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Abstract. This paper compares heuristic criteria used for extracting a pre-specified number of fuzzy
classification rules from numerical data. We examine the performance of each heuristic criterion through
computational experiments on well-known test problems. Experimental results show that better results are
obtained from composite criteria of confidence and support measures than their individual use. It is also
shown that genetic algorithm-based rule selection can improve the classification ability of extracted fuzzy
rules by searching for good rule combinations. This observation suggests the importance of taking into
account the combinatorial effect of fuzzy rules (i.e., the interaction among them).

Keywords: rule extraction, rule selection, fuzzy rules, pattern classification, data mining, genetic algorithm

1. Introduction

In the design of fuzzy rule-based systems, there exist two conflicting objectives: error
minimization and comprehensibility maximization. The error minimization has been
used in many applications of fuzzy rule-based systems in the literature (e.g., fuzzy
control, fuzzy modeling, and fuzzy classification). While the comprehensibility was
not usually taken into account in those applications, recently the tradeoff between
these two objectives has been discussed in some studies (e.g., see Casillas et al
(2003a), (2003b)).

When fuzzy rule-based systems are used for two-dimensional problems, fuzzy rules
can be represented in a tabular form. Figure 1 shows an example of a fuzzy rule table
for a two-dimensional pattern classification problem. In this figure, we have four
fuzzy rules:

If x; is small and x, is small then Class 1, (1)
If x| is small and x; is large then Class 2, (2)
If x; is large and x; is small then Class 3, (3)

If x| is large and x; is large then Class 4, 4)
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Figure 1. Four fuzzy rules in the two-dimensional pattern space [0, 1] x [0, 1].

where small and large are linguistic values defined by triangular membership func-
tions. As shown in Figure 1, fuzzy rules for two-dimensional problems can be
written in a human understandable manner using the tabular form representation.
When fuzzy rule-based systems are applied to high-dimensional problems, their
comprehensibility is significantly degraded due to the two difficulties: the increase in
the number of fuzzy rules and the increase in the number of antecedent conditions of
each fuzzy rule.

In the field of knowledge discovery and data mining (Fayyad et al (1996)),
emphasis is placed on the comprehensibility of extracted rules. Fuzzy rule-based
systems have an inherent advantage with respect to their comprehensibility over
other nonlinear systems (e.g., neural networks). This is because fuzzy rules are lin-
guistically interpretable. Such an inherent advantage, however, is significantly de-
graded due to the above-mentioned two difficulties when fuzzy rule-based systems
are applied to high-dimensional problems. For finding comprehensible fuzzy rule-
based systems for high-dimensional classification problems, fuzzy rule extraction was
formulated as a three-objective optimization problem in Ishibuchi, Nakashima and
Murata (2001) where the classification performance was maximized, the number of
fuzzy rules was minimized, and the number of antecedent conditions was minimized.
Three-objective GBML (genetics-based machine learning) algorithms were used for
finding non-dominated rule sets with respect to the three objectives. Because the
number of possible fuzzy rules exponentially increases with the number of attributes
(i.e., with the dimensionality of problems), the search space for finding good rule sets
also exponentially increases. As a result, Pittsburgh-style fuzzy GBML algorithms
where an entire rule set is represented by a string require long CPU time and large
memory storage in the case of high-dimensional problems. On the other hand,
Michigan-style fuzzy GBML algorithms where a single fuzzy rule is represented by a
string cannot directly optimize rule sets while they require much less CPU time and
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memory storage. An alternative approach called iterative fuzzy GBML algorithms
has been proposed for efficiently extracting fuzzy rules using heuristic rule selection
criteria (e.g., Gonzalez and Perez (1999), Castillo, Gonzalez and Perez (2001),
Castro, Castro-Schez and Zurita (2001)). Such an iterative fuzzy GBML algorithm
searches for fuzzy rules using a given heuristic rule selection criterion. When a fuzzy
rule is found, training patterns covered by that rule are removed from the training
data set. Then another fuzzy rule is found using the modified training data set. In this
manner, the interaction among fuzzy rules is taken into account in the rule gener-
ation process. Iterative fuzzy GBML algorithms require much less memory storage
and computation time than Pittsburgh-style algorithms where an entire rule set is
represented by a string. On the other hand, iterative algorithms often lead to higher
classification performance than Michigan-style algorithms where each fuzzy rule is
represented by a string and a population corresponds to a fuzzy rule set. For further
discussions on these three classes of fuzzy GBML algorithms, see Cordon et al
(2001).

The aim of this paper is to compare several heuristic rule selection criteria used
for fuzzy rule extraction from numerical data. In our computational experiments,
we extract a pre-specified number of fuzzy rules using each heuristic criterion. The
performance of extracted fuzzy rules is examined on well-known data sets with
many continuous attributes available from the UCI ML repository. Experimental
results show that better results are obtained from composite criteria of confidence
and support measures than their individual use. Experimental results also show
that any heuristic criteria do not always generate fuzzy rules with high classifica-
tion performance when we use a simple greedy method for rule extraction (i.e.,
when we simply extract a pre-specified number of the best fuzzy rules with respect
to a given heuristic criterion without taking into account the combinatorial effect
of extracted fuzzy rules). Finally we show that genetic algorithm-based rule
selection can improve the classification ability of extracted fuzzy rules. This means
that heuristic rule selection criteria can be used as a pre-screening tool of candidate
fuzzy rules in genetic algorithm-based rule selection (Ishibuchi and Yamamoto
(2002a), (2003a), (2003b)).

2. Fuzzy Rules for Classification Problems

For classification problems with n attributes, we use fuzzy rules of the following
form:

Rule R, : If xy is 4, and ... and x, is Ay, then Class C, with CF,, (5)

where R, is the label of the ¢-th rule, x = (xy,...,x,) is an n-dimensional pattern
vector, A, is an antecedent fuzzy set (i.e., linguistic value such as small and large in
Figure 1), C, is a class label, and CFj is a rule weight. It should be noted that the
consequent part of our fuzzy rule for classification problems in (5) is totally different
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from standard fuzzy rules for function approximation problems. The consequent of
our fuzzy rule is a non-fuzzy class label (i.e., Class C, such as Class 1 and Class 2).
Moreover the rule weight CF,, which is a real number in the unit interval [0, 1], is
assigned to each fuzzy rule. The rule weight works as the strength of each fuzzy rule
when a new pattern is classified by a set of fuzzy rules (for details, see Ishibuchi and
Nakashima (2001)). For other types of fuzzy rules for pattern classification prob-
lems, see Cordon, del Jesus and Herrera (1999).

First we explain how the consequent class C, and the rule weight CF, of the fuzzy
rule R, in (5) are specified from numerical data. Let us assume that we have m

labeled patterns x, = (x,1,...,Xm), p = 1,2,...,m from M classes (i.e., we have an
n-dimensional M-class problem). We define the compatibility grade of each training
pattern x, with the antecedent part A, = (41, ..., A4 ) of the fuzzy rule R, using the

product operator as

,qu (Xll) = ,qul (xpl) ' :uA,ﬂ (XPZ) R ,uA,m (xpn)a (6)

where p A,,,-(') is the membership function of the antecedent fuzzy set A,;. The fuzzy
conditional probability Pr(Class h|A,) of Class h (h=1,2,..., M) for the anteced-
ent part A, is numerically approximated as follows (van den Berg, Kaymak and van
den Bergh (2002)):

m

Pr(Class hlA) = S (%) /> iua, (x)): (7)
p=1

x,eClass »

The right-hand side of (7) is often referred to as the confidence of the fuzzy asso-
ciation rule “A, = Class /" in the field of fuzzy data mining (Hong, Kuo and Chi
(2001), Ishibuchi, Yamamoto and Nakashima (2001)). This definition of the confi-
dence is a natural extension of its non-fuzzy version (Agrawal and Srikant (1994),
Agrawal et al (1996)). That is, the confidence of the fuzzy association rule
“A, = Class /" is defined as follows:

m

(A= Class i) = S (6) /> (%), (8)
p=1

x,eClass
The consequent class C, of the fuzzy rule R, is specified by identifying the class with

the maximum fuzzy conditional probability (i.e., the maximum confidence). That is,
we choose the consequent class C, so that the following relation holds:

c(A, = Class C,) = max{c(A, = Class h)|h=1,2,..., M}. 9)

On the other hand, there exist several alternative methods for specifying the rule
weight CF, (Ishibuchi and Yamamoto (2002b)). The choice of an appropriate
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specification depends on a fuzzy reasoning method used for pattern classification
(van den Berg, Kaymak and van den Bergh (2002)). The specification of the rule
weight of each fuzzy rule has a large effect on the classification performance of fuzzy
rule-based systems (Ishibuchi and Nakashima (2001)).

In this paper, we use a single winner-based method (Ishibuchi, Nakashima and
Morisawa (1999)). Let S be the set of fuzzy rules in our fuzzy rule-based system. A
single winner rule R, is chosen from the rule set S for an input pattern x, as

Ha, (Xp) - CF, = max{,qu(X,,) - CFy|R, € S} (10)

That is, the winner rule has the maximum product of the compatibility grade and the
rule weight in the fuzzy rule-based system. For other fuzzy reasoning methods in
fuzzy rule-based classification systems, see Cordon del Jesus and Herrera (1999),
Ishibuchi, Nakashima and Morisawa (1999), and van den Berg, Kaymak and van
den Bergh (2002).

When we use the single winner-based method, the following definition of the rule
weight CF, is appropriate for two-class problems (Ishibuchi and Nakashima (2001),
Ishibuchi and Yamamoto (2002b)):

CF. — c(A; = Class 1) — ¢(A, = Class 2), if C, =Class I, (1)
77 ) ¢(A; = Class 2) — ¢(A; = Class 1), if C, = Class 2.

The point is the extension of this formulation to the case of multi-class problems. In
this paper, we use the following definition (which is the fourth definition in Ishibuchi
and Yamamoto (2002b)) because good results were obtained from this definition in
our preliminary computational experiments.

CF, = ¢(A, = Class C,) — ¢(A, = Class C,), (12)
where
- M
c(A; = Class C;) = Zc(Aq = Class h). (13)

=1
h#Cq

In this definition, our M-class pattern classification problem is virtually handled as a
two-class problem where classification is performed between Class C, and a merged
class including all the other classes (i.e., C, = {1,2,..., M} — {C,}). When CF, is
negative in (12), we do not generate any fuzzy rule with the antecedent part A,,.

Other possible definitions examined in Ishibuchi and Yamamoto (2002b) are as
follows:

CF, = c(A, = Class C,), (14)
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CF, = c¢(A, = Class C,) — ¢(A, = Class C,)/(M — 1), (15)
CF, = c(A, = Class C;) — ¢(A, = Class Capngq), (16)

where Class Cjpq is the class with the second largest confidence for the antecedent
part A,. The definition in (15) has been used in many fuzzy rule-based classification
systems in our former studies (e.g., Ishibuchi, Nakashima and Murata (1999),
Ishibuchi and Nakashima (1999)) since Ishibuchi, Nozaki and Tanaka (1992). On
the other hand, the definition in (16) has been used in some recent studies (e.g.,
Ishibuchi and Yamamoto (2003b)).

As shown in Ishibuchi and Nakashima (2001), fuzzy rule-based systems can
generate various classification boundaries by adjusting the rule weight of
each fuzzy rule even when we use fixed membership functions. In Figure 2, we
show some examples of classification boundaries generated by the four fuzzy
rules in Figure 1 using different rule weights. It should be noted that the mem-
bership function of each antecedent fuzzy set in Figure | is not modified in
Figure 2. A real number in each decision area in Figure 2 shows the rule weight
of the corresponding fuzzy rule. As we can see from this figure, classification
boundaries are not always parallel to the axes of the pattern space. This is a
characteristic feature of fuzzy rule-based classification. For detailed comparison
between fuzzy and non-fuzzy rule-based classification, see Ishibuchi and
Yamamoto (2002c).

3. Rule Selection Criteria

In the field of data mining, the confidence and the support of association rules have
been often used as rule selection criteria (Agrawal and Srikant (1994), Agrawal et al

1.0
0.4
1.0 1.0 0.8
X2
1.0 1.0 1.0
0.3
0.0
0.0 0.01 1.0
X X1

Figure 2. Some examples of classification boundaries generated by the four fuzzy rules in Figure 1.
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(1996)). In (8), we have already shown an extension of the confidence to the case of
fuzzy rules. In the same manner, the support is defined for the fuzzy association rule
“A, = Class i as follows (Hong, Kuo and Chi (2001), Ishibuchi, Yamamoto and
Nakashima (2001)):

1
s(A, = Class h) = P Z Ha, (Xp), (17)
x,eClass #

where m is the number of given training patterns. In our former studies
(Ishibuchi, Yamamoto and Nakashima (2001), Ishibuchi and Yamamoto
(2003b)), we used the confidence, the support and their product as rule selection
criteria for extracting a pre-specified number of fuzzy rules from numerical data.
Experimental results in those studies showed that the product criterion of the
confidence and the support outperformed their individual use. In this paper, we
examine two composite criteria of the confidence and the support in addition to
their product. One is the support criterion with the minimum confidence level
where the rule selection is performed using the support criterion from fuzzy rules
whose confidence values are larger than or equal to a pre-specified minimum
confidence level. The other is the confidence criterion with the minimum support
level.

In an iterative fuzzy GBML algorithm called SLAVE in Gonzalez and Perez (1999)
and Castillo, Gonzalez and Perez (2001), a heuristic rule selection criterion was used
for extracting fuzzy rules from numerical data. While a somewhat complicated
general formulation was shown in those studies, the rule selection criterion in their
computational experiments was very simple: n* (R) — n~ (R) where nt(R) and n~ (R)
are the number of positive and negative examples, respectively. This measure can be
fuzzified as

fsLave(Ry) =n"(Ry) —n (Ry) = Z Ha, (xp) — Z Ha, (Xp)-

x,eClass ¢, x,¢Class ¢,
(18)

This formulation can be equivalently rewritten by dividing the right-hand side by m
as

fsLave(R,) = s(A, = Class C,) — s(A, = Class C,), (19)

where

M
s(A; = Class C,) = Zs(Aq = Class h). (20)
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On the other hand, the following measure is used in an iterative fuzzy GBML
algorithm for the learning of maximal structure fuzzy rules in Castro, Castro-Schez
and Zurita (2001):

_ nT(Ry) % |Class Cy| —n(Ry)
~ |Class C,| |Class C,|

fCastro(Rq) ) (21)

where |Class C,| and |Class C,| are the number of training patterns in Class C, and
the other classes, respectively. This formulation can be fuzzified and equivalently
rewritten by dividing the right-hand side by m* as

s(A, = Class Cy) y (|Class C,| S

= . A, = Class C,) |.
|Class C,| x |Class Cy| m (4 q>>

fCastro (Rq)
(22)

4. Computational Experiments

In our computational experiments, we used four data sets in Table 1 available from
the UCI ML repository. For comparison, some reported results by fuzzy rule-based
systems are also included in Table 1 where the average error rates on test data and
the average number of fuzzy rules are cited from the literature. We also show some
reported results by the C4.5 algorithm (Quinlan (1993)) in the literature. Quinlan
(1996) proposed a modified version (Rel 8 in Table 2) of his C4.5 algorithm (Rel 7 in
Table 2) for appropriately handling continuous attributes. He evaluated the per-
formance of each version by the 10-CV (10-fold cross-validation) technique. The
whole 10-CV procedure was iterated 10 times (i.e., 10 x 10-CV) using different
partitions of each data set into ten subsets in Quinlan (1996). Elomaa and Rousu
(1999) proposed an optimal discretization method of continuous attributes into
multiple intervals. They examined the performance of six variants of the C4.5
algorithm, which were implemented using three discretization methods (i.e., binary

Table 1. Data sets used in this paper and some reported results by fuzzy rule-based systems.

Data set  Number of Number of Number of  Reported results by fuzzy rule-based systems

attributes samples classes
Reference Error rate # of rules
Glass 9 214 6 Sanchez, Couso and 42.1 8.5
Corrales (2001)
Wisconsin 9 683 2 Sanchez, Couso and 4.65 5.1
Corrales (2001)
Wine 13 178 3 Castillo, Gonzalez and 3.24 5.2

Perez (2001)
Sonar 60 208 2 - - -
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Table 2. Reported error rates by some variants of the C4.5 algorithm.

Data set Quinlan (1996) Elomaa and Rousu (1999)
Rel 7 Rel 8 Best Worst
Glass 32.1 32.5 27.3 322
Wisconsin 5.29 5.26 5.1 6.0
Wine - - 5.6 8.8
Sonar 28.4 25.6 24.6 35.8

discretization, greedy multisplitting, and optimal multisplitting) and two evaluation
functions (i.e., gain ratio and balanced gain). The performance of each variant was
examined in Elomaa and Rousu (1999) by ten iterations of the whole 10-CV pro-
cedure as in Quinlan (1996). We show in the last two columns in Table 2 the worst
and best results among the six variants reported in Elomaa and Rousu (1999) for
each data set.

In the Wisconsin breast cancer data, 16 samples with missing values (among 699
samples in total) were not used in our computational experiments. All attribute
values of the four data sets were normalized into real numbers in the unit interval
[0, 1] before extracting fuzzy rules.

Since we did not know an appropriate fuzzy partition for each attribute of each
test problem, we simultaneously used four different fuzzy partitions in Figure 3. One
of the 14 triangular fuzzy sets was used as an antecedent fuzzy set. For generating
simple fuzzy rules (i.e., short fuzzy rules with a small number of antecedent condi-
tions), we also used don’t care as an antecedent fuzzy set. The membership function

1.0 1.0
0.0 0.0
0.0 1.0 0.0 1.0
1.0 1.0
0.0 0.0
0.0 1.0 0.0 1.0

Figure 3. Four fuzzy partitions used in our computational experiments.
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of don’t care is defined as gy, .ae(x) = 1 for Vx because don’t care is compatible
with any input values. Since each antecedent fuzzy set may assume one of the 14
triangular fuzzy sets in Figure 3 or don’t care, the total number of combinations of
antecedent fuzzy sets is 15" for an n-dimensional problem. Our task is to find a small
number of comprehensible fuzzy rules with high classification ability from 15"
possible rules. In our computational experiments on the sonar data with 60 attributes
(i.e., n = 60), we only examined fuzzy rules with two or less antecedent conditions
(i.e., with (n—2) or more don’t care conditions). For the other data sets, we
examined fuzzy rules with three or less antecedent conditions. The restriction on the
number of antecedent conditions is for finding short (i.e., comprehensible) fuzzy
rules as well as for decreasing the CPU time.

We extracted N fuzzy rules (N =1,2,...) for each class using one of the seven
rule selection criteria described in the previous section: The confidence, the sup-
port, their product, the confidence with the minimum support level, the support
with the minimum confidence level, the SLAVE criterion, and the Castro criterion.
Several values of the minimum support and confidence levels were examined for
each data set. The rule extraction was performed for each class in a simple greedy
manner. First, the best fuzzy rule with respect to a given rule selection criterion
was found for each class. Next, the second best fuzzy rule was found. In this
manner, the best N fuzzy rules were found for each class. There were many cases
where multiple fuzzy rules had the same best value of a given rule selection
criterion. In those cases, the tiebreak was performed by applying the following
two-step procedure to the multiple fuzzy rules with the same best value of the
primary criterion (i.e., one of the seven rule selection criteria). The first tiebreak
criterion was the number of antecedent conditions. The fuzzy rule with the least
antecedent conditions was chosen. This tiebreak criterion is to favor simpler fuzzy
rules. When a single fuzzy rule could not be chosen by the first tiebreak criterion,
we used the total area of the antecedent fuzzy sets of each fuzzy rule as the second
tiebreak criterion. The total area was calculated by simply summing up the area of
the triangular membership function of each antecedent fuzzy set in each fuzzy
rule. The fuzzy rule with the largest total area was chosen from the competitive
fuzzy rules with the same value of the primary criterion and the same number of
antecedent conditions. The second tiebreak criterion is to favor more general
fuzzy rules that cover larger subspaces of the pattern space. When multiple fuzzy
rules still had the same best evaluation with respect to all the three criteria (i.e.,
the primary criterion and the two tiebreak criteria), a single rule was randomly
selected from those best rules. This two-step tiebreak process was used together
with each of the seven primary rule selection criteria. It should be noted that our
computational experiments in this section are designed for comparing various rule
selection criteria with each other (not for finding optimal fuzzy rule-based clas-
sification systems). Thus we use simple experimental settings where a pre-specified
number of fuzzy rules are selected for each class. The number of fuzzy rules for
each class is adjustable in our genetic algorithm-based rule selection method
discussed in Section 5.
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Table 3. Average error rates including rejection rates on test data of the glass data set.

Number ¢ K Product ¢ with minimum s-level s with minimum c¢-level SLAVE Castro
of rules

5201 502 503 06 ¢:07 08

6 9495 51.40 4785 66.26 73.55 7481 49.58 4224 70.28 46.12  48.88
12 94.11 4846 4636 59.44 66.82 68.60 48.83 41.12  68.69 45.56  47.90
18 9336 48.18 47.34 5827 65.19 6724 48.08 41.03 67.57 4598  47.52
24 9285 4776 4692 5495 6220 6421 4799 40.89 66.73 46.07 48.41
30 92.15 48.04 46.36 5458 61.68 63.74 47.57 40.84 65.79 46.54  48.08
60 89.63 4598 46.07 5449 60.51 62.06 46.54 4131 63.64  46.17 47.29

Table 4. Average error rates including rejection rates on test data of the Wisconsin breast cancer data set.

Number ¢ s Product ¢ with minimum s-level s with minimum c-level ~SLAVE Castro
of rules

s:0.1 502 503 ¢:06 07 08

90.76  9.78 6.59  51.23 5142 33.09 9.84  9.08 7.35 6.28 5.70
87.07 10.34  7.01 4246 4246 2335 1028  8.30 8.13 6.85 5.90
8485 895 7.07 3792 3773 18.67 9.11 5.62 7.09 6.98 4.71
83.37 6.18 594 33.03 3288 14.96 599 546 6.87 6.21 4.58
8246 520 542  28.57 2896 12.53 520  5.46 6.62 5.21 4.48
60 76.65 425 397 15.58  16.34 4.44 4.19 447 4.55 4.00 4.01

[ RN NN N N0}

—

Table 5. Average error rates including rejection rates on test data of the wine data set.

Number c s Product ¢ with minimum s-level s with minimum c-level SLAVE Castro
of rules

s:01 502 503 06 ¢:07 08

3 73.60 3022 1146 7270 7433 7421 1539 1287 1096 1135 16.29
6 66.01 2292 10.84 66.07 6657 6646 13.71 11.40 7.25 7.53 12.53
9 5275 15.11 792 3579 38.88 39.10 14.78 9.72 6.52 7.13  10.11
12 49.89 15.45 6.52  30.17 3320 3371 1449 8.88 6.91 7.25  8.09
15 47.08 15.79 6.57 27.81 2539 26.18 13.54 7.47 6.69 747  7.53
60 44.61 11.18 6.91 5.56 5.84 5.11 6.52 6.69 6.80 6.18 7.13

In order to evaluate the classification performance on test data (i.e., generalization
ability), we used the 10-CV technique for all the four data sets. Since the classifi-
cation rate estimated by the 10-CV technique usually depends on the data partition
into 10 subsets, we executed the whole 10-CV procedure five times using different
data partitions. Average error rates (including rejection rates) on test data estimated
by the 10-CV technique are summarized in Tables 3—6. Note that each error rate in
those tables includes the rejection rate (i.e., the error rate was calculated as
(I —=r.) x 100% where r. is the correct classification rate). On the other hand,
average rejection rates are shown in Tables 7-10. Moreover, the average rule length
over extracted fuzzy rules is shown in Tables 11-14. It should be noted that the
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Table 6. Average error rates including rejection rates on test data of the sonar data set.

Number ¢ K Product ¢ with minimum s-level s with minimum c-level SLAVE Castro
of rules

s:0.1 502 503 06 ¢:07 08

2 98.37 46.63 46.83 97.84 98.03 98.41 26.68 27.55 43.89 27.55 27.60
4 96.49  46.63 47.69 9438 96.59 96.54 26.78 27.84 38.99 2740 27.50
6 95.10 46.78 47.45 78.89 9346 9250 27.50 27.55 36.59 2678 27.50
8 94.52  46.78 47.12 68.94 88.89 88.56 2798 26.54 3476 2639 27.79
10 94.09 47.07 4548 64.47 85.05 8399 2798 2635 3385 2635 2740
60 87.55 46.35 43.03 51.68 47.84 48.17 27.16 2519 2635 2375 25.10

Table 7. Average rejection rates on test data of the glass data set.

Number c K Product ¢ with minimum s-level s with minimum c-level SLAVE Castro
of rules

s:0.1 502 503 06 07 038

6 91.87 0.56 1.40 27.57 51.22 5645 1.96 7.06 4565 495 042
12 89.44 042 1.26 17.80  37.06 47.48 1.21 537 4252 374 028
18 87.94 0.28 1.21 1528 29.02 4374 0.79 472 4033 290 0.23
24 86.64 0.23 1.07 10.89  25.09 3893  0.70 388 3883 238 0.19
30 85.61 0.23 1.03 9.02 2336 36.73 0.56 280 3729 229 0.14
60 82.10  0.09 0.79 093 1631 2640 042 093 3234 136 0.09

Table 8. Average rejection rates on test data of the Wisconsin breast cancer data set.

Number c s Product ¢ with minimum s-level s with minimum c-level SLAVE Castro
of rules

5201 5:02 503 06 07 08

89.66  0.00 1.35 50.86 50.94 32.05  0.00 0.40 0.89 1.29  1.76
8593  0.00 1.13 41.70  41.54  21.71 0.00 0.32 0.32 .13 1.43
83.73  0.00 0.92 36.65 36.49 1691 0.00 0.13 0.04 097 0.38
82.24  0.00 0.38 31.23  31.00 1297  0.00 0.00 0.00 0.57 0.18
81.33  0.00 0.13 26.33 2691 1042  0.00 0.00 0.00 0.16 0.07
60 74.57  0.00 0.00 12.21  10.50 0.98  0.00 0.00 0.00 0.00  0.00

[ RN NN N N0}

—

number of actually extracted fuzzy rules was not always the same as the number of
fuzzy rules specified in the first column of each table. For example, when we used the
minimum support (or confidence) level in the rule extraction, there were several cases
where a pre-specified number of fuzzy rules could not be generated for some
minority classes because many fuzzy rules did not satisfy the given minimum level. In
those cases, the number of actually extracted fuzzy rules was smaller than the
specified number in the first column of each table.

From Tables 3—6, we can see that better results were obtained in many cases from
the three composite criteria based on both the confidence and the support than their
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Table 9. Average rejection rates on test data of the wine data set.

Number c s Product ¢ with minimum s-level s with minimum c-level SLAVE Castro
of rules

5001 5:02 503 06 07 08

3 73.20  0.06 4.16 7230  73.82  73.76  0.00 0.00 4.72 6.18 1.35
6 6522 0.00 0.51 65.56  65.84 6584  0.00 0.00 0.51 1.40  0.00
9 51.69  0.00 0.22 3146 3494 3517  0.00 0.00 0.00 .12 0.00
12 48.82  0.00 0.00 23.54 2848 29.16  0.00 0.00 0.00 0.28  0.00
15 45.90  0.00 0.00 1921 1871 1949  0.00 0.00 0.00 0.22  0.00
60 42.70  0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00  0.00

Table 10. Average rejection rates on test data of the sonar data set.

Number c s Product ¢ with minimum s-level s with minimum c-level SLAVE Castro
of rules

s:0.1 502 503 06 07 08

96.59  0.00 0.00 96.35 96.83  96.63  0.19 1.59 2337 048 048
93.17  0.00 0.00 91.39 9428 9346  0.00 0.53 1529  0.00 0.19
89.09  0.00 0.00 68.80 88.46 87.12  0.00 0.29 11.11 0.00 0.10
87.69  0.00 0.00 5538 81.97 80.82  0.00 0.10 8.65 0.00 0.00
86.92  0.00 0.00 48.65 76.25 74.81 0.00 0.00 6.44  0.00 0.00
60 78.22  0.00 0.00 27.84 3.17 332 0.00 0.00 0.05  0.00 0.00
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Table 11. Average rule length over extracted rules for the glass data set.

Number c K Product ¢ with minimum s-level s with minimum c-level SLAVE Castro
of rules

5201 5:02 503 06 07 08

6 1.50 2.49 2.79 1.40 1.04 1.00 2.69 2.71 2.72 285  2.57
12 1.56 2.51 2.81 1.40 1.08 1.00 2.73 2.76 2.76 2.85 259
18 1.60 2.56 2.84 1.40 1.11 1.00 2.76 2.78 2.79 2.84 259
24 1.66 2.61 2.84 1.42 1.14 1.00 2.78 2.81 2.80 2.82 262
30 1.73 2.64 2.85 1.43 1.15 1.00 2.80 2.83 2.78 283  2.65
60 1.93 2.71 2.86 1.52 1.13 1.00 2.85 2.87 2.76 282 272

individual use (i.e., the second and third columns). In general, the confidence cri-
terion tends to choose fuzzy rules that cover only a small number of patterns from
the same class. Thus the classification of many patterns is likely to be rejected (see
Tables 7-10). On the other hand, the support criterion tends to choose fuzzy rules
that cover many patterns from multiple classes. Thus some patterns are likely to be
misclassified while rejection rates are not high (see Tables 7-10). The point is to find
a good balance between these two tendencies by combining the confidence and the
support into a single rule selection criterion. The SLAVE and Castro criteria can be
viewed as attempts for finding such a good balance.
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Table 12. Average rule length over extracted rules for the Wisconsin breast cancer data set.

Number c s Product ¢ with minimum s-level s with minimum c-level SLAVE Castro

of rules
5001 5:02 503 06 07 08

1.80  0.50 1.99 2.00 2.00 2.00 0.50 1.00 1.08 1.99 197
204 0.75 1.96 2.07 2.00 2.00 0.75 1.00 1.18 193 1.90
2.16  0.84 1.95 2.07 2.00 2.00 0.84 1.02 1.22 1.94 192
224 0.89 1.95 2.08 2.00 2.00 0.89 1.03 1.26 193 1.95
229 092 1.95 2.09 2.00 2.00 0.92 1.12 1.38 1.94 198
60 2.46 1.55 222 2.36 2.00 2.00 1.56 1.64 1.76 224 223
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Table 13. Average rule length over extracted rules for the wine data set.

Number c s Product ¢ with minimum s-level s with minimum c-level SLAVE Castro

of rules
s:0.1 5:02 503 06 07 08

3 1.00 1.23 1.00 1.00 1.00 1.00 1.17 1.30 1.02 1.00  1.00
6 1.00 1.42 1.05 1.00 1.00 1.00 1.13 1.42 1.21 1.18  1.00
9 1.19 1.38 1.13 1.13 1.00 1.00 1.18 1.55 1.47 1.34  1.01

12 1.30 1.35 1.23 1.22 1.00 1.00 1.31 1.62 1.59 145 1.17
15 1.37 1.31 1.31 1.28 1.00 1.00 1.40 1.62 1.68 1.53  1.27
60 1.82 1.70 1.75 221 1.04 1.00 1.81 1.98 2.00 1.89  1.75

Table 14. Average rule length over extracted rules for the sonar data set.

Number c s Product ¢ with minimum s-level s with minimum c-level SLAVE Castro

of rules
s:0.1 502 503 06 07 08

1.00  0.52 0.52 1.00 1.00 1.00 1.06 1.55 1.78 1.00 1.23
.02 0.78 0.78 1.02 1.00 1.00 1.26 1.75 1.82 .15 1.37
1.15 0.88 0.87 1.11 1.00 1.00 1.33 1.81 1.87 1.34 146
1.23 0.94 0.92 1.17 1.00 1.00 1.39 1.84 1.89 148 1.54
1.28 0.99 0.95 1.22 1.00 1.00 1.44 1.86 1.90 1.56  1.60
60 1.48 1.40 1.33 1.44 1.10 1.00 1.77 1.94 1.95 1.85  1.87

[ RN N N N9}
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Let us examine our experimental results in detail. First we compare our results with
the reported results by fuzzy rule-based systems in Table 1. For the glass data set in
Table 3, a 42.24% average error rate was obtained by six fuzzy rules in the case of
the support criterion with the minimum confidence level 0.7. This average result is
almost the same as a 42.1% average error rate in Table 1 by 8.5 fuzzy rules in
Sanchez, Couso and Corrales (2001). For the Wisconsin breast cancer data set in
Table 4, a 4.71% average error rate was obtained by six fuzzy rules in the case of the
Castro criterion. This average result is almost the same as a 4.65% error rate in
Table 1 by 5.1 fuzzy rules in Sanchez, Couso and Corrales (2001). These observa-
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tions show that good rule sets can be obtained by our simple greedy method for the
glass data set and the Wisconsin breast cancer data set if we appropriately choose a
rule selection criterion. On the other hand, our results in Table 5 (e.g., a 7.25 average
error rate by six fuzzy rules) on the wine data are inferior to the reported result (i.e.,
a 3.24% average error rate by 5.2 fuzzy rules; see Table 1) in Castillo, Gonzalez and
Perez (2001). This observation shows that good rule sets are not always obtained by
our simple greedy method.

Next we compare our results with the reported results by the C4.5 algorithm in
Table 2. While the average error rates by fuzzy rules in Table 3 for the glass data are
much inferior to those by the C4.5 algorithm in Table 2, the performance of fuzzy
rules is comparable to the C4.5 algorithm on the other data sets. For example, the
best average error rate by fuzzy rules in Table 4 on the Wisconsin breast cancer data
was 3.97% while the best result by the C4.5 algorithm in Table 2 was 5.1%. A 5.11%
average error rate was obtained for the wine data by fuzzy rules while the best result
by the C4.5 algorithm was 5.6% in Table 2. The best average error rate on the sonar
data by fuzzy rules was 23.75% in Table 6, which is almost the same as the best
result by the C4.5 algorithm in Table 2 (i.e., 24.6%). It should be noted that
threshold values were carefully specified in a sophisticated manner for each con-
tinuous attribute in each variant of the C4.5 algorithm in Table 2. That is, interval
partitions were appropriately specified based on the distribution of training patterns.
On the other hand, we simply used homogeneous fuzzy partitions independent of the
distribution of training patterns. High performance of fuzzy rules was realized by
their ability to adjust classification boundaries through rule weights as shown in
Figure 2.

In Tables 3-6, it is very interesting to observe that the classification performance
does not monotonically increase with the number of fuzzy rules in some cases
(e.g., see the last column of Table 3). This is because the interaction among
selected fuzzy rules was not taken into account in our simple greedy method. This
observation suggests the possibility that better results can be obtained by
searching for appropriate combinations of a smaller number of fuzzy rules. In the
next section, we will examine this possibility using genetic algorithms. It should be
noted that the above-mentioned drawback of our simple greedy method was
partially resolved in the iterative fuzzy GBML algorithms (Gonzalez and Perez
(1999), Castillo, Gonzalez and Perez (2001), Castro, Castro-Schez and Zurita
(2001)) by removing training patterns that had already been covered by the pre-
viously found rules.

In our computational experiments, we used the restriction on the rule length for
generating short fuzzy rules and for decreasing the CPU time. From the point of
view of the CPU time, this restriction is not always necessary for all the seven rule
selection criteria. In the case of the support criterion, we can utilize the well-known
Apriori algorithm, which was proposed for extracting non-fuzzy association rules in
the field of data mining (Agrawal et al (1996)). The following relation holds for fuzzy
association rules from the definition of the support in (17) when the inclusion
relation A, C B, holds:
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s(Ay = Class C,) < s(B; = Class Cy), (23)

where the inclusion relation between the two fuzzy vectors A, and B, (i.e., between
the two antecedent parts) is defined by their elements as

A CB, & A, C B, for Vi (24)

The inequality in (23) means that the support of a fuzzy rule does not increase when
we add an additional condition to its antecedent part. For example, the inequality
condition in (23) holds for A, = (small, small, dont care) and B, =
(small, don’t care, dont care). When the support of the fuzzy rule “B, = Class C,”
is not high, we do not have to examine any fuzzy rules “A, = Class C,” satisfying
the inclusion relation A, C B,. Thus we can efficiently perform the fuzzy rule
extraction using the support criterion. This search technique can be also utilized for
the product criterion, the SLAVE criterion, and the Castro criterion using the fol-
lowing relations:

c(Ry) - s(Ry) < s(A, = Class C,), (25)
SsLave(Ry) < s(A, = Class C,), (26)
lass C,

Scastro(Ry) < (A4 = Class C,) x M. )

m

On the other hand, the confidence has no monotonicity property similar to (23).
The confidence tends to increase as an additional condition is added to the ante-
cedent part (i.e., as the rule length increases). Thus the confidence criterion usually
needs the restriction on the rule length. In the case of the support criterion with the
minimum confidence level, the necessity of the restriction on the rule length de-
pends on the value of the minimum confidence level. When the minimum confi-
dence level is very low, this criterion is almost the same as the support criterion.
Thus the restriction on the rule length is not necessary. On the other hand, this
criterion with no restriction on rule length may require long CPU time when the
minimum confidence level is high. In this case, we may have to examine a huge
number of long fuzzy rules when short fuzzy rules do not satisfy the minimum
confidence level. The confidence criterion with the minimum support level also
requires the restriction on the rule length when the minimum support level is very
low. In this case, the minimum support level is not likely to play an important role
for decreasing the search space.
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5. Genetic Algorithm-Based Rule Selection

In the above computational experiments, we did not take into account the combi-
natorial effect of generated fuzzy rules (i.e., the interaction among them). Thus we
could not always find good rule sets. We will be able to find better rule sets with
higher classification performance by directly searching for rule sets (i.e., combina-
tions of fuzzy rules) as in Pittsburgh-style fuzzy GBML algorithms (e.g., see Cordon
et al (2001)). Such a fuzzy GBML algorithm, however, usually requires long CPU
time and large memory storage for finding good rule sets for high-dimensional
problems. A promising idea for efficiently finding good rule sets is to search for good
subsets of fuzzy rules generated by a heuristic rule selection criterion (Ishibuchi and
Yamamoto (2002a), (2003b)). In this section, we demonstrate that good rule sets can
be obtained by genetic algorithms as subsets of fuzzy rules generated in the previous
section. Of course, the performance of obtained rule sets (i.e., obtained fuzzy rule-
based classification systems) totally depends on the choice of candidate fuzzy rules,
which are generated by heuristic rule selection in the previous section. When the
number of candidate fuzzy rules is very small, we can examine all of their subsets as
fuzzy rule-based classification systems. By increasing the number of candidate fuzzy
rules, we can increase the chance to find good subsets. At the same time, the size of
the search space is exponentially increased. Thus we need a good heuristic rule
selection criterion for finding a tractable number of candidate fuzzy rules. It is a very
difficult task to find a good rule set without such a heuristic procedure. This is
because the search space with possible fuzzy rules is huge for high-dimensional
pattern classification problems involving tens of input variables (e.g., the number of
possible fuzzy rules was 15% for the sonar data with 60 attributes in the previous
section).

In our computational experiments, we used 60 fuzzy rules generated by the product
criterion as candidate rules in rule selection. A subset S of those 60 fuzzy rules was
handled as an individual and represented by a binary string of the length 60 (i.e.,
S = 5152,...,50). In this coding, s, = 1 and s, = 0 mean the inclusion of the g-th
fuzzy rule R, in S and the exclusion of R, from S, respectively. A genetic algorithm
was used for finding the best subset with respect to the following fitness function:

fitness(S) = wy - f1(S) — wa - f2(S) — w3 - f3(S), (28)

where f1(S) is the number of correctly classified training patterns by S, f>(S) is the
number of fuzzy rules in S, f3(S) is the total number of antecedent conditions (i.e.,
total rule length) in S, and w; is a positive weight for the i-th objective f;(S). In our
computational experiments, the weight values were specified as w; = 100, w, = 10
and w3 = 1.

As in the previous section, we executed the whole 10-CV procedure five times for
calculating the average error rate on test data for each data set. A genetic algorithm
with the following specifications was used for searching for a rule set with the
maximum value of the fitness function in (28).
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Table 15. Genetic algorithm-based rule selection from 60 candidate fuzzy rules.

Data set Before rule selection After rule selection
Error rate # of rules Error rate # of rules
Glass 46.07 60 41.84 7.72
Wisconsin 3.97 60 3.84 4.58
Wine 6.91 60 6.95 5.44
Sonar 43.03 60 31.25 4.00

Table 16. Genetic algorithm-based rule selection from 600 candidate fuzzy rules.

Data set Before rule selection After rule selection
Error rate # of rules Error rate # of rules
Glass 44.72 600 40.38 11.88
Wisconsin 3.65 600 3.25 7.76
Wine 4.49 600 6.90 5.68
Sonar 29.28 600 24.06 7.04

Selection: Standard binary tournament selection,

Crossover: Standard uniform crossover with the crossover rate 0.8,
Mutation: Standard flip-flop mutation with the mutation rate 1/60,
Population size: 500 strings,

Generation update: Standard generation model with a single elite individual,
Stopping condition: 5000 generations.

Experimental results were summarized in Table 15. From this table, we can see
that the average error rates were improved by removing unnecessary fuzzy rules (i.e.,
finding good subsets of fuzzy rules extracted by the simple greedy method) except for
the case of the wine data. It should be noted that the number of fuzzy rules was
significantly decreased from 60. This means that the interpretability of fuzzy rule-
based systems was significantly improved.

We also performed similar computational experiments by extracting much more
fuzzy rules (i.e., 600 rules) as candidate rules using our simple greedy method. A
genetic algorithm was used for finding good subsets of those 600 fuzzy rules. We
used the same parameter specifications as in the previous computational experi-
ments except for the mutation probability. We specified it as 1/600 because the
string length was 600. Experimental results were summarized in Table 16. From
the comparison between Tables 15 and 16, we can see that lower error rates were
obtained in Table 16 than Table 15. This improvement in the performance of se-
lected fuzzy rules was realized at the cost of the increase in the CPU time and the
required memory storage. For example, the average CPU time for a single run of
the genetic algorithm for the glass data set was 8.33 min in Table 15 with 60
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candidate rules while it was 13.75 min in Table 16 with 600 rules. Moreover the
increase in the number of candidate fuzzy rules significantly increases the difficulty
in the search for good rule sets because the size of the search space is 2¢ where Q is
the number of candidate fuzzy rules. Thus the number of candidate rules should be
appropriately specified. From the comparison of our results in Table 16 with the
reported results in the literature in Tables 1 and 2, we can see that very good
results were obtained by the genetic algorithm-based rule selection for the Wis-
consin breast cancer data (a 3.25% average error rate) and the sonar data (i.e., a
24.06% average error rate).

For the simplicity of explanation, we used a single-objective genetic algorithm for
rule selection in this section. Thus we had to pre-specify the weight values in the
fitness function in (28). In our computational experiments, we performed the weight
specification in a trial-and-error manner. If we use a three-objective genetic algo-
rithm for rule selection, such a trail-and-error specification is not necessary and
better results can be obtained (Ishibuchi and Yamamoto (2003a)).

6. Conclusion

In this paper, we first examined the performance of fuzzy rules extracted from
numerical data using heuristic rule selection criteria through computational
experiments on four well-known data sets with many continuous attributes (i.e.,
glass data, Wisconsin breast cancer data, wine data, and sonar data). Experi-
mental results showed that better results were obtained from composite criteria of
the confidence and the support than their individual use. It was also shown that
the SLAVE and Castro criteria also worked well. In our computational experi-
ments, we obtained good results using a simple greedy rule selection method in
comparison with the C4.5 algorithm for the three data sets except for the glass
data when we appropriately chose a rule selection criterion and the number of
extracted fuzzy rules. Finally we showed that the classification performance of
extracted fuzzy rules was improved by searching for their good subsets by genetic
algorithms. This suggests that the combinatorial effect of fuzzy rules (i.e., the
interaction among them) should be taken into account when we design fuzzy rule-
based systems.

Our comparative study in this paper is based on computational experiments for
some benchmark data sets. From those experiments, we do not conclude which
criterion is the best among the examined ones. As our experimental results show,
the choice of a heuristic rule selection criterion seems to be problem-dependent
while we can say that better results were obtained from composite criteria of the
confidence and the support than their individual use. Theoretical studies as well as
further computational experiments may be required for providing guidelines for
the choice of a heuristic rule selection criterion for a particular pattern classifica-
tion problem.
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