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Abstract. Genetic fuzzy rule selection is an effective approach to the design of accurate and in-
terpretable fuzzy rule-based classifiers. It tries to minimize the complexity of fuzzy rule-based 
classifiers while maximizing their accuracy by selecting only a small number of fuzzy rules 
from a large number of candidate rules. One important issue in genetic fuzzy rule selection is 
the prescreening of candidate rules. If we use too many candidate rules, a large computation 
load is required to search for good rule sets. On the other hand, good rule sets will not be found 
when promising fuzzy rules are not included in the candidate rule set. It is essential for the suc-
cess of genetic fuzzy rule selection to use a tractable number of promising fuzzy rules as candi-
date rules. In this paper, we propose an idea of using Pareto-optimal and near Pareto-optimal 
fuzzy rules as candidate rules in genetic fuzzy rule selection. Pareto-optimality is defined by 
two well-known data mining criteria: support and confidence. To extract not only Pareto-
optimal but also near Pareto-optimal fuzzy rules, we modify Pareto dominance using a domi-
nance margin ε . Through computational experiments, we examine the effect of the proposed 
idea on multiobjective genetic fuzzy rule selection. 

1   Introduction 

The main advantage of fuzzy rule-based systems over other nonlinear systems such as 
neural networks is their linguistic interpretability [2], [3], [12]. Human users can un-
derstand fuzzy rule-based systems through linguistic interpretation of fuzzy rules. In 
this sense, fuzzy rule-based systems are viewed as transparent models (i.e., white-box 
models) while other nonlinear systems are usually black-box models. In addition to 
the linguistic interpretability of each fuzzy rule, various aspects are related to the in-
terpretability of fuzzy rule-based systems (e.g., the number of fuzzy rules and the 
number of antecedent conditions of each fuzzy rule). Genetic fuzzy rule selection was 
proposed in [13] for the design of accurate and interpretable fuzzy rule-based classifi-
ers by minimizing the number of fuzzy rules while maximizing their accuracy. A 
small number of fuzzy rules were selected from a large number of candidate rules to 
construct an accurate and interpretable fuzzy rule-based classifier. A standard single-
objective genetic algorithm (SOGA) was used to optimize a weighted sum fitness 
function defined by an accuracy measure and a complexity measure. Genetic fuzzy 
rule selection was generalized to two-objective rule selection in [10] where a multiob-
jective genetic algorithm (MOGA) was used to search for non-dominated fuzzy rule 
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sets (i.e., non-dominated fuzzy rule-based classifiers) with respect to the accuracy and 
complexity measures. It was further generalized to three-objective rule selection in 
[11] by introducing the total number of antecedent conditions as an additional com-
plexity measure. Currently multiobjective design of fuzzy rule-based systems is an ac-
tive research area in the field of fuzzy systems [9], [14], [19], [20]. 

In the field of data mining, MOGAs were used to search for non-dominated rules 
with respect to well-known rule evaluation criteria: support and confidence. Such an 
MOGA-based data mining approach was first proposed in [5]. Recently a similar ap-
proach was used for multiobjective genetic fuzzy data mining [15]. 

One important issue in genetic fuzzy rule selection is the prescreening of candidate 
rules. Let N be the number of candidate rules. Any subset of the N candidate rules is 
represented by a binary string of length N. Thus the size of the search space is 2N. 
When we have too many candidate rules (i.e., when N is too large), it is very difficult 
to efficiently search for good rule sets. A large computation load is required to find 
good rule sets in the search space of size 2N. On the other hand, genetic fuzzy rule se-
lection is not likely to find good rule sets when N is too small. In the application of 
genetic fuzzy rule selection to low-dimensional pattern classification problems with 
only a few attributes, we can examine all combinations of antecedent fuzzy sets to 
generate fuzzy rules. All the generated fuzzy rules can be used as candidate rules in 
genetic fuzzy rule selection. It is, however, impractical to use all the generated fuzzy 
rules as candidate rules for high-dimensional pattern classification problems with 
many attributes because the total number of possible fuzzy rules exponentially  
increases with the number of attributes. Thus we need a heuristic rule evaluation crite-
rion for the prescreening of candidate rules in genetic fuzzy rule selection in its appli-
cation to high-dimensional pattern classification problems [14]. Whereas various rule 
evaluation criteria such as confidence, support and their combinations are applicable, 
it is not easy to choose a single criterion because their effectiveness is problem-
dependent. It is not easy to appropriately specify parameter values (e.g., the minimum 
support and the minimum confidence) involved in each criterion, either. 

In this paper, we propose an idea of using Pareto-optimal and near Pareto-optimal 
rules with respect to support and confidence as candidate rules in genetic fuzzy rule 
selection. We modify Pareto dominance by introducing a dominance margin ε  in the 
same manner as [18] to extract not only Pareto-optimal rules but also near Pareto-
optimal rules. A similar modification method was also used to improve the perform-
ance of MOGAs under the name of ε-dominance [7], [16]. 

This paper is organized as follows. First we explain fuzzy rule-based classifiers in 
Section 2. Next we explain genetic fuzzy rule selection in Section 3. Then we exam-
ine the effect of using Pareto-optimal and near Pareto-optimal fuzzy rules as candi-
date rules on multiobjective genetic fuzzy rule selection in Section 4. Finally we  
conclude this paper in Section 5. 

2   Fuzzy Rule-Based Classifiers 

Let us assume that we have m training patterns xp = (xp1, xp2, ..., xpn), p = 1, 2, ..., m 

from M classes in an n-dimensional continuous pattern space [0, 1]n where xpi is the 
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attribute value of the p-th training pattern for the i-th attribute. For our pattern classi-
fication problem, we use fuzzy rules of the following form: 

Rule qR : If 1x  is 1qA  and  ...  and nx  is qnA  then Class qC  with qCF , (1) 

where Rq is the label of the q-th fuzzy rule, x = (x1, x2, ..., xn) is an n-dimensional pat-
tern vector, Aqi is an antecedent fuzzy set, Cq is a class label, and CFq is a rule weight. 
We denote Rq in (1) as “Aq ⇒  Class Cq” where Aq = (Aq1, Aq2, ..., Aqn).  

Since we usually have no a priori information about an appropriate granularity of 
the fuzzy discretization for each attribute, we simultaneously use multiple fuzzy parti-
tions with different granularities to extract candidate fuzzy rules. In computational 
experiments, we use four fuzzy partitions with triangular fuzzy sets in Fig. 1. In addi-
tion to the 14 fuzzy sets in Fig. 1, we also use the domain interval [0, 1] itself as an 
antecedent fuzzy set in order to represent a don’t care condition. 
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Fig. 1. Antecedent fuzzy sets used in computational experiments 

Since we use the 15 antecedent fuzzy sets for each of the n attributes, the total 
number of combinations of the antecedent fuzzy sets is 15n. Each combination is used 
in the antecedent part of the fuzzy rule in (1). The consequent class and the rule 
weight of each fuzzy rule can be easily specified from compatible training patterns in 
a heuristic manner [12]. This means that we can easily generate a large number of 
fuzzy rules by specifying the consequent class and the rule weight for each of the 15n 
combinations of the antecedent fuzzy sets. It is, however, very difficult for human us-
ers to manually examine such a large number of fuzzy rules. It is also very difficult 
for human users to intuitively understand long fuzzy rules with many antecedent con-
ditions. Thus we examine only short fuzzy rules of length Lmax or less (e.g.,  
Lmax = 3). This restriction on the rule length is to find fuzzy rule-based classifiers 
with high interpretability. 

Let S be a set of fuzzy rules of the form in (1). That is, S is a fuzzy rule-based clas-
sifier. When an input pattern xp is presented to S, xp is classified by a single winner 
rule that has the maximum product of the compatibility grade and the rule weight  
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(see [12] for various fuzzy reasoning methods for classification problems). In this  
paper, we use the product operator to calculate the compatibility grade. 

3   Genetic Fuzzy Rule Selection 

Genetic fuzzy rule selection is a two-step approach to the design of fuzzy rule-based 
classifiers. In the first phase, a large number of fuzzy rules are generated as candidate 
rules. A heuristic rule evaluation criterion is usually used for the prescreening of can-
didate rules [9], [11], [12], [14]. In the second phase, a genetic algorithm is used to  
select a small number of candidate rules. 

In the field of data mining [1], two rule evaluation criteria (confidence and support) 
have been often used to evaluate an association rule. Fuzzy versions of these two  
criteria can be written as follows [12]: 
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where c(.) and s(.) are the confidence and the support of a fuzzy rule, respectively.  
Association rule mining techniques extract all rules that satisfy the prespecified 

minimum confidence and support [1]. In computational experiments, we extract all 
fuzzy rules of length three or less that satisfy this condition. The extracted fuzzy rules 
are used as candidate rules in genetic fuzzy rule selection. 

Let N be the number of candidate rules. A rule set S, which is a subset of the N 
candidate rules, is represented by a binary string of length N. Our fuzzy rule selection 
problem is formulated as follows [11]: 

Maximize )(1 Sf , and minimize )(2 Sf  and )(3 Sf , (4) 

where f1(S) is the number of correctly classified training patterns by S, f2(S) is the 
number of fuzzy rules in S, and f3(S) is the total number of antecedent conditions (i.e., 
total rule length) in S. It should be noted that each fuzzy rule has a different number 
of antecedent conditions. This is because we use don’t care as a special antecedent 
fuzzy set, which is not counted in the number of antecedent conditions. 

In this section, we use a standard single-objective genetic algorithm (SOGA) to 
maximize the following weighted sum fitness function: 

)()()()( 332211 SfwSfwSfwSfitness ⋅−⋅−⋅= , (5) 

where wi is a non-negative weight for the i-th objective. We use the (μ +λ) -ES  
generation update mechanism with μ =λ  in our SOGA. 
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We applied genetic fuzzy rule selection to the glass data set (a nine-dimensional 
patterns classification problem with 214 patterns from six classes) in the UCI machine 
learning repository using the following parameter specifications: 

 Minimum confidence: 0.6, 0.7, 0.8, 0.9, 
 Minimum support: 0.01, 0.02, 0.05, 0.10, 
 Weight vector in the fitness function in (5): (10, 1, 1), 
 Population size: 200 (i.e., μ = λ = 200), 
 Crossover probability: 0.9 (uniform crossover), 
 Mutation probability: 0.05 (1 → 0) and 1/N (0 → 1), 
 Termination condition: 1000 generations. 

We examined the 4 × 4 combinations of the minimum confidence and support. For 
each combination, all the extracted fuzzy rules were used as candidate rules in the 
second phase where SOGA searched for the optimal rule set from the candidate rules. 
In our SOGA, we used biased mutation where a larger probability (i.e., 0.05) was as-
signed to the mutation from 1 to 0 than that from 0 to 1 for efficiently decreasing the 
number of fuzzy rules in each rule set. We removed unnecessary fuzzy rules from 
each string after mutation. That is, we removed all fuzzy rules that were chosen as 
winner rules for no training patterns. We performed five independent runs of the two-
fold cross-validation procedure (i.e., CV25× ). 

Experimental results are summarized in Fig. 2. Fig. 2 (a) shows the number of ex-
tracted candidate rules. Their classification rates on training and test patterns are 
shown in Fig. 2 (c) and Fig. 2 (e), respectively. On the other hand, experimental re-
sults after genetic rule selection are shown in the right plots of Fig. 2. Only a small 
number of fuzzy rules were selected in Fig. 2 (b) from thousands of candidate rules in 
Fig. 2 (a). Training data accuracy was improved in many cases in Fig. 2 (d) by genetic 
rule selection from Fig. 2 (c). Test data accuracy was also improved in many cases in 
Fig. 2 (f) from Fig. 2 (e). 

From Fig. 2 (c) and Fig. 2 (e), we can see that the accuracy of candidate rules 
strongly depended on the specification of the minimum confidence and support (see 
[4] for the learning of these parameter values). When both the minimum confidence 
and support were small, a larger number of candidate rules were extracted. For exam-
ple, about 15000 candidate rules were generated in Fig. 2 (a) in the case of the mini-
mum confidence 0.6 and the minimum support 0.01. Among those 15000 candidate 
rules, only 13 fuzzy rules were selected in Fig. 2 (b) on average. The average classifi-
cation rates were improved by genetic fuzzy rule selection for both training and test 
data in Fig. 2. These observations demonstrate the effectiveness of genetic fuzzy rule 
selection. One difficulty of genetic fuzzy rule selection with a large number of candi-
date rules is its large computation load. Actually, our SOGA spent about one hour  
using a PC with Xeon 3.6 GHz CPU in the case of the minimum confidence 0.6 and 
the minimum support 0.01. The computation load can be significantly decreased by 
decreasing the number of candidate rules (i.e., by increasing the minimum confidence 
and support). High classification rates, however, were not obtained when the number 
of candidate rules was small in Fig. 2. In the next section, we discuss how we can  
decrease the number of candidate rules without severely degrading the accuracy of  
selected rules. 
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                     (a) Number of candidate rules                   (b) Number of selected rules 
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   (c) Training data accuracy of candidate rules     (d) Training data accuracy of selected rules 
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       (e) Test data accuracy of candidate rules         (f) Test data accuracy of selected rules 

Fig. 2. Experimental results using SOGA for the glass data 

4   Use of Pareto-Optimal and Near Pareto-Optimal Rules 

As shown in Fig. 2, good rule sets are not likely to be obtained by genetic fuzzy rule 
selection when the number of candidate rules is too small. On the other hand, we need 
a long CPU time when the number of candidate rules is large. In our former study [9], 
we examined the use of Pareto-optimal fuzzy rules with respect to confidence and 
support as candidate rules. In this section, we examine the use of not only Pareto-
optimal but also near Pareto-optimal fuzzy rules.  
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Using a dominance margin ε, we modify Pareto dominance as in [18]: A fuzzy rule 
Ri is said to be ε -dominated by another fuzzy rule Rj when both the following two 
inequalities hold,  

)()( ji RcRc ≤+ ε , )()( ji RsRs ≤+ ε , (6) 

and at least one of the following two inequalities holds: 

)()( ji RcRc <+ ε , )()( ji RsRs <+ ε . (7) 

When a fuzzy rule Ri is not dominated by any other fuzzy rules in the sense of the  
ε -dominance in (6) and (7), we call Ri an ε -non-dominated rule. It should be noted 
that the ε -dominance with ε = 0 is the same as Pareto dominance. 

We examined the effect of using ε -non-dominated rules as candidate rules in mul-
tiobjective genetic fuzzy rule selection by computational experiments on five data sets 
from the UCI machine learning repository. The two-fold cross-validation procedure 
was iterated five times for each data set. First we extracted fuzzy rules using the 
minimum confidence 0.6 and the minimum support 0.01 (0.04 for the wine data set). 
Among the extracted fuzzy rules, only ε -non-dominated rules were used as candidate 
rules. Then we applied NSGA-II [6], [8] to search for non-dominated rule sets from 
the candidate rules. Finally the accuracy of each of the obtained non-dominated rule 
sets was calculated for training and test data. 

In Table 1, we show the average number of candidate rules for each value of ε . In 
the case of ε = 0, the number of candidate rules (i.e., Pareto-optimal rules) was very 
small. On the other hand, it is large when ε = ∞ . In this case, all the extracted fuzzy 
rules were used as candidate rules. By decreasing the value of ε , we can decrease the 
number of candidate rules as shown in Table 1.  

Table 1. Average number of generated candidate fuzzy rules 

Data set ε  = 0 ε  = 0.01 ε  = 0.02 ε  = 0.05 ε  = 0.1 ε  = ∞  
Breast W 74 28323 35093 46941 57931 78650 
Glass 163 4496 6571 11324 14850 15140 
Heart C 349 9407 11835 17154 30928 102560 
Iris 21 1995 2161 2555 3264 4725 
Wine 43 4728 7081 15948 37915 77805 

Table 2. Average CPU time of a single run of NSGA-II (minutes) 

Data set ε  = 0 ε  = 0.01 ε  = 0.02 ε  = 0.05 ε  = 0.1 ε  = ∞  
Breast W 4.9 167.9 185.8 270.0 338.3 453.2 
Glass 2.0 11.2 27.9 41.5 59.5 73.3 
Heart C 7.8 31.2 48.4 78.6 130.9 266.7 
Iris 0.8 4.8 9.2 10.9 10.9 15.2 
Wine 3.0 11.5 26.1 60.4 104.9 136.6 
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The average CPU time for a single run of NSGA-II is shown in Table 2. From  
Table 1 and Table 2, we can see that the computation load depends on the number of 
candidate rules. Using a small value of ε , we can decrease the CPU time. 

From the viewpoint of CPU time, the use of Pareto-optimal rules as candidate rules 
(i.e., ε  = 0 in Table 2) is a good strategy. The training data accuracy of obtained non-
dominated rule sets in this case was not necessarily good as shown in Table 3. In  
Table 3, we calculated the average value of the highest classification rates on training 
data among obtained non-dominated rule sets by each run of NSGA-II. Good rule sets 
were not obtained in the case of ε  = 0 for some data sets (e.g., Glass and Heart C). An 
interesting observation in Table 3 is that the best training data accuracy was not al-
ways obtained from a large value of ε . For example, the best training data accuracy  
 

Table 3. Average value of the best classification rates on training data (%) 

Data set ε  = 0 ε  = 0.01 ε  = 0.02 ε  = 0.05 ε  = 0.1 ε  = ∞  
Breast W 97.4 99.0 99.1 99.1 99.1 99.2 
Glass 74.8 79.2 81.7 83.5 84.1 84.0 
Heart C 71.8 80.8 79.4 79.7 77.9 78.5 
Iris 97.2 97.5 98.8 97.7 97.9 97.9 
Wine 100.0 100.0 100.0 100.0 100.0 100.0 

Table 4. Average value of the best classification rates on test data (%) 

Data set ε  = 0 ε  = 0.01 ε  = 0.02 ε  = 0.05 ε  = 0.1 ε  = ∞  
Breast W 96.8 96.7 96.4 96.5 96.8 96.5 
Glass 63.4 66.1 64.8 66.1 66.4 65.9 
Heart C 54.8 55.4 56.4 56.3 55.2 56.5 
Iris 96.6 97.0 97.0 96.5 96.8 96.9 
Wine 93.8 92.7 93.3 90.4 94.9 94.9 
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                              (a) ε  = 0                                                               (b) ε  = 0.1 

Fig. 3. Candidate rules and selected rules for Class 1 of Heart C 
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was obtained from ε  = 0.01 for Heart C in Table 3. This is because NSGA-II could 
not find the optimal combination of candidate rules when the number of candidate 
rules was too large. 

In Table 4, we show the average value of the highest classification rates on test 
data. While the training data accuracy was severely degraded for some data sets by 
specifying ε as ε  = 0, the deterioration in the test data accuracy was not so severe.  

For clearly demonstrating the effect of ε , we show candidate rules and selected 
rules for Class 1 of Heart C by a single-run of NSGA-II in Fig. 3. 

5   Conclusions 

We proposed an idea of using Pareto-optimal and near Pareto-optimal rules as candi-
date rules in genetic fuzzy rule selection. Through computational experiments, we 
demonstrated that the proposed idea decreased the number of candidate rules which 
were generated based on the minimum confidence and support. As a result, the CPU 
time for rule selection was decreased. We also demonstrated that rule sets with high 
training data accuracy were not obtained for some data sets when we used only 
Pareto-optimal rules. The proposed idea improved the training data accuracy of ob-
tained rule sets by using not only Pareto-optimal but also near Pareto-optimal rules. A 
future research issue is to examine other definitions (e.g., multiplicative form) of  
ε-dominance. Different handling of multiobjective problems such as lexicographic  
ordering [17] is also a future research issue.  
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