate co-operation level between
the rules,

2. the selection of the inference method, which determines the way of combin-
ing the information provided by the fuzzy rules in the classification of the
examples.

3. the establishment and tuning — if necessary — of the fuzzy partitions for the
linguistic variables, and

4. when managing high-dimensional problems, the fuzzy rule set suffers an ex-
ponential growth in its size when a large number of input variables are con-
sidered.

The first three problems, related to the knowledge extraction process, have

been solved by different learning processes based on iterative methods

[9,30,46], Neural Networks [33,44,45] or genetic algorithms (GAs)

[21,29,31,58], among others.

The fourth problem can be tackled from a double perspective:
¢ Via the compactness and reduction of the rule set, minimising the number of

fuzzy rules included in it. Unnecessary rules can be eliminated with the aim

of having a more co-operative rule set in order to obtain an FRBCS with
better performance.

¢ Via a feature selection process which reduces the number of features used by
the FRBCS, thus reducing the fuzzy rule search space.

Rule reduction methods act combining rules and/or selecting a subset of
them from a given rule set to achieve the goal of minimising the number of
rules used while maintaining (or even improving) the FRBCS performance.
The badly defined and conflicting rules are eliminated through the method
since their existence degrades the system performance.

Rule reduction methods have been formulated using Neural Networks,
clustering techniques and orthogonal transformation methods, similarity
measures [10,23,34,35,48-50,55,57], as well as using GA-based rule selection
processes to get a co-operative set of rules from a candidate rule set
[15,16,24,26,32,37,47]. From a different point of view, in [11] an attempt to
reduce the growth of the rule set by proposing a disjunctive form for the fuzzy
rules (a rule combination method) is considered.
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In [13], a multistage genetic learning process was presented, based on the
MOGUL methodology [15], that deals with the four said problems. It learns
fuzzy rules covering the example set, integrates the inference method together
with a rule set genetic selection process, getting high co-operation rule sets, and
applies a genetic tuning process to obtain the final membership function defi-
nitions.

We must remark that, for high-dimensional problems and problems where a
high number of instances is available, it is difficult for the reduction and se-
lection approaches to get small rule sets, and therefore the system compre-
hensibility and interpretability may not be as good as desired.

For high-dimensional classification problems, a feature selection process,
that determines the most relevant variables before or during the FRBCS in-
ductive learning process, can be considered. It reduces the fuzzy rule search
space and increases the efficiency and accuracy of the learning and classifica-
tion stages.

Our objective is to develop a feature selection process to be integrated, in a
proper way, into the said multistage genetic learning process [13], to obtain
FRBCSs composed of a set of comprehensible fuzzy rules with high-classifi-
cation ability in a more efficient way. For this task, we devise a genetic feature
selection process that fixes, a priori, the number of selected features and,
therefore, the size of the search space of candidate fuzzy rules.

In this way, the extended multistage genetic learning process deals with the
fourth said problem, high dimensionality, from a double point of view, getting
a small number of features, and getting compact rule sets with an appropriate
co-operation level via genetic selection integrating inference methods.

To carry out this task, this paper is organised as follows. In Section 2, some
preliminaries are introduced: the FRBCS components and a brief description
of the multistage genetic learning process for FRBCSs. In Section 3, the di-
mensionality problem in this learning process is presented. As a solution to this
problem, Section 4 describes the integration of a feature selection process in the
multistage FRBCS learning process. The proposals for the feature selection
stage are explained in Section 5. Section 6 shows the results of the experiments
with Sonar data base. In Section 7, some conclusions are pointed out.

2. Preliminaries
2.1. Fuzzy rule-based classification systems

An FRBCS is an automatic classification system that uses fuzzy rules as
knowledge representation tool.

The FRBCS design implies two processes, which are graphically shown in
Fig. 1:
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Fig. 1. Design of an FRBCS (learning/classification).

e The inductive learning process of the FRBCS, which starts from a set of
problem instances with known class and obtains an automatic classification
system that generalises the knowledge extracted from the data in order to
classify new instances.

e The classification process, which uses the FRBCS to determine its classifica-
tion capability with unknown problem instances.

As can also be seen in Fig. 1, in an FRBCS two different components are
distinguished:

1. The Knowledge base (KB), composed of:

e a Data base (DB), which contains the fuzzy set definitions related to the
linguistic terms used in the fuzzy rules, and

e a Rule base (RB), comprised by a set of fuzzy rules that in this work are
considered to have the following structure:

Ry: If X is 4 and ... and Xy is 4% then, Y is C; with *,

where X, ..., Xy are features considered in the problem and 4%, ..., 45 are
linguistic labels employed to represent the values of the variables.

This kind of fuzzy rule represents, in the antecedent part, a subspace of the
complete pattern space by means of a linguistic label for each considered
variable and, in the consequent part, has a class label (C;) and a certainty
degree (+*). This numerical value indicates the degree of certainty of the
classification in that class for the examples belonging to the fuzzy subspace
delimited by the antecedent part.
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2. The fuzzy reasoning method (FRM), an inference procedure, which com-
bines the information provided by the fuzzy rules related with the example
to be classified, determines the class to which it belongs.

The majority of FRBCSs (see [1,9,21,30,43] among others) use the classical
FRM that classifies a new example with the consequent of the fuzzy rule having
the greatest degree of association. By using this reasoning method, the FRBCS
loses the information provided by other rules with different linguistic labels
which also represent this value in the pattern attribute, although probably to a
lesser degree. Other FRMs that use the information provided by all the rules
compatible with the example (or a subset of them) had been developed
[4,9,14,28]. In [12,14], a general FRM framework for FRBCSs is described and
different proposals are presented to improve the performance of an FRBCS in
the classification stage.

In [13], a genetic learning process is presented, that considers the fuzzy rule
co-operation and the FRM used in the classification stage to select fuzzy rules
and to tune the fuzzy partitions. We must note that this multistage learning
process does not tackle the need of reducing the problem dimensionality when
the number of features is high. In the following section, we will briefly describe
this learning process, in order to observe its main characteristics, to study its
limitations in managing the problem dimensionality, and to analyse the inte-
gration of a feature selection stage.

2.2. Multistage genetic learning of fuzzy rule-based classification systems

The multistage genetic learning process for FRBCSs consists of three stages

[13]:

1. An iterative fuzzy rule generation process that obtains a linguistic RB which
represents the knowledge extracted from the training examples and verifies
the completeness and k-consistency properties [20,24].

2. A genetic multiselection process that generates different KBs by the selection
of different rule subsets and the learning of different linguistic modifier sets,
considering the FRM used in the classification stage.

3. A genetic tuning process that leads to the best membership function defini-
tions for the fuzzy rules.

2.2.1. Fuzzy rule generation process
The iterative fuzzy rule generation process has two components, a rule

generating method and an iterative covering method:

o The fuzzy rule generating method obtains, in each iteration, a candidate fuzzy
rule set, generating for each training example the fuzzy rule which represents
the fuzzy subspace to which it belongs. From this set of rules, the best one is
selected by means of a multicriteria selection function, which considers cri-
teria related to the rule frequency, t-completeness and k-consistency [15].
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o The covering method applies the generation method to obtain the best rule
for the training examples, and considers the relative covering that this rule
causes in them, eliminating those examples that are covered to a degree high-
er than a maximum value previously specified.

These processes are applied repeatedly until the training set becomes empty.
It must be noted that in this generation process, the FRM is not considered
for the obtaining of the RB.

2.2.2. Genetic multiselection process
The fuzzy rule generation process, which does not consider the relationship

among the different rules, can obtain an RB with an inappropriate co-opera-

tion level. To solve this problem, one objective of the genetic multiselection
process is the selection of fuzzy rule subsets with optimal co-operation in the
classification stage depending on the FRM used. Besides this, the multiselec-

tion process allows the precision of the FRBCS to be increased by selecting a

linguistic modifier set for the linguistic terms used in the RB.

This multimodal optimisation problem is solved with a GA [19,25] that
uses the sequential niche technique [6] to induce niches in the search space and
obtain different KB definitions by means of the basic genetic selection
process.

As said, the basic genetic selection process has a double objective: the se-
lection of a rule subset with a good co-operation among them, considering
the FRM, and the selection of a linguistic modifier set related to the fuzzy
subsets used by the fuzzy rules. The latter can be done in two different forms:
selecting a linguistic modifier for each fuzzy subset defined in the DB, or
determining a linguistic modifier for each fuzzy subset related to each lin-
guistic variable in each fuzzy rule. In this genetic process, the fitness associ-
ated to each solution (KB definition) is based on two criteria, a global
classification error measure and a criterion penalising the non-satisfaction of
the t-completeness property.

Each time this basic genetic selection process is executed, the solution ob-
tained is optimised using a high-climbing process. Finally, the search space
zone in which the solution has been obtained is penalised, to get different KBs
in posterior executions of the basic genetic selection process.

We should note that the basic rule selection genetic process could be ex-
tended in different ways. For example:

e Another criterion related to the complexity of the RB to be selected can be
also considered in the optimisation process. This criterion is usually based
on minimising the number of rules composing the encoded RB and can be
incorporated to the GA in two different forms. It can be directly included
in the fitness function, as done in [24] where both criteria are aggregated into
a single measure by means of a weighted combination, or a more sophis-
ticated GA structure can be considered to obtain a multiobjective GA
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optimising both criteria at the same time by generating different solutions in

the pareto set [26].

e Since the problem of selecting rules is difficult and the search space is
strongly multimodal, a more sophisticated niching GA [19] can be considered
(see [17]).

For the sake of simplicity, none of these extensions will be considered for
our rule selection process in this paper. Although better results could be ob-
tained in other case, we prefer not to include additional experimentations re-
lated to this point. We think that the criterion considered, the classification
error over a data set, will be enough to obtain good results due to the fact that
it is directly related to the accuracy of the linguistic model, which is signifi-
cantly affected by an excessive number of rules.

2.2.3. Genetic tuning process

The genetic tuning process leads to optimise the fuzzy partition of the lin-
guistic variables, determining the best membership function parameter values
in a common way to all the fuzzy rules.

This process uses a real coded GA based on the parametric representation of
the membership functions. It demands, as the multiselection process does, the
verification of the t-completeness property.

3. The dimensionality problem in the multistage genetic learning process

As said, the design of an FRBCS for a classification problem with a large
number of features entails efficiency and/or effectiveness problems, if the
learning algorithm searches in the complete search space as the multistage
genetic learning process does. These problems come from the exponential
growth of the fuzzy rule search space with the increase in the number of fea-
tures considered in the learning process.

In order to show, in an empirical way, the effects of the dimensionality
problem in the multistage genetic learning process, we have applied it to an
example base with a high-feature number, Sonar data set [5,22], which has 208
instances of a sonar objective classification problem. Each one of these in-
stances is described by 60 features to discriminate between a sonar output
corresponding to a cylindrical metal or an approximately cylindrical rock.

If we use five linguistic labels per variable to solve this problem, the search
space for the learning process is composed of 5% candidate fuzzy rules. The
results obtained after the generation stage are shown in Table 1 (results with
different FRMs that are described in [12,14]). In brackets, we expose the values
for the FRMs parameters.

In this table, we can observe that the correct classification percentage with
five linguistic labels per variable is the same independently of the FRM used.
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Table 1
Results with a KB obtained after the generation process for the Sonar problem
FRM 5 Labels 3 Labels
311 Rules 331 Rules
Tra. Test Tra. Test
Classical 100 43.27 99.04 75.00
Normalised sum 100 43.27 98.08 73.08
Arithmetic mean 100 43.27 96.15 72.11
Quasiarithmetic mean (p = 10) 100 43.27 99.04 75.00
SOWA or-like (o = 0.3) 100 43.27 98.08 76.92
Badd (p = 10) 100 43.27 99.04 75.00
OWA (a=0,b=0.3) 100 43.27 98.08 75.96
QuasiOWA (a=0,5=0.3, p=10) 100 43.27 99.04 75.96

This is because the wrong classified examples do not belong to any fuzzy rule
and the FRBCS cannot classify them. This problem can be lessened with the
use of a more compensated z-norm than the one used, the minimum, or con-
sidering fuzzy partitions with a smaller number of linguistic labels. In Table 1,
columns 4 and 5, we can see the results obtained by the generation process
considering only 3 linguistic labels per linguistic variable.

Nevertheless, the results obtained in the first stage of the learning process, in
both situations, show that the use of the complete set of features leads to the
design of an FRBCS that is overfitted to the training examples and covers only
a small proportion of the complete example space.

Since the proposed learning process does not select the relevant features and
uses all the available ones, when the feature number is large, the fuzzy rule
search space becomes huge, the learning process turns slower and the FRBCS
finally obtained is overfitted to the training examples. This fact limits the
chances of improving the classification system for the postprocessing (multi-
selection and tuning) stages.

4. The integration of a feature selection stage in the multistage genetic learning
process

The integration of a feature selection stage in the multistage genetic learning
process will reduce the problem dimensionality before the fuzzy rule generation
stage.

In short, the feature selection stage is executed as follows: first, a genetic
feature selection process determines a set of feature subsets by means of the
chromosomes in the final population with the best fitness value. Since these
feature subsets have been selected without considering the heuristics of the
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inductive learning method, we use the efficient fuzzy rule generation process as
an intermediate stage to determine the best feature subset for the problem
being solved. In this form, we include the heuristic and bias of the learning
process in an efficient way to obtain a feature subset, which properly works
with the fuzzy rules and the FRM used to classify new examples. Finally, we
execute the postprocessing stages of the multistage genetic learning method

(that is to say, multiselection and tuning) over the RB obtained with the se-

lected feature subset.

The resulting FRBCS learning process consists of the following stages:

1. A genetic feature selection process, which gets a feature subset to learn the
FRBCS from it. The proposed feature selection process uses a GA as search
algorithm and it has wrapper nature [36]. We also use a feature selection al-
gorithm with filter nature [39-41] that searches for a variable cardinality fea-
ture subset to obtain the chromosome length for our proposal of genetic
feature selection process. We will explain this process in detail in the follow-
ing section.

2. An iterative fuzzy rule generation process, which — using only the selected
features — obtains an RB independently of the FRM used in the classifica-
tion stage.

We use this efficient fuzzy rule generation process as an intermediate stage to

determine the best feature subset (consequently, the best KB) and the best

FRM for the problem to solve.

3. A genetic multiselection process of different KBs with a good co-operation
level among the fuzzy rules, considering the FRM selected in the previous
step.

4. A genetic tuning process, which modifies the fuzzy set definitions in a com-
mon way for all rules to obtain a linguistic FRBCS.

The resulting FRBCS learning process is graphically described in Fig. 2.
We can see how the genetic feature selection process starts from the com-
plete set of features and provides us some feature subsets with a fixed
cardinality (corresponding to different chromosomes with the maximum
value for the fitness function in the final population). With each one of
these variable subsets, we run the generation process to obtain different RBs
regardless of the FRM used in the classification process. The prediction
capability of these RBs is measured with different FRMs to choose a
number of the FRBCSs with the best behaviour (in this paper, we will work
with the best two ones). As said, we must note that, at this point, the
feature selection stage finishes adding some of the heuristics and bias of the
inductive learning method to the selection stage. These FRBCSs are im-
proved by means of the postprocessing stages (that is to say, multiselection
and tuning stages).

In Section 5, we will explain in depth our proposals for the feature selection
stage.
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Fig. 2. Stages in the FRBCS learning process.

5. Feature selection process
5.1. Feature selection approaches

The main objective of the genetic feature selection stage is to reduce the
dimensionality of the problem before the supervised inductive learning process.
This fact implies that the feature selection algorithm must determine — without
the necessity of the FRBCS construction — the best features for its design.

There are two kinds of feature selection algorithms:

o Filter feature selection algorithms [39], which remove the irrelevant charac-
teristics without using a learning algorithm. They are efficient processes
but, on the other hand, the feature subsets obtained by them may not be
the best ones for a specific learning process because of the exclusion of
the heuristic and bias of the learning process in the selection procedure
[36].

o Wrapper feature selection algorithms [36,39]. This kind of feature selection
algorithms selects feature subsets by means of the evaluation of each candi-
date subset with the precision estimation obtained by the learning algorithm.
In this form, they obtain feature subsets with the best behaviour in the
FRBCS design. Their problem is their inefficiency since they must build
the FRBCS for each evaluation of a candidate feature subset.
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5.2. Genetic feature selection proposal

We propose a genetic feature selection stage that combines both kinds of

feature selection algorithms in two steps:

1.

The first step looks for a feature subset with variable size considering class
separability measures to determine an optimal feature number for a specific
classification problem. In this study, we employ the filter algorithm Las
Vegas filter (LVF) [39—-41], which is based on the inconsistency rate, pro-
posed by Liu and Setiono (which is described in Appendix A). This filter fea-
ture selection method provides us a cardinality for the feature subset with
minimum number of inconsistencies.

Besides this cardinality, we use the feature subset size given by an ex-
pert since, for some classification problems, it is necessary to enforce a
fixed reduction of the feature subset cardinality before the learning pro-
cess.

. The results of the previous feature selection algorithm and the expert opin-

ion provide us an adequate feature subset cardinality used as chromosome
length for a wrapper genetic feature selection process that determines a fea-
ture subset from which an accurate FRBCS can be obtained. To increase the
efficiency while maintaining the effectiveness of the wrapper feature selection
algorithms, our proposal uses the precision estimation provided by the
k-nearest neighbour rule (k-NN) [18,38], which is very sensitive to the
resence of irrelevant characteristics.

Before describing the components of the genetic feature selection process,

four considerations on the process must be pointed out:

The feature selection process follows this outline because it is necessarily an
efficient feature selection process, which provides an adequate variable sub-
set for the FRBCS design.

A wrapper feature selection process that uses the £-NN rule in each fea-
ture subset evaluation, is an efficient approach because this classification
rule does not have learning time and it is very sensitive to irrelevant vari-
ables.

If the feature selection process would have only the wrapper selection step,
the resulting variable subset may not have the minimum cardinality since the
k-NN rule is not sensitive to redundant characteristics.

The determination of the feature subset size carried out by the filter algo-
rithm or the expert helps the wrapper feature selection process to select only
relevant variables and to, effectively and efficiently, reduce the complexity of
the classification problem.

The feature selection problem is an optimisation problem with restrictions

that has been solved by means of GAs in different proposals ([3,8,27,52,56]). In
the following section, we describe our genetic proposal for the wrapper feature
selection process.
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5.3. Steady-state GAs for feature selection

The first stage of the learning process is carried out by means of a feature
selection algorithm based on a GA with a variant of the pure steady-state
reproduction mechanism [53]. As said, this feature selection process is a
wrapper feature selection algorithm that uses a precision measure provided by
the £-NN considering only the features included in the candidate feature subset
as evaluation function.

The GA is described by its components:

1. Coding scheme. The feature selection process objective is to get an optimal
feature subset with a fixed cardinality, so the integer coding using fixed
length allows us to represent a candidate subset containing H variables in
a chromosome of length H in which, the ith gen represents the ith selected
variable.

The proposed algorithm permits the incorporation of the available knowl-
edge, that is to say, feature subsets provided by an expert or another feature
selection algorithm, in the initial population. The remainder of that popula-
tion is randomly generated.

2. Fitness function. To increase the speed of the feature selection stage, the es-
timation of the attainable precision is calculated by the £-NN rule. This test
precision estimation is obtained by the training random resampling tech-
nique for wrapper feature selection algorithms [36]. It uses five training-test
partitions obtained from the original training set, and calculates the adapta-
tion measure with the arithmetic mean of the five test correct classification
results. In this way, we can estimate the generalisation capability of a feature
subset without using the test set employed to validate the finally obtained
feature subset.

3. Reproduction scheme. The proposed GA uses a variant of the steady-state
reproduction scheme that does not substitute one or two chromosomes
from the population in each generation, but a fixed and larger number
of them. We propose a reproduction scheme that has the following
steps:

e To generate an intermediate population by means of linear ranking and
the universal stochastical sampling [2].

e To apply the crossover and mutation operators to some individuals
from this intermediate population. The number of chromosomes to
be created will be determined by the crossover and mutation probabil-
ities.

e To substitute the worst adapted chromosomes from the original popula-
tion by the new ones so created.

The generation of more than two new chromosomes allows to have more di-

versity in the new population than the pure steady-state reproduction scheme.

Nevertheless, it maintains the steady-state characteristics because the new
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population only differs from the previous one on these generated chromo-
somes, which substitute the worst adapted ones.
4. Crossover operator. We propose two different crossover operators that allow
us to consider two GAs that only differ in this operator:
e The first one is the partially complementary crossover operator [42]. (The
associated GA is identified by SSGA_I).

This operator exploits the search space in the following way: given two
chromosomes from the population, P(t), C!=(ci,...,cy) and C! =
(cy,...,c),), it generates two descendants H; and H, with the genes common
to both parents and the rest selected randomly among the remaining genes of
the parents:

Hy = (d\,... dg, s, - b,
Hy = (d\,....dH.,,....}H,),

where d,...,d, are the common genes to the two chromosomes selected
to be crossed, and /fyyy,..., -y, and &, ... A, are genes randomly se-
lected among the remainder.

In this way, the descendants maintain the parents’ common variables
and randomly combine the remaining information. They are valid solu-
tions and do not need any repairing algorithm.

e The second one is the two-point crossover with repair operator. (The asso-
ciated GA is identified by SSGA_II).

An analysis of the SSGA_I lets us note that it can evolve to a pop-
ulation without enough diversity. To solve this problem, we propose the
second algorithm, SSGA_II, based on the use of the two-point crossover
operator with repair, which not only exploits the information given by the
parents but also introduces diversity in the descendants. This operator
works as follows: for a pair of chromosomes selected to be crossed, it
randomly determines two cross points and interchanges the genes between
them. This process can generate non-valid individuals because of the
variable repetition. To solve this problem, whenever needed, it executes a
repairing algorithm which substitutes each repeated gene (in a non-valid
chromosome) with a non-selected variable.

This two-point crossover operator has the usual inheritance and refine-
ment properties of the crossover operators and also — when the descendants
have repeated variables — the exploration property which is very suitable in
this evolutionary process.

5. Mutation operator. With regard to the mutation operator, the uniform mu-
tation is used, which arbitrarily modifies one or more genes from an individ-
ual, removing the corresponding variable, and substituting it for another
one which is not present in the chromosome, thus introducing diversity
among the population.
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6. Experimentation and result analysis

To describe the behaviour of the feature selection proposals in the multi-
stage learning process and regardless of it, we will organise the experimentation
with Sonar data base in the following way:

1. Firstly, we will show the results obtained by means of the complete multi-
stage learning process.

2. Then, we will describe the performance of the FRBCSs designed by the gen-
eration, multiselection and tuning processes with other feature selection
methods.

3. Finally, to analyse the capability of the feature selection processes regardless
of the multistage genetic learning method, we will show the results obtained
using another learning algorithm starting with the feature subsets selected
by our genetic feature selection processes.

6.1. Results obtained using the complete learning process

As said, the feature selection process selects variable subsets with a
previously determined fixed cardinality computed by executing a filter fea-
ture selection algorithm that searches for an optimal and minimum feature
set, LVF [39-41]. This algorithm provided us a proper feature set size, 15
variables.

In [5], the use of 6 and 12 variables is considered. We also consider 3
variables to get a more descriptive FRBCS. In this form, we use four feature set
sizes (3, 6, 12 and 15), which reduce the fuzzy rule search space for the fuzzy
rule generation, selection and tuning processes by a 95%, 90%, 80% and 75%,
respectively.

According to the previously exposed multistage learning process, we exe-
cute the feature selection algorithms SSGA_I and SSGA_II with these dif-
ferent sizes. We build FRBCSs with the generation process — starting with the
feature subsets obtained before — and analyse the results to determine the two
variable subsets (and consequently two KBs) and FRMs with the best per-
formance for each cardinality. In this way, and efficiently due to the iterative
nature of the generation process, we significantly reduce the problem di-
mensionality by limiting the fuzzy rule and FRM space to be considered in
following stages.

Finally, we execute the multiselection and tuning processes to get FRBCSs
that reach the results showed in Table 2. In this table, the first column indicates
the feature selection algorithm; the second, the feature subset cardinality; the
third, the FRM selected for the FRBCS; and the last three columns stand for
the number of rules and correct classification results with training and test
examples. The parameters of the complete learning process are described in
Table 3.
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Table 2
Results for an FRBCS built using 3, 6, 12 and 15 features
Algorithm NF FRM NR Tra. Test
SSGA_1 3 Arithmetic mean 47 82.69 82.69
SSGA_II 3 Normalised sum 23 78.85 83.65
SSGA_I 6 OWA (a=0,b=0.3) 55 94.23 89.42
SSGA_II 6 Arithmetic mean + weighting 58 93.27 90.38
SSGA_I 12 SOWA or-like 183 92.31 94.23
SSGA_II 12 OWA (a=0,b=0.5) 45 91.35 90.38
SSGA_I 15 Classical 125 96.15 94.23
SSGA_II 15 OWA(a =0, b = 0.5) + weighting 94 99.04 92.31
Table 3
Genetic multistage learning process parameters
Stage Parameter Value
Feature selection Chromosomes 61
Generations 500
Crossover probability 0.4
Mutation probability 0.1
Neighbours (K in £-NN rule) 1
Generation Linguistic labels per variable 3
Covering degree for positive examples () 0.05
Percentage of negative examples 0.1
(k-consistency)
Maximum covering degree (€) 1.5
Multiselection Minimum covering degree for the KB 0.1
(t-completeness)
o (sequential niche technique) 0.5
Niche radius (sequential niche technique) 0.025
Solutions to generate 3
Multiselection and tuning Linguistic labels per variable 3
Chromosomes 61
Generations 500
Crossover probability 0.6
Mutation probability 0.1

If we compare these results with the best test classification percentage
obtained using the complete feature set in Table 1 (76.92% with 331 fuzzy
rules and the FRM SOWA OR-Like), we can point out that, with the
complete learning process we have increased the correct test classification
percentages more than a 15%, and we have overcome the overfitting
and efficiency problems, obtaining a simpler and more interpretable
FRBCS.
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Table 4

Results for an FRBCS built using feature subsets provided by MIFS and LVF algorithms
Algorithm NF FRM NR Tra. Test
MIFS 3 Quasiarithmetic mean (p = 20) 9 69.23 78.85
MIFS 6 Normalised sum + weighting 27 77.88 76.92
MIFS 12 Classical 10 74.04 79.81
LVF 15 Normalised sum + weighting 218 98.07 81.73

6.2. Results obtained using other feature selection algorithms

To observe the behaviour of the generation, multiselection and tuning
processes with other feature selection algorithms, we have executed these
processes with different feature subsets composed of
e 15 variables provided by the LVF algorithm, and
e 3, 6and 12 variables, selected by a filter greedy algorithm (MIFS) based on a

forward selection search using the mutual information measure, developed

by Battiti [5] (and described in Appendix B).

The best results are shown in Table 4.

The selection of a feature subset with the SSGA_I and SSGA_II feature
selection processes leads to better results in the FRBCS multistage learning
process although they do not use the attainable precision estimation employed
in the learning process (but the £&-NN rule). We can see this in Table 4, where
the correct test classification percentages are worse than the results obtained
using the feature selection algorithms SSGA_I and SSGA_II (Table 2).

We must point out that the use of class separability measures like mutual
information in the feature selection process may lead to feature subsets from
which simpler FRBCSs can be built. The LVF algorithm, which is based on the
inconsistency rate, obtains feature subsets from which we can design a more
accurate FRBCS but with a greater set of fuzzy rules.

6.3. Results obtained using another learning algorithm

The feature selection stage that we have proposed can be used as a pre-
processing stage in other learning algorithms. In this subsection, we show the
results obtained by the extension for classification problems of the Wang and
Mendel’s fuzzy rule generation process [9,54] (described in Appendix C). In
Table 5, we can see the best results without feature selection stage — that is,
considering the 60 features — and with feature subsets of 3, 6, 12 and 15
variables selected with the SSGA_I and SSGA_II algorithms.

The use of SSGA_I and SSGA_II algorithms allows to obtain, using the
Wang and Mendel learning method, an FRBCS with a fewer number of fuzzy
rules than the FRBCS built with the complete set of features, and with a
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Table 5
Results for a Wang and Mendel FRBCS built using feature subsets provided by SSGA_I and
SSGA_II algorithms

Algorithm NF FRM NR Tra. Test
None 60 Arithmetic mean + weighting 104 97.11 77.88
SSGA_I 3 Arithmetic mean 38 72.11 79.81
SSGA_II 3 Normalised sum 18 67.31 81.73
SSGA_I 6 OWA (a=0,b=0.5) 66 75.00 82.69
SSGA_II 6 Badd (p = 10) 87 91.35 82.69
SSGA_I 12 OWA (a =0, 98 81.73 87.50
b = 0.3) + weighting
SSGA_II 12 SOWA or-like (o = 0.3) 93 86.54 85.78
SSGA_I 15 OWA (a =0, 99 90.38 89.42
b = 0.3) + weighting
SSGA_II 15 Arithmetic mean + weighting 100 93.27 87.50

greater prediction capability. This allows us to show that the selection ability of
the feature selection processes does not depend on the learning process al-
though they have wrapper nature. They can be used in combination with other
learning algorithms.

7. Conclusions

Usually, the following problems must be individually or jointly solved in the
FRBCS design:

e The selection of the most relevant features for the considered classification
problem.

e The fuzzy partition definitions for the linguistic variables.

e The generation of an RB that represents the sample information and verifies
two desired properties in any RB, the completeness and consistency.

e The generation of an RB with a good co-operation level among the fuzzy
rules with respect to the FRM used in the classification stage.

By way of conclusions, we can stress that the extended multistage genetic
learning process of FRBCSs considers the said problems in different stages
obtaining an FRBCS with the following characteristics:

e with a linguistic nature,

with a good generalisation level,

using only the most informative features for the classification problem,
with an RB which verifies the completeness and k-consistency properties,
with fuzzy rules with a suitable co-operation level depending on the FRM,
and

e with an optimised definitions of the fuzzy sets.
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The extended multistage genetic learning process deals with the high-di-
mensionality problem, from a double point of view, getting a small number of
features, and getting compact rule sets with an appropriate co-operation level
via genetic selection integrating inference methods.

The inclusion of a feature selection stage in the multistage genetic learning
process effectively and efficiently reduces the complexity of the FRBCS design
process due to the reduction of the fuzzy rule space before the post-processing
stages. The combination of the feature selection process with the fuzzy rule
generation and the FRM selection processes allows to determine a set of
variables which consider some characteristics of the fuzzy rules, the learning
method and the FRM used. The use of the attainable precision estimation
provided by the k-NN rule makes more efficient the wrapper feature selection
process.

The proposals for the feature selection stage can be used with other learning
algorithms to obtain a feature subset that allows to the increase of the classi-
fication system accuracy, simplicity and linguistic description, and to the re-
duction of the learning efforts.
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Appendix A. Las Vegas filter feature selection algorithm

In [39-41], Liu and Setiono describe the algorithm LVF. It is a feature se-
lection algorithm based on Las Vegas probabilistic search [7] that minimises
the inconsistency rate introduced by the candidate feature subset to obtain a
feature subset with a high-discrimination capacity.

The algorithm starts with a random feature subset. If it has a number of
features smaller than the best feature subset found (the complete feature set at
the beginning), the process calculates if the inconsistency criterion is achieved.
In that case, the best feature subset is updated. The process continues during a
number of iterations depending on the total feature number of the problem.

The inconsistency rate of a feature subset is calculated as follows:

1. To calculate the inconsistent instances, considering that two problem in-
stances are inconsistent if they have the same values in the selected features
and they belong to different classes. We must note that it is necessary to dis-
cretise continuous features by assigning intervals.

2. To obtain the inconsistency count for each different set of values for the fea-
ture subset, as the number of inconsistent instances minus the number of in-
consistent instances which has maximum value among the classes.
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3. To calculate the inconsistency rate as the sum of inconsistency counts di-
vided by the total number of problem instances.
The discriminating power is reversibly proportional to the inconsistency
rate. This is the reason why the inconsistency criterion is the main aspect of the
algorithm: it specifies when a dimensionality reduction is acceptable.

Appendix B. Greedy filter feature selection algorithm

In [5], Battiti describes a filter feature selection algorithm called MIFS
(Mutual Information based Feature Selection) based on a forward greedy
search using the mutual information measure [51] with regard to the class. This
algorithm selects the most informative feature about the class which cannot be
predicted with the already selected features.

The algorithm starts with an empty feature subset and chooses the next
feature as the one that maximises the information about the class with a
penalisation corresponding to a quantity proportional to the average mutual
information about the class without being predictable from the current feature
subset. That is to say, in order to be selected, a feature must be informative
about the class without being predictable from the already selected features.
The process works in this way until the cardinality of the feature subset reaches
a fixed value.

Appendix C. Wang and Mendel’s generating method

The extension of Wang and Mendel’s fuzzy rule generation algorithm [54] to
classification problems [9] begin with a set of input—output data pairs (the
training data set) with the following structure:

E'=(el,... e\, C"),
E*=(e},...,e5,C?),

B = (..., &, CP),

where C" is the class label for the pattern E”.

Its objective is to generate a set of fuzzy rules from the training data set that
describes the relationship between the system variables and determines a
mapping D between the feature space SV and the class set C = {Cy,...,Cy}.

The method consists of the following steps:

o Fuzzifying the feature space. Finding the domain intervals of the features and
partition each domain into X; regions (i = 1,..., N). A membership function
is adopted for each fuzzy region. In our experiments we use membership
functions with triangular shapes.
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o Generating fuzzy rules from given data pairs. For each training data
E"=(el,... €k, C"), we have
o To determine the membership degrees of e/ in different input fuzzy sub-

sets.

To assign the input ¢/, ..., €% to the region with the maximum member-
ship degree.

To produce a fuzzy rule from E", with the if-part that represents the se-
lected fuzzy region and the consequent with the class determined by C”
and a certainty degree r*. This numerical value is calculated by this ex-
pression MDS/MDS),, where M DS is the sum of membership degrees for
every example to the fuzzy region determined by the antecedent part,
and MDS;, is the same sum but only for the examples of class Cj.

We must note this method does not repeat the fuzzy rules.
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