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ABSTRACT
In the early days a policy was a set of simple rules with a
clear intuitive motivation that could be formalised to good
effect. However the world is becoming much more complex.
Subtle risk decisions may often need to be made and people
are not always adept at expressing rationale for what they
do. In this paper we investigate how policies can be inferred
automatically using Genetic Programming (GP) from exam-
ples of decisions made. This allows us to discover a policy
that may not formally have been documented, or else ex-
tract an underlying set of requirements by interpreting user
decisions to posed “what if” scenarios. Three proof of con-
cept experiments on MLS Bell-LaPadula, Budgetised MLS
and Fuzzy MLS policies have been carried out. The results
show this approach is promising.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning — Induction; D.4.6
[Operating Systems]: Security and Protection — Access
controls; I.2.1 [Artificial Intelligence]: Applications and
Expert Systems

General Terms
Experimentation

Keywords
Genetic Programming, Policy Inference, Security Policy, MLS

1. INTRODUCTION
In computer systems, a security policy is essentially a set

of rules specifying the way to secure a system for the present
and the future. Forming a security policy is a challenging
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task: the system may be inherently complex with many po-
tentially conflicting factors. Traditionally security policies
have had a strong tendency to encode a static view of risk
and how it should be managed (most typically in a pes-
simistic or conservative way) [3]. Such an approach will not
suffice for many dynamic systems which operate in highly
uncertain, inherently risky environments. In many military
operations, for example, we cannot expect to predict all pos-
sible situations.

Much security work is couched in terms of risk but in the
real world there are benefits to be had. In military opera-
tions you may be prepared to risk a compromise of confi-
dentiality if not doing so could cost lives. There is a need
for operational flexibility in decision making, yet we cannot
allow recklessness. Decisions need to be defensible and so
must be made on some principled basis. People are typi-
cally better at making specific decisions than in providing
abstract justification for their decisions. It is very useful to
be able to codify in what a “principled basis” consists since
this serves to document “good practice” and facilitates its
propagation.

The above discussion has been couched in terms of hu-
man decision making. In some environments the required
speed of system response may force an automated decision.
Such automated decisions must also be made on a “princi-
pled basis”, and some of these decisions may be very tricky.
Automated support must be provided with decision strate-
gies or rules to apply.

In this paper we investigate how security policy rules can
be extracted automatically from examples of decisions made
in specified circumstances. This is an exercise in policy in-
ference. The automation aspect of the inference is doubly
useful: automated inference techniques can discover rules
that humans would miss; and policies can be dynamically in-
ferred as new examples of tricky decisions become available.
Thus the current policy can evolve to reflect the experience
of the system.

For example, if a human determines what the proper re-
sponse should be based upon the information available, ei-
ther in real-time or post facto, a conclusion is drawn that
similar responses should be given under similar circumstances.
Essentially, we attempt to partition the decision space such
that each partition is associated with a response that is com-
mensurate with the risk vs. benefit trade-off.
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In practice, different decision makers may come to differ-
ent decisions in the same circumstances, particularly if the
decisions are tricky. Decision makers may use data that is
not available to the inference engine to reach a decision, or
else one decision-maker may simply have a different appetite
for risk. Any inference technique must be able to handle
sets of decision examples that do not seem to be entirely
consistent. The chosen inference approach is Genetic Pro-
gramming (GP). It is a specific form of guided search that
has seen success in a variety of domains.

This paper documents three proof of concept experiments
inferring: MLS Bell-LaPadula, Budgetised MLS (a bud-
getised variant of MLS Bell-LaPadula) and Fuzzy MLS poli-
cies using GP. The results show this approach is promising.

The organisation of this paper is as follows: Section 2
documents the related work in this domain and Section 3
describes the general design of the experimental framework.
Sections 4, 5 and 6 present the case study results for MLS
Bell-LaPadula, Budgetised MLS and Fuzzy MLS policies re-
spectively. Section 7 concludes the paper.

2. RELATED WORK
From the security perspective, security policies are mostly

written in high level forms and later followed by a series
of transformations and refinements. Improvement in eas-
ing the development include automated transformation of
high level human understandable rules to low level machine
executable rules, automated policy conflicts and coverage
checking and resolution. There are no known attempts to
generating the policy automatically from previous decision
examples using machine learning techniques although auto-
nomic security policies were mention in [6] (No results have
yet appeared).

On the other hand, rule inferencing techniques have been
around for many years in machine learning domain. There
are various approaches proposed, e.g. decision tree induc-
tion, Genetic Algorithm (GA), Genetic Programming (GP),
Artificial Immune Systems (AIS), etc. In this paper, empha-
sis is placed on GP. In [10] a grammar-based genetic pro-
gramming system called LOGENPRO (The LOGic gram-
mar based GENetic PROgramming system) is proposed. In
the performance test conducted, it is found that LOGEN-
PRO outperforms some Induction Logic Programming (ILP)
systems. In [7] a GP experiment on co-evolution between
rules and fuzzy membership variables is designed. The re-
sult shows that the output set of rules and variables are well
adapted to one another. In [9] an attempt is made to invent
a generic rule induction algorithm using grammar based GP.
The result is shown to be competitive with well known man-
ually designed rule induction algorithms. However, in all the
above mentioned cases, there have been no previous known
research on rule inferencing technique in the our domain of
interest — security policy.

3. FRAMEWORK DESIGN
Most security policies can be represented as a set of IF

<condition> THEN <action> rules. We shall attempt to dis-
cover an expression for the condition corresponding to some
particular decision action (e.g. “allow read”).

The leaf nodes at the bottom layer are elements of the
terminal set T . At the next layer, leave nodes of the same
type are joined together with operators that return typed

values. These types may be numerical, set, vector or other
user-defined types. At the next layer are the logic relational
operators such as < or ∈; such an operator compares two
typed values and returns a boolean value. These boolean
values are combined at the higher levels with the logical
composition operators such as AND, OR or NOT . The
root node in a tree must evaluate to a Boolean. Strongly
Typed Genetic Programming (STGP) [8] is used throughout
the experiments presented in this paper. Figure 1 shows
3 examples of well-typed individual for the experiment in
inferring MLS Bell-LaPadula policy for read access that will
be presented in Section 4.

Using this representation, the security policy inference
problem can be transformed into an N-class classification
problem, in which N is the number of rules in the policy.
STGP is used to search for the <condition> part of each
rule. Therefore, the number of STGP runs increases lin-
early with the policy size. This is not as daunting as it
seems to be. As all these searches are independent from one
another, this design approach can benefit from the multi-
core processor revolution and execute searches in parallel.
With only 1 processor, the binary decomposition method1

can be employed to solve this problem in N −1 STGP runs.
The initial population are generated randomly using the

ramp half and half method popularised by Koza [4]. This
method takes the population size, minimum and maximum
heights of the trees permitted in the population as inputs
and generates approximately 50% trees with maximum height
while the other 50% trees have heights between the minimum
and the maximum heights.

The individual fitness is computed using decision exam-
ples in a training set. Each example is represented by a vec-
tor of variables which corresponds to the decision making
factors and the decision itself. The fitness of the individual
is based on the number of decision examples that it agrees
with. In an ideal world, it might be desirable to match all
examples. However, it is often the case in practice that there
are a few poor decisions and many good decisions are made.
The system might be expected to evolve a policy that agrees
with the majority. 100% agreement is not essential. A lower
degree of agreement may simply turn the spotlight on those
specific individuals with decisions inconsistent with the in-
ferred policy. In a sense, the fitness provides a measure of
how well a candidate policy agrees with examined decisions,
but also acts as anomaly detector. The accumulated total
score after evaluating all examples becomes the individual’s
fitness score. Depending on the problem, all matches (or
mis-matches) are not necessarily equal. The score given for
a particular match or mis-match may have profound impact
on the search process and the final result. Section 6 gives a
good example.

After the fitness calculation stage, a new generation of in-
dividuals is produced with the use of evolutionary operators.
Individuals with higher fitness scores have better chances to
be selected to pass their“gene” (sub-tress) to the next gener-
ation. Further crossover and mutation operators are applied

1Binary decomposition method decomposes the N classes
classification problem into N − 1 binary classification prob-
lems. The first classification problem is (c1, c1

′ ≡ P − c1),
second problem is (c2, c2

′ ≡ c1
′ − c2), N − 1 problem is

(cN−1, cN−1
′ ≡ cN−2

′ − cN−1 ≡ cN ). The nth binary classi-
fication problem can only be solved after the n− 1 previous
problems are solved. The algorithm is inherently sequential.
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Figure 1: Examples of well-typed individuals. The leftmost individual resembles the condition for the read

access in the MLS Bell-LaPadula policy, which is (sl > ol OR sl = ol) AND (sc ⊃ oc OR sc ≡ oc). The other

two are logically equivalent individuals. They resemble only the sensitivity aspect of this policy, which is

(sl > ol OR sl = ol)

probabilistically. The evolution process continues until an
individual with a “high enough” fitness score is found or a
preset number of generations have elapsed.

4. MLS BELL-LAPADULA POLICY
In the first experiment, we concentrate on the “no read-

up” part of the MLS Bell-LaPadula policy. It is simple,
unambiguous and serves to demonstrate some interesting
properties of our method of inference. For a read access, r,
the policy can be summarised as:

IF sl ≥ ol AND sc ⊇ oc THEN r is allowed (1)

IF sl < ol OR sc 6⊇ oc THEN r is denied (2)

where sl and ol are subject and object sensitivity levels and
sc and oc are subject and object category sets. Since the de-
cisions are binary allow/deny decisions, the GP algorithm
only needs to be run once to search for the condition for
either allow or deny, the other condition can be simply ob-
tained by logical negation. The condition for allow is chosen
to be the learning target in this experiment.

The terminal set T consists of four variables, namely sl,
ol, sc and oc but no constant value. The sl and ol are
positive integers and tagged with the type “sensitivity”, for
which 3 operators are defined: =, < and >. The ≤ and
≥ operators are intentionally omitted to make the search
becomes more difficult. The sc and oc are sets and given
the type “category”, for which 3 operators are defined: ≡, ⊂
and ⊃. The ⊆ and ⊇ operators are not included for the same
reason given above. Each category in sc or oc is represented
by a positive integer. The target condition, TC(sl, ol, sc, oc)
to be learnt in this experiment is:

(sl > ol OR sl = ol) AND (sc ⊃ oc OR sc ≡ oc) (3)

In each run of the experiment, the maximum value of sen-
sitivity levels for sl and ol, SNSmax and the total number
of categories, CATmax are defined. 100 randomly generated
examples are used as the training set. Each example x is a
vector with 5 attributes: slx, olx, scx, ocx and decx. slx and
olx are randomly chosen from {1 .. SNSmax}; elements of
scx and ocx are randomly chosen from {1 .. CATmax}; and
decx is set to be either 1 (allow) or 0 (deny) in accordance

with the MLS Bell-LaPadula policy. Thus, all example de-
cisions here are correct as far as MLS Bell-LaPadula policy
is concerned.

The fitness of an individual (candidate policy), fitness(i)
is simply the sum of the matches between the decision made
by the individual and the decision recorded in each example
in the entire training set. Formally, let di,x be the decision
an individual i made for an example x; True as 1; and False
as 0, then fitness(i) is defined as in (4).

fitness(i) =
X

∀ example x

(di,x ≡ decx) (4)

This experiment is carried out using the ECJ Framework
v16 [5] and the experimental setup is summarised in Table
1. For those parameters that are not specified in Table 1,
the default values defined in the framework are used.

Objective Search for a TC logically equiv-
alent condition in (3), which is
(sl > ol OR sl = ol) AND
(sc ⊃ oc OR sc ≡ oc)

Terminal set T {sl, ol, sc, oc}
Functional set F {AND, OR, =, >,<,≡,⊂,⊃}
Fitness function f(i)

P

∀ example x (di,x ≡ decx)

Number of generations 50
Population size 1024 (default)
Population initialisation Ramp half and half method

with the minimum and maxi-
mum heights of the tree set to
be 2 and 6 respectively (default)

Genetic Operators (P ) Crossover (0.9), Mutation (0.1)
Maximum height of tree 17

Table 1: Experimental setup summary of MLS Bell-

LaPadula policy inference for read access

Initially SNSmax and CATmax are set to be 5. 10 runs
of the experiment, each with a training set generated with a
different random seed, are carried out. In all cases, logically
equivalent conditions of TC in (3) can be learnt. Then we
investigated the robustness of this inference technique as
follows:
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• scaling up SNSmax and CATmax;

• inclusion of “wrong” examples in the training set (i.e.
inconsistent decision making is demonstrated);

• changing other parameters including population size
and tree height.

4.1 Scaling Up SNSmax and CATmax

The same experiment is repeated using 6 different settings
of (SNSmax, CATmax): (10, 5), (20, 5), (30, 5) and (5, 10),
(5, 20), (5, 30). In the first 3 settings, in which SNSmax is
scaled up to 30, TC can still be found. However, in the
later 3 settings, in which CATmax is scaled to 30, the re-
sult changes; only weaker conditions TC′ are found. More
precisely, the conditions learnt using the (5, 10) setting are
logically equivalent to (sc ⊃ oc OR sc ≡ oc); the conditions
learnt using the (5, 20) setting are either logically equivalent
to (sc ⊃ oc OR sc ≡ oc) or simply sc ⊃ oc; and the condi-
tions learnt using the (5, 30) setting are logically equivalent
to sc ⊃ oc.

Randomly generated categories sets pose interesting prob-
lems from a training point of view. The probability of ran-
domly generating a pair (sc, oc) where sc ≡ oc is small,
1/(2CATmax ) in fact. Thus the expected number of category
equality examples in a sample of size N is N/(2CATmax ).
Unless the system sees examples of how equality should be
handled, it cannot be expected to infer how that specific con-
dition should be handled. Inference summarises rather than
speculates. As usual, the training set characteristics are im-
portant. Experiments are carried out to validate this intu-
ition. Examples are manually created to cover the equality
case and the experiment is re-run with the same setting. The
results agree with this intuition; logically equivalent condi-
tions of TC are learnt for settings with CATmax equals to
10, 20 and 30.

To further investigate the effect of training set coverage, 3
experiments with extreme settings are carried out. First, a
training set with 9 examples that cover all the possible com-
binations of ((sl, ol), (sc, oc)) relationships in TC, namely
(>, =, <) × (⊃,≡,⊂) is used. The learnt condition is logi-
cally equivalent to TC. At the other extreme, an experimen-
tal setup using all examples with deny decision (decx = 0)
yields the a logically equivalent condition of False. Con-
versely, if all examples in the training set are examples with
allow decision, then a logically equivalent condition of True
is learnt. Thus, a mixture of correct allow/deny examples is
required to evolve credible policies.

4.2 Inclusion of “Wrong” Examples
Here the experiment is repeated with the introduction of

wrong examples in the training set (i.e. so we have examples
of inconsistent decision making). We first started to intro-
duce 10%“wrong”examples and then 20%, 25% and 30%. In
all cases, the conditions learnt are similar with those learnt
with all correct examples. This is because the search for
the condition is guided by the fitness function which is de-
fined as the number of matches between decisions made by
an individual and the ones encoded in examples. In order
to have maximum fitness, the search will tend to model the
correct examples (which are in the majority) and choose to
be inconsistent with the others. This is encouraging because
100% agreement is not the actual goal as mentioned earlier.
Highlighting anomalous behaviours is also important.

4.3 Parameter Changes
Each experiment described so far is repeated using train-

ing set size consists of 500 and 1000 randomly generated ex-
amples. The conditions learnt in each experiment are very
similar with the conditions learnt using only 100 examples.

Also, each experiment is repeated with various popula-
tion sizes: 50, 100, 500 and 5000. When the population
size is 500 or larger, logically equivalent conditions of TC
are learnt, and there is no significant difference in terms of
the number of generations required. However, the execu-
tion time per generation does increase significantly due to
the increase in the amount of genetic operations performed.
When the population size is set to be 50 and 100, the de-
sired condition cannot be learnt sometimes. Investigation is
made on these populations using the GUI provided by ECJ.
Diversity in the population is lost in early generations, i.e.
premature convergence in the population occurs.

To investigate the effect of tree size, the experiment is
repeated with different maximum tree heights. In each ex-
periment, the maximum tree height is set to be one less
than that of the previous experiment; the first experiment
has maximum tree height of 17. The target condition can
not be learnt if the tree height is less than 4, which is the
minimum height to represent TC. The results also show
that the number of generations needed to learn the condi-
tion increases as the maximum tree height used increases,
because larger tree height implies larger search space.

4.4 Read and Write Access
The experiment is extended to include write access in the

MLS Bell-LaPadula model. For a write access w, MLS Bell-
LaPadula policy can be summarised as:

IF sl ≤ ol AND sc ⊆ oc THEN w is allowed (5)

IF sl > ol OR sc 6⊆ oc THEN w is denied (6)

This is often known as the “no write-down” property (some-
times also known as the *-property).

We introduce a variable access denoting the type of re-
quested access (read or write). The policy can be rewritten
as follows:

IF (access = read AND sl ≥ ol AND sc ⊇ oc) OR

(access = write AND sl ≤ ol AND sc ⊆ oc)

THEN access is allowed (7)

IF (access = read AND (sl < ol OR sc 6⊇ oc)) OR

(access = write AND (sl > ol OR sc 6⊆ oc))

THEN access is denied (8)

This allows us to evolve the policy as a whole for read and
write access.

The experimental setup is very similar as before with only
a few minor changes. First, a new type, access is introduced
to the type set and the terminal set is expanded to include a
new variable, access and two new terminals, read and write;
both of these have access as their types. The function set
is extended to include ≤, ≥, ⊆ and ⊇ operators. Third,
the training set size is increased to 500 randomly generated
examples with the equality cases guaranteed as described in
Section 4.1.
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The target condition, TC(access, sl, ol, sc, oc) to be learnt
in this experiment is:

(access = read AND sl ≥ ol AND sc ⊇ oc) OR

(access = write AND sl ≤ ol AND sc ⊆ oc) (9)

All other parameter settings including the fitness function
remain the same as before. The experimental setup is sum-
marised in Table 2.

Objective Search for TC logically equiva-
lent condition in (9), which is
(access = read AND sl ≥
ol AND sc ⊇ oc) OR
(access = write AND sl ≤
ol AND sc ⊆ oc)

Terminal set T {access, sl, ol, sc, oc}
Functional set F {AND, OR, =, >, <,≡,⊂,⊃} ∪

{≥,≤,⊆,⊇}
Fitness function f(i)

P

∀ example x
(di,x ≡ decx)

Number of generations 50
Population size 1024 (default)
Population initialisation Ramp half and half method

with the minimum and maxi-
mum heights of the tree set to
be 2 and 6 respectively (default)

Genetic Operators (P ) Crossover (0.9), Mutation (0.1)
Maximum height of tree 17

Table 2: Experimental setup summary of MLS Bell-

LaPadula policy inference for read and write access

Initially SNSmax and CATmax are set to 5. 10 runs of
the experiment, each with a training set generated with a
different random seed, are carried out. In all cases, logically
equivalent of TC in (9) can be learnt. We now investigate
the robustness of this inference technique as before.

4.5 Scaling Up SNSmax and CATmax

The SNSmax and CATmax scaled up in the similar fash-
ion as in previous experiment using 6 different settings of
(SNSmax, CATmax): (10, 5), (20, 5), (30, 5) and (5, 10), (5, 20),
(5, 30). As the training set used covers the category equal-
ity cases, the logical equivalent of TC in (9) is learnt in all
cases.

4.6 Inclusion of “Wrong” Examples
As in previous experiments, we introduced 10%, 20%, 25%

and 30% “wrong” examples. In all cases, the conditions
learnt are similar with those learnt with all correct exam-
ples. With 30% wrong examples, the number of successful
runs decreases to 7 out of the 10 runs. Investigation of the
best individuals in unsuccessful runs shows that these in-
dividuals generally represent a slightly weaker or stronger
conditions, TC′. Some of these individuals after boolean
simplification are shown as follows:

(access = read AND sl ≥ ol AND sc ⊇ oc) OR

(access = write AND sl ≤ ol AND sc ⊆ oc) OR

(sc = oc) (10)

(access = read AND sl > ol AND sc ⊃ oc) OR

(access = write AND sl < ol AND sc ⊇ oc) (11)

Having said that, the number of examples these individuals
agree with is more than 450 (90% and above) examples.

4.7 Parameter Changes
Each experiment described so far is repeated using train-

ing set size consists of 1000 randomly generated examples.
In all cases, the logically equivalent conditions of TC are
learnt.

Also, this experiment is repeated with population sizes of
50, 100, 500 and 5000. When the population size is 500 or
larger, logical equivalent of TC can be learnt, and there is no
significant difference in terms of the number of generations
required. However, the execution time per generation does
increase significantly due to the increase in the amount of
genetic operations performed. When the population size is
set to be 50 and 100, the desired condition cannot be learnt
sometimes. Investigation is made on these populations and
using the GUI provided by ECJ. Diversity in the population
is lost in the early generations, i.e. premature convergence
in the population occurs.

In investigating the effect of tree size, it is found that TC
can not be learnt if the tree height is less than 5. This is
obvious as this is minimum tree height necessary to represent
TC. As the tree height increases, the number of generations
needed to learn the condition increases because larger tree
height implies larger search space.

5. BUDGETISED MLS POLICY
In this experiment, we designed a new risk-based policy

with intuition drawn from [1, 3]. For a read access r, Bud-
getised MLS policy is as follows:

IF pos(ol − sl) + #(oc \ sc)) ≤ budget

THEN r is allowed (12)

IF pos(ol − sl) + #(oc \ sc)) > budget

THEN r is denied (13)

where pos(x) returns x if x >= 0 or 0 if x < 0; x\y is the set
difference between set x and set y; #(x) is the cardinality of
the set x and budget is the amount the requester is willing
to pay for the requested access. The target condition TC
for this experiment becomes

pos(ol − sl) + #(oc \ sc) ≤ budget (14)

The experimental setup is similar to the previous experi-
ment except with the addition of 8 operators (pos, #, \, +,
−, ∗, /, exp) and is summarised in Table 3.

The results show that TC can be learnt in all cases. The
investigation on the robustness of this inference technique
by scaling up SNSmax and CATmax, inclusion of “wrong”
examples in the training set, changing other parameters pro-
duces similar results as in previous experiments. The only
difference is the minimum tree size required now is increased
to 8 due to the complexity.

6. FUZZY MLS POLICY
Up to this point, we have only considered binary decision

making. In this experiment, we concentrate on learning the
conditions of a risk-based policy that could have more than
two decisions, beyond the allow and deny binary decision
model. The policy model is the Fuzzy MLS model [1, 2].
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Objective Search for a logically equivalent
condition of TC in (14), which
is
pos(ol−sl)+#(oc\sc) ≤ budget

Terminal set T {sl, ol, sc, oc, budget}
Functional set F {AND, OR, =, >, <,≡,⊂,⊃} ∪

{≥,≤,⊆,⊇} ∪
{pos, #, \+,−, ∗, /, exp}

Fitness function f(i)
P

∀ example x
(di,x ≡ decx)

Number of generations 50
Population size 1024 (default)
Population initialisation Ramp half and half method

with the minimum and maxi-
mum heights of the tree set to
be 2 and 6 respectively (default)

Genetic Operators (P ) Crossover (0.9), Mutation (0.1)
Maximum height of tree 17

Table 3: Experimental setup summary of Bud-

getised MLS policy inference for read access

This policy uses the risk-based rationale of the MLS Bell-
LaPadula policy to compute a quantified risk estimate by
quantifying the “gap” between a subject’s label and an ob-
ject’s label in an MLS system.

Quantified risk estimates are numbers and therefore could
be used to build the risk scale shown in Figure 2 [1]. The risk

Figure 2: Risk adaptive access control on a risk scale

scale is divided into multiple bands. Each band is associated
with a decision. The risk in the bottom band is considered
low enough so the decision is simply allow whereas the risk
in the top band is considered too high so the decision is
deny. Each band between the top and bottom is associated
with a decision allow with different certain risk mitigation
measures.

The Fuzzy MLS model defines risk as the expected value of
damage caused by unauthorised disclosure of information:

risk = (value of damage)×

(probability of unauthorised disclosure)(15)

The value of damage is estimated from the object’s sen-
sitivity level. The probability of unauthorised disclosure is
estimated by quantifying two “gaps”: one between the sub-
ject’s and the object’s sensitivity levels and the other be-
tween the subject’s and the object’s category sets. For sim-
plicity, this experiment looks only at the sensitivity levels
and assumes the categories sets are the same2, and thus risk
becomes a function of subject’s and object’s sensitivity levels
only. For more detail on risk quantification, refer [1, 2].

Since there is no discussion on the way to partition the
scale into risk bands in [1], the following formula is defined
to map a risk number to a risk band:

band(risk(sl, ol)) = min(⌊log10(risk(sl, ol))⌋, N) (16)

where (N + 1) is the number of bands desired on the scale
and the function risk(sl, ol) is defined in Appendix A ac-
cording to [1]. Base-10 logarithm is used in (16) to compute
the order of magnitude of risk as the band number. In our
experiments, the scale is divided into 10 bands (N = 9) num-
bered from 0 to 9. Therefore, 10 STGP runs are required
to search for conditions for all the bands. This experiment
serves as a good illustration of the N-classes classification
problem discussed in Section 3 such that each band corre-
sponds to a class.

Since only the sensitivity levels are considered, the termi-
nal set T has only two variables, namely sl and ol. How-
ever, an additional set of real constant number in the range
of (−1, 1) is added to T to satisfy the sufficiency property.
This is because the target condition, TC can no longer be
represented with only sl and ol. Elements in T are given
type sensitivity, for which 8 operators are defined: 3 rela-
tional operators (=, < and >) which returns a value of type
“boolean” and 5 arithmetic operators (+,−, ∗, /, exp) which
returns a value of type “sensitivity”. The target condition
for band j, TCj to be learnt is:

TCj(sl, ol) = (band(risk(sl, ol)) ≡ j) (17)

In other words, STGP is used to search for an equivalent
function of the composition of 2 functions: the band function
and risk function.

For all experiments described in this section, SNSmax is
set to be 10 and an example x in a training set is a triple
(slx, olx, bandx), where bandx = band(risk(slx, olx)). In the
first experiment, we generated a training set with 10× 10 =
100 examples that cover all the possible (sl, ol) pairs and see
what can be learnt in this optimal setting. The numbers of
examples in each band is shown in Table 4. Band 0 has the
most number of examples because it includes all the low-
risk cases where sl > ol. All the other bands have relatively
small number of examples.

As in the MLS Bell-LaPadula Experiment in Section 4,
the fitness score for an individual in the search for condition
of band j, fitnessj(i) is defined to be the total number of
correct decisions i made:

fitnessj(i) =
X

{x|bandx≡j}

(di,x ≡ True) +

X

{x|bandx 6≡j}

(di,x ≡ False) (18)

The experimental setup is summarised in Table 5. As
before, this experiment is carried out using the ECJ Frame-

2Therefore the gap between categories sets is 0.
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Band Number of examples
0 52
1 5
2 3
3 4
4. 3
5 5
6 5
7 7
8 8
9 8

Table 4: Distribution of examples in the training set

work v16 [5] and the default values are used for the unmen-
tioned parameters.

Objective Search for condition that
classifies all examples into a
risk band j accurately, which
is, ∀x, band(risk(slx, olx)) ≡
bandx

Terminal set T {sl, ol} ∪ {r| − 1.0 < r < 1.0}
Function set F {AND, OR, =, >, <} ∪

{+,−, ∗, /, exp}
Fitness function fj(i)

P

{x|bandx≡j}(di,x ≡ True) +
P

{x|bandx 6≡j}(di,x ≡ False)

Number of generations 500
Population size 1024 (default)
Population initialisation Ramp half and half method

with the minimum and maxi-
mum heights of the tree set to
be 2 and 6 respectively (default)

Genetic Operators (P ) Crossover (0.9), Reproduction
(0.1)

Maximum height of tree 17

Table 5: Experimental setup summary of Fuzzy

MLS policy inference for read access

For each band, 10 runs are conducted. However, the result
shows that only the target condition for band 0, TC0 can be
learnt.

Investigations on the experimental logs for other bands
reveals the following facts:

• the fittest individuals remain unchanged after a few
generations.

• individual fitness scores converge quickly to that of the
fittest individual. This suggests that the searches for
band in {1 .. 9} quickly become random searches be-
cause equivalent fitness implies equivalent probability
one individual to be selected.

• for a band in {1 .. 9}, the fitness score of the fittest
individual is 100−(number of examples in the band).
This suggests that all points in fitness score come from
negative examples (example not in that band in ques-
tion), implying these examples completely outweigh
the relative few examples in that band. This also ex-
plains why TC0 can be learnt since more than half of
the examples are in band 0.

6.1 Weight and Punishment on Fitness Score
To improve the result, we assign different weights to the

fitness scores of different kinds of decisions made by an indi-
vidual according the following principles. In the search for
condition of band j, TCj :

• For a correct decision, award more if

– the risk is higher for security concerns; i.e., award
more for a larger j.

– the decision is is true positive (hits the target);
i.e., award more when bandx ≡ j. This will over-
come the effect that relative few positive examples
are in band j when j 6= 0.

• For an incorrect decision, punish more if

– the decision is false positive (di,x ≡ True and
bandx 6= j) and is more off the target ; i.e., punish
more as | j − bandx | becomes larger. Also, for
security concerns, punish more if this false posi-
tive decision underestimates the risk ; i.e., punish
more if bandx > j.

– the decision is false negative (di,x ≡ False and
bandx = j) when the risk is higher for security
concerns; i.e., punish more for a larger j.

Using these principles, the fitness function is changed to be:

fitnessj(i) =
X

{x|bandx≡j}

wtp{di,x ≡ True} +

X

{x|bandx 6≡j}

wtn{di,x ≡ False} −

X

{x|bandx 6≡j}

wfp{di,x ≡ True} −

X

{x|bandx≡j}

wfn{di,x ≡ False} (19)

where

wtp = j + 1,

wtn = (j + 1)/10,

wfp =

(

bandx − j if bandx > j,

(j − bandx)/2 if bandx < j,

wfn = j + 1

The experiment is re-run using the new fitness function
on the same training set. The result shows that the weights
and punishments are indeed very useful and the correct con-
ditions can be learnt for all 10 bands. As before, the effects
of the population size and the tree height are investigated.

6.2 Parameter Changes
This experiment is repeated with different population sizes

of 50, 100, 500 and 5000. Logically equivalent conditions of
TCj for all 10 bands can be learnt if the population size is set
to be 500 or greater. When the population size is small (50
or 100), the target conditions (TCj) of some bands cannot
be learnt sometimes. Investigation made on the individuals
gives the similar result with the MLS Bell-LaPadula exper-
iment — the phenomena of premature convergence in the
population occurs.
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As before, this experiment is re-run with different value
for maximum heights, ranging from 1 to 17. The target
conditions (TCj) for all 10 bands cannot be learnt when
the maximum tree height becomes less than 10. This is
significantly larger than that in the MLS Bell-LaPadula ex-
periment due to the complexity of the function it tries to
model.

7. CONCLUSION AND FUTURE WORK
Security policy inference is a new domain in which evolu-

tionary algorithms can be employed. In this paper, we pro-
posed a generic policy inference framework using the classifi-
cation approach, implemented using Genetic Programming.
Three experiments on MLS Bell-LaPadula, Budgetised MLS
and Fuzzy MLS policies are conducted to validate the pro-
posal. The results show that this approach is promising and
the correct policy can be inferred from examples.
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APPENDIX
A. RISK(SL, OL)

In [1], the risk resulted from the “gap”between a subject’s
and an object’s sensitivity levels (sl and ol) is estimated
using the following formula:

risk(sl, ol) = V al(ol) × P1(sl, ol) (20)

V al(ol) is the estimate value of damage and is define in [1]
as

V al(ol) = aol, a > 1

The object sensitivity level is considered to be the order of
magnitude of damage and hence V al(ol) is defined as an
exponential formula. In our experiments we set a to be 10.
P1(sl, ol) is the probability of unauthorised disclosure and is
defined in [1] as a sigmoid function:

P1(sl, ol) =
1

1 + exp(−k(TI(sl, ol) − mid))

TI(sl, ol) is called the temptation index which indicates how
much the subject with sensitivity sl is tempted to leak in-
formation with sensitivity level ol; it is defined as:

TI(sl, ol) =
a(ol−sl)

M − ol

The intuition for P1(sl, ol) and TI(sl, ol) can be found in [1].
The value mid is the value of TI that makes P1 equal 0.5; the
value k controls the slope of P1. The value M is the ultimate
object sensitivity and the temptation TI approaches infinity
as ol approaches M ; the intuition is access to an object with
sensitive level equals to or more than M should be controlled
by human beings and not machines. In our experiments, the
maximum value (SNSmax) for sl and ol is 10; the settings
for k, mid and M are k = 3, mid = 4, M = 11.
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