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Abstract— A fuzzy classifier based on the fuzzy c-means
(FCM) clustering has shown a decisive generalization ability in
classification. The FCM classifier uses covariance structures to
represent flexible shapes of clusters. Despite its effectiveness, the
intense computation of covariance matrices is an impediment
for classifying a set of high-dimensional data. This paper
proposes a way of directly handling high-dimensional data in
the FCM clustering and classification. The proposed classifier
without any preprocessing outperforms the k-nearest neighbor
(k-NN) classifier with PCA on the benchmark set of COREL
image collection.

I. INTRODUCTION

HIS paper proposes a way of directly handling high-

dimensional data set in the fuzzy c-means (FCM)
clustering [1] by which covariance structures of the clusters
are taken into account. The FCM clustering is applied to a
classifier design and the particle swarm optimization (PSO)
[2], [3] is introduced for parameter optimization.

The Gaussian mixture models (GMM) or normal mixture
[4] can be seen as a clustering method, though it is a method
of representing a data distribution by a weighted sum of
the density functions of normal populations. The classifier
based on the GMM clustering is called a neural network
[5] or the Gaussian mixture classifier (GMC). The classifier
based on the FCM clustering is called the fuzzy c-means
classifier (FCMC) [6], [7], [8]. For the detail derivation
of the algorithm and the classification performance, see
[91(WCCT 08).

In the FCMC, the standard FCM clustering objective func-
tion [1] is slightly generalized and the iteratively reweighted
least square (IRLS) technique [10] is applied [11]. Cluster
memberships are defined by a function of Mahalanobis
distances between data vectors and cluster centers.

We adopt a post-supervised design, in which the unsuper-
vised clustering is done on a per class basis in the first phase
of FCMC. It is implemented by using the data from one
class at a time. When working with the data class by class,
the prototypes that are found for each labeled class already
have the assigned physical labels. The sum of the cluster
membership functions plays the role of the discriminant
function for classification.

High performance classifiers usually have parameters to
be selected. For example, the support vector machine (SVM)
[12], [13] has the margin and kernel parameters. These pa-
rameter values are selected by some optimization procedures
to improve the generalization ability.

For the parameter optimization of our classifier, we apply
the PSO algorithm in the second phase of FCMC. PSO is
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an evolutionary algorithm and is easy-to-implement. PSO is
a population based stochastic optimization technique devel-
oped by Eberhart and Kennedy, inspired by social behavior of
bird flocking or fish schooling. PSO shares many similarities
with evolutionary computation techniques such as the genetic
algorithms (GA). The system is initialized with a population
of random solutions and searches for optima by updating
generations. However, unlike GA, PSO has no evolution
operators such as crossover and mutation. In the past several
years, PSO has been successfully applied in many research
and application areas.

FCMC uses covariance structures to represent flexible
shapes of clusters. Despite its effectiveness in the accuracy
of classification [8], the intense computation of covariance
matrices and their eigenvalue decomposition is an impedi-
ment for classifying a set of high-dimensional data. Instead
of covariance matrices, we utilize matrices in terms of
inner products of data vectors. The FCM clustering and
classification based on Mahalanobis distances are carried out
from the inner product matrices. The proposed approach can
handle high-dimensional data without any preprocessing for
feature extraction. Let the number of data vectors be /N and
the number of their dimensions be p, then the computation
of an inner product matrix is O(N?2p), whereas that of a
covariance matrix is O(Np?). Let X be an N x p matrix of
mean corrected row vectors (i.e., the set of centered data).
Then X T X/N is the covariance matrix, which is used in
FCMC. XX is the matrix in terms of inner product. The
proposed classifier is the dual of the FCMC and produces the
same clustering and classification results with that of FCMC.
If the dimensionality of features is larger than the number of
samples, it is more efficient than FCMC.

The paper is organized as follows. Section II gives a
brief description of the generalized FCM clustering and the
classifier design based on the FCM clustering. Parameter
optimization with PSO is proposed. An FCM clustering by
using matrices in terms of inner products instead of covari-
ance matrices is detailed in Section III. Section IV provides
the results of numerical experiments. The subset of COREL
image database of James Wang (http://wang.ist.psu.edu/
docs/related/) [14], [15] is used for performance evaluation.
The subset consists of 1,000 pictures, each of which is a
300,000 dimensional datum. Section V concludes the paper.

II. FCM CLASSIFIER

In this section, we summarize the two phases of FCMC.
See [9](WCCI’08) for more detail. The first phase is the
unsupervised clustering.

Squared Mahalanobis distance from x; € RP to v; € RP
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is written as:
D(z,vi; S;) = (w5 —v;) ' S; @k — vi) (D

where S; is a covariance matrix of vectors x; in the ¢-th
cluster.
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We minimize the IRLS-FCM objective function:
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where the adaptive weight w(dg;) is replaced by the mem-
bership function as w(dy;) = ug,;. Covariance matrix S; in
(2) and cluster center v; can be derived by differentiating (5)
with respect to .S; and v; respectively.

The weight w should be recomputed after each iteration
in order to be used in the next iteration. In the robust
M-estimation [10], [16], the function w(dy;) provides an
adaptive weight. The influence from x is decreased when
|z — v;| is very large and suppressed when it is infinitely
large. While IRLS approach in general does not guarantee
the convergence to a global minimum, experimental results
have shown reasonable convergence points.

To facilitate competitive movements of cluster centers, we
need to define the weight function normalized as:

Ui = ki ©)
P Ui,
u* is defined as:
1
. ;] S|
i ot ™

(D(xk,v455¢)/0.1 + 1/)# '
ug; of (6) can be rewritten as:
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u* is a modified and parameterized multivariational version

of Cauchy’s weight function in the M-estimator or of the
probability density function (PDF) of Cauchy distribution.

In the post-supervised classifier design, the clustering is
implemented by using the data from one class at a time. The
prototypes (cluster centers) that are found for each labeled
class already have the assigned physical labels.
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After completing the clustering for all classes, the classi-
fication is performed by computing class memberships. Let
m, denote the mixing proportion of class g, i.e., the a priori
probability of class g. The class membership of k-th data xj,
to class ¢ is computed as:

Wi = g Sqi|™ ©)
o (Dq(xk, v555;)/0.1 +v)m
T > o uk,
ﬁqk 42]71 qjk (10)

Z?:l Ts Z;:1 UGk
where ¢ denotes the number of clusters of each class and
Q@ denotes the number of classes. The denominator in (10)
can be disregarded when applied solely for classification.
Whereas (8) is referred to as a classification function for
clustering, (10) is a discriminant function for pattern clas-
sification. The FCM classifier performs somewhat better
than alternative approaches [8], [9] and requires comparable
computation time with GMC because the functional structure
of FCM is similar to that of GMM.

The modification of covariance matrices in the mixture
of probabilistic principal component analysis (MPCA) [17]
or the character recognition [18] is applied to the FCM
classifier. P; is a p x p matrix of eigenvectors of S;. p
equals the dimensionality of input samples. Let S, denote
an approximation of S; in (2). P/ is a p X r matrix
of eigenvectors corresponding to the r largest eigenvalues,
where r < p —1 for the approximation of .S;. A7 is an r xr
diagonal matrix of §;;, I = 1,...,r, i.e., the square root of
the eigenvalues.

S; = Pl ((A)? =0l 1) P T + Py(0} 1) Py an
Inverse of S, becomes

St = PIAD T o )P 0L, (1)

crf = (trace(S;) — ledizl)/(p — 7). (13)

When =0, S} is reduced to a unit matrix and D(zy, vs; S;)
in (1) is reduced to Euclidean distance.

The FCM classifier has several parameters, whose best
values are not known in advance, consequently some kinds
of model selection (parameter search) must be done. The goal
is to identify good values so that the classifier can accurately
predict unseen data (i.e., testing/checking data). Because it
may not be useful to achieve high training accuracy (i.e.,
accuracy on training data whose class labels are known), a
common way is to separate training data to two parts of
which one is considered unknown in training the classifier.
The prediction accuracy on this set can then more precisely
reflect the performance on classifying unknown data.

In our proposed approach, parameters m,v and v of the
membership function are optimized in the post-supervised
classification phase by using PSO. In PSO, the potential
solutions are called particles. The particles fly through the
problem space by following the current optimum particles.
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Each particle keeps track of its coordinates in the problem
space which are associated with the best solution it has
achieved so far. The solution is evaluated by the fitness value,
which is also stored. This value is called “pbest”. Another
“best” value that is tracked by the particle swarm optimizer is
the best value, obtained so far by any particle in the swarm.
The best value is a global best and is called “gbest”. The
search for the better positions follows the rule as:

Para'™ = Para' 4+ Velo'™? (14)

Velo™ = wy Velo' + ¢, Rand, (pbest — Paral)
+ ¢z Rands (gbest — Parat), (15)

where Para is the parameter vector (e.g., m, vy, v of FCMC)
to be optimized and Velo is the vector of their velocity. It
should be noted that Rand is a diagonal matrix of random
numbers chosen from the unit interval [0, 1]. wp,c; and
co are scalar constants. pbest and gbest are the vectors of
positions of pbest and gbest respectively. The rule by (15)
is the standard PSO, though written in vector-matrix form.
The best setting of the parameters (i.e., m, 7, v) is picked to
minimize the error rate on test sets.

III. FCM CLASSIFIER FOR HIGH-DIMENSIONAL DATA

In order to alleviate the intense computation of covariance
matrices and their eigenvalue decomposition, we utilize ma-
trices in terms of inner products of data vectors. The FCM
clustering by using the matrices is detailed in this section.
The fuzzy covariance matrix for the ¢-th cluster is written as:

1
S, = X M; X;
(€7
= (Nap) PMZEX,)T((Neay) MZEX,), (16)
where X; = (1 — v, oy — v;)! and M; =

diag(u1, ..., un) is the diagonal matrix whose diagonal el-
ements are (uq, ..., Un).

Eigenvalue decomposition of \S; is written as:

S;i = PAIPT, (17

where P = (pi1, ..., pir) is @ p X r matrix and pj1, ..., pir €

RP are the eigenvectors or PCA basis vectors associated

with the positive eigenvalues (6%, ...,62.) of S;. Vectors

«y O4p

are normalized as p)py = 1. A? =diag(63, ..., 62.) is the

o Yir

diagonal matrix of the eigenvalues. Through singular value
decomposition

(Now) PMZX, = F,APIT, (18)
we have
X;PrATY = (Noy) M, 2 P, (19)

where F; is an N X r matrix.
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If S; is invertible and rank(S;) = r = p, Mahalanobis
distance between xz; and v; is written from (19) as:

D(xy,vi; S;) (zr —vi) TS (g — vi)
(e — o) T PIAT2 P (2 — i)
= ((zr—v) " PIATY
*((xx —vi) " PFATH)T
= Noasug fiifri
where F; = (fi1, ..., fin) -
We define N x N matrix K; to obtain F; and A; as:

(20)

1 T,
K; = (New) *M? X, X;' M. 1)

Let Xo = (z1,...,#xn) | be a data matrix, then
X; = (In — 1nu; ') Xo, (22

where I is a unit matrix of dimension IN. 1 is the vector
of dimension N x 1 with all entries equal to 1.

N N
u; = (uzl/zukl,vull\//zukl)—r
k=1 k=1

X;X;" can be written as:

(23)

XX = (Iy —13% )Xo X, (In —T1Y)
= XoX, — XoX, w1k
—15T; | Xo X,

+1nT  Xo X, Tily. (24)

By using (18), K is rewritten as:

Ki = ((Now) ¥M7X)((Nay) 3 MZX,)T
(AP T)(PTAGET)
F;AZFT.

(25)

So, F; and A; are obtained from eigenvalue decomposition
of K;. If rank(S;) = r = p, the value of |S;| required for
updating u; is:
p
|Si| = [P7N|AF| T = (A7 = [] o7 (26)
1=1
When the dimensionality is high, the distance by (1) is
very large and becomes really difficult to compute. The prob-
lem is known as the curse of dimensionality. One measure
taken to reduce the dimensionality is to use small number
of PCA basis vectors. When the number of samples is small
and p is large, S; often becomes singular and noninvertible.

We again use the approximation method of S; in [17], [18].
We pick r’ such that 7/ < r < p then we can write

S{=P'((AT)? — o?L)PI'T + Pl (021,)P]T,  (27)

though we do not calculate S; explicitly since p is large.
I,/ is a unit matrix of dimension r’. (Al')? is a diagonal
matrix whose diagonal elements (61?[) are the 1’ largest
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. /. . .
eigenvalues of K;, P is a matrix of p x r’ consisted of
the ' eigenvectors.
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where fi; = (fik1s o fikr) T+ (w6 — v;) T (z — v;) is the
k-th diagonal element of X;X,".

”
si ~ ([T o2yt (30)
=1

It should be noted that r need not be precisely equal to
the number of positive eigenvalues. It should be smaller than
that so that the determinants |S;| are all positive. Since small
positive eigenvalues can be disregarded, r is relatively small.
When r—r' is small such as 20 or 40, the classifier’s accuracy
is usually better than that with larger ones.

The algorithm has the following steps.
Algorithm FCMCH: FCMC for High-dimensional Data

stepl. Partition the dataset of each class into two clusters
by PCA scores, i.e., one for positive scores and the
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other for negative ones. Let v; be the mean of the
i-th cluster. Let the lower limit of m* be LL and
the upper limit be UL. Let m* = LL. Divide the
dataset into two folds, i.e., the training set and test
set.

step2. Partition the training set by FCM with m =
m*,v = v = 1. Clustering is on a per class basis.
All S; and v; are then fixed.

step3. Search for the best m, v, and v by PSO, which
minimize the classification error rate on the test set.

stepd. m* := m* + A (A: step size). If m* > UL then
terminate, else go to step2.

From (18), we have
(Now) ¥ XT MZF,A72 = PIATY G1)

Let X)VEW be the matrix of non-centered test data. By
multiplying centered test set X;¥®W from the left to both
sides of (31), we have
1

(Ney) 2 XNPW XT M2 A2
(Nay) "= (XWX

T T\rr2 2
+ XX, — XXy )M?FEA],

(32)

XiJVEWPi’r‘Ai—l _

which corresponds to the left side of (19). From (3),

INM;X; = 0], (33)

where 0, is a zero vector of dimension p. By multiplying
1;]%1- to (19) from the left, we have

1LMPF, =07, (34)

where 0,. is a zero vector of dimension 7.
And, for all I € {1, ..., N}
(o0 — 0)TXT —ah X]
(2 — vi)TXiT + xlTXOT
= (ow—2)" X = (aw —2) " Xg
= (zw—a) " (Xi— Xo)"
= —(ep—a)’

vl (35)

By multiplying M? F; to both sides of (35) from the right,
and by multiplying XNEW to both sides of (31) from the
left, we have (32).

Namely, when xj is given, we have for all [ € {1, ..., N},

(xpr — vi)TPfA;l = (nai)_%(yﬂkT,XoT
1
+a —v) "X, — 2] X )MPFA?, (36)
where (x5 — v;) is the k-th row of XNPW. By using (24),
(36) can be computed from the matrix in terms of inner
product without computing v; explicitly.
In (29), to compute D(z},v;;S5;), we need Euclidian

distance between the new data xjp. and the cluster center
v;. Since

TR — v = T — X s, 37
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the squared distance can be written as:

Hl’kr - UL'HQ = x;xk/ — QU_iTXol'kr
+ W XoX, W (38)
We have so far explained the procedure when the classifier
is trained by the algorithm FCMCH. After the training is
completed, we use the trained classifier for unknown new
data. Since we can compute v; from (3), P/ is obtained
from F;, A; and the data matrix X; as:
r’ -1 T 3 -1
P = (Na;) 2 X, M?F;A;. 39)
Therefore we can easily compute the Mahalanobis distances
by the second row of (20).

IV. NUMERICAL EXPERIMENT

Automatic linguistic indexing of pictures is important to
content-based image retrieval and computer object recogni-
tion. It can potentially be applied to many areas, including
biomedicine, commerce, the military, education, digital li-
braries, and Web searching.

We used the subset of COREL image database (http://
wang.ist.psu.edu/ docs/related/), which was used by James
Wang for tests of his SIMPLIcity System [14] and the
statistical modeling approach to automatic linguistic indexing
of pictures [15].

Li and Wang [15] trained their system for automatic
linguistic indexing of pictures. Instead of annotating the
images, the program was used to select the category with
the highest likelihood for each test image. That is, they used
the classification power of the system as an indication of the
annotation accuracy. An image is considered to be annotated
correctly if the computer predicts the true category the image
belongs to. Although these image categories do not share
annotation words, they may be semantically related.

Figs. 1-4 show the examples of the subset images, which
is classified into ten categories such as beach and flowers,
each of which consists of 100 pictures. Total number of
pictures is 1,000 and each image has 256 x 384 x 3 ~300,000
dimensions. The problem is to correctly classify these images
into the 10 categories shown in Table I. We compared the
classification performance of FCMCH to that of the k-NN
classifier with a preprocessing of PCA. The 1,000 images are
divided into two sets, i.e., the training set (667) and the test
set (333). The images from each class are evenly included
in the training set and the test set.

As shown in Table II, the number of clusters (c) is two for
each class. r and " are chosen by trial and error. Parameters
for PSO are also chosen by trial and error, and are shown in
Table III. The optimization performance is not so sensitive to
these parameters. See [19](WCCI’08), for the comparison in
the application of FCMCH to a fMRI study. Table IV shows
the parameter values, which minimizes the classification error
rate on the test set. For a system which classifies randomly,
the average error rate is 90% for the 10-class problem, though
the rate by FCMCH is 22.22%.
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TABLE 1
CLASSES OF COREL IMAGES

ID class

1 African people and village
2 Beach

3 Building

4 Buses

5 Dinosaurs

6 Elephants

7 Flowers

8 Horses

9 Mountains and glaciers
10 Food

24jog 2.jng 28.Jng 2o 23 2pg Dipz dipz

Fig. 1. African people and village

We compared FCMCH to k-NN. The nearest neighbor
classifier does not abstract the data, but rather uses all
training data to label unseen data objects with the same label
as the nearest object in the training set. The nearest neighbor
classifier easily overfits to the training data. Accordingly, in-
stead of 1-nearest neighbor, generally k£ nearest neighboring
data objects are considered in the k-NN classifier. The class
label of unseen objects is then established by a majority
vote. For the parameter of k-NN (i.e.,k), we tested all integer
values from 1 to 50. The lowest error rate is 0.4685 when
k=6. Table V shows the result by k-NN in which we used
PCA as the preprocessing of classification. The lowest error
rate is 0.3724 when the number of PC basis vectors is 10
and k£ =5. The error rate of FCMCH is about 10% smaller
than that of k-NN. The per class classification error rate by
FCMCH is shown in Fig. 5.

Classification accuracy on the same subset of COREL
image database by Li and Wang’s approach is 0.636 (Table 3
in [15]), so the error rate is 0.364. The error rate by FCMCH
is smaller than that of their approach, though the basis of
comparison is not completely the same.

V. CONCLUSION

We have proposed a fuzzy classifier for high dimensional
data, which is based on the FCM clustering and parameter
optimization by PSO. The use of inner product matrices
alleviates the intense computation of covariance matrices and
their eigenvalue decompositions. The proposed FCMCH sur-
passed the k-NN classifier with PCA preprocessing, though
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Fig. 3. Flowers

FCMCH also uses PCA basis vectors to approximate covari-
ance matrices.
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TABLE III
PARAMETER VALUES OF PSO

number of particles 10
number of iterations | 50

wo 0.9

c1 0.4

Cc2 0.4
TABLE IV

PARAMETER VALUES CHOSEN BY PSO AND ERROR RATE

[ classification error rate |
0.7 |

[ m [ 7 | v
(02667 | 14.3252 | 1738158 |
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TABLE V
CLASSIFICATION ERROR RATES OF k-NN WITH PCA PREPROCESSING

number of PC vectors k error rate
500 1 0.7538
50 5 0.4565
20 1 0.4144
12 13 0.3964
11 21 0.3784
10 5 0.3724
9 11 04114
6 31 0.4324
5 13 0.4144
4 12 0.4414
1 30 0.6426

S o o o o o
I I Y = e |

classification error rate

=

1 2 3 4 5 6 7 8 910
class number

Fig. 5. Per class error rate by FCMCH on the subset of COREL image
database
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