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Summary. Themain advantage of evolutionary multi-objective optimization (EMO)
over classical approaches is that a variety of non-dominated solutions with a wide
range of objective values can be simultaneously obtained by a single run of an EMO
algorithm. In this chapter, we show how this advantage can be utilized in the design
of fuzzy ensemble classifiers. First we explain three objectives in multi-objective for-
mulations of fuzzy rule selection. One is accuracy maximization and the others are
complexity minimization. Next we demonstrate that a number of non-dominated
rule sets (i.e., fuzzy classifiers) are obtained along the accuracy-complexity tradeoff
surface from multi-objective fuzzy rule selection problems. Then we examine the
effect of combining multiple non-dominated fuzzy classifiers into a single ensem-
ble classifier. Experimental results clearly show that the combination into ensemble
classifiers improves the classification ability of individual fuzzy classifiers for some
data sets.

22.1 Introduction

A promising approach to the design of reliable classifiers is to combine mul-
tiple classifiers into a single one [2, 10]. Several methods have been proposed
for generating multiple classifiers such as bagging [3] and boosting [12]. The
point in classifier aggregation is to generate an ensemble of classifiers with
high diversity. Ideally the classification errors by each classifier should be un-
correlated. In this chapter, we examine the use of evolutionary multiobjective
optimization (EMO) algorithms for generating an ensemble of fuzzy rule-based
classifiers with high diversity.

The main advantage of evolutionary multiobjective optimization (EMO)
over classical approaches is that many non-dominated solutions can be simul-
taneously obtained by a single run of an EMO algorithm. When an EMO
algorithm is used in the design of an ensemble classifier, a number of non-
dominated classifiers with high diversity can be obtained by its single run. This
advantage has already been utilized in some studies on the design of neural
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network ensembles. For example, reference [1] formulated a two-objective op-
timization problem by dividing the given training patterns into two subsets.
Mean squared errors (MSEs) of a neural network on the two subsets were
used as two objectives to be minimized by an EMO algorithm. An ensemble
classifier was constructed by combining non-dominated neural networks with
respect to the two objectives. On the other hand, Chandra and Yao [4, 5] used
a different formulation in order to increase the diversity of neural networks in
a more direct manner. They formulated a two-objective optimization problem
using an accuracy measure and a diversity measure. The MSE on all the given
training patterns was used as the accuracy measure while the diversity mea-
sure was calculated for each neural network as the difference from the other
individuals in each population during the execution of an EMO algorithm.
An ensemble classifier was constructed by combining non-dominated neural
networks on the accuracy-diversity tradeoff surface. Jin et al. [29, 30] used
an EMO algorithm to minimize the MSE and a complexity measure. They
defined the complexity of a neural network by the number of connections.
Non-dominated neural networks on the accuracy-complexity tradeoff surface
were used to construct an ensemble classifier. Oliveira et al. [32, 31] defined
the complexity of a neural network by the number of input nodes. They used
an EMO algorithm to find non-dominated feature subsets on the accuracy-
complexity tradeoff surface. An ensemble classifier was constructed using the
obtained non-dominated feature subsets.

In the field of fuzzy rule-based systems, the accuracy-complexity tradeoff is
often referred to as the interpretability-accuracy tradeoff. This is because high
interpretability is the main advantage of fuzzy rule-based systems over other
nonlinear systems such as neural networks. EMO algorithms have been used to
design fuzzy rule-based systems with high interpretability and high accuracy
in some studies (e.g., [7], [27, 28], and [35, 36]). In these studies, a number of
non-dominated fuzzy rule-based systems were obtained on the interpretability-
accuracy tradeoff surface. The two-objective fuzzy rule selection method [14]
was one of the first EMO-based approaches to the interpretability-accuracy
tradeoff analysis of fuzzy rule-based systems. A number of non-dominated
rule sets were found with respect to the classification accuracy and the num-
ber of fuzzy rules. This method was extended to the case of three objectives
in [16] by considering the total number of antecedent conditions as an ad-
ditional complexity measure. The three-objective fuzzy rule selection method
was improved by using a state-of-the-art EMO algorithm [21] and a memetic
EMO algorithm [18]. The same idea as the EMO-based multiobjective fuzzy
rule selection was also used for the design of non-fuzzy rule-based classifica-
tion systems [18]. In these studies on fuzzy and non-fuzzy rule selection, a
data mining technique was used to find promising candidate rules. An idea of
constructing fuzzy rule-based ensemble classifiers using EMO algorithms was
proposed in [22]. Almost the same three-objective formulation was also used
in [35].
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In this chapter, we examine the following three formulations of multiobjec-
tive fuzzy rule selection for the design of fuzzy rule-based ensemble classifiers:

Problem 1 (P1): Maximize f1(S) and minimize f2(S),
Problem 2 (P2): Maximize f1(S) and minimize f3(S),
Problem 3 (P3): Maximize f1(S), minimize f2(S), and minimize f3(S),

where

S : A subset of fuzzy rules (i.e., an individual fuzzy rule-based classifier),
f1(S) : The number of correctly classified training patterns by S,
f2(S) : The number of fuzzy rules in S,
f3(S) : The total number of antecedent conditions of fuzzy rules in S.

Since the number of antecedent conditions is often referred to as the rule
length, f3(S) can be viewed as the total rule length of fuzzy rules in S.

An EMO algorithm is applied to the above-mentioned three fuzzy rule se-
lection problems to find non-dominated rule sets with different interpretability-
accuracy tradeoffs. We use the NSGA-II algorithm [9], which is one of the
most well-known and frequently used EMO algorithms. An ensemble classi-
fier is constructed from the obtained non-dominated rule sets for each rule
selection problem. The three rule selection problems are compared with each
other in terms of the generalization ability of the constructed ensemble clas-
sifiers. When we choose the members of each ensemble classifier, we examine
three strategies for member selection: all the obtained non-dominated rule
sets, a prespecified number of the best rule sets with respect to the classifica-
tion accuracy on the training patterns, and non-dominated rule sets satisfying
a prespecified minimum requirement for the classification accuracy.

This chapter is organized as follows. First we briefly describe some basic
concepts in multiobjective optimization in Section 22.2 where we also de-
scribe the NSGA-II algorithm [9]. Next we explain our two-stage fuzzy rule
selection method to find a number of non-dominated rule sets with different
interpretability-accuracy tradeoffs in Section 22.3. The first stage is heuristic
extraction of promising candidate fuzzy rules while the second stage is evo-
lutionary multiobjective rule selection. Then we show experimental results in
Section 22.4 where our two-stage fuzzy rule selection method is applied to
the above-mentioned three multiobjective fuzzy rule selection problems. The
three strategies for ensemble member selection are also examined in Section
22.4. Finally we conclude this chapter in Section 22.5.
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22.2 Evolutionary Multiobjective Optimization

22.2.1 Some Basic Concepts in Multiobjective Optimization

In this subsection, we briefly describe some basic concepts in multiobjective
optimization. Let us consider the following k-objective maximization problem:

Maximize f(x) = (f1(x), f2(x), ..., fk(x)), (22.1)

subject to x ∈ X, (22.2)

where f(x) is the objective vector, fi(x) is the i-th objective to be maximized,
x is the decision vector, and X is the feasible region in the decision space.
When the following conditions are satisfied, a feasible solution x ∈ X is said
to be dominated by another feasible solution y ∈ X (i.e., y dominates x: y is
better than x):

∀ i, fi(x) ≤ fi(y) and ∃ j, fj(x) < fj(y). (22.3)

If there is no feasible solution y that dominates x, x is said to be a Pareto-
optimal solution of the multiobjective optimization problem. The set of all the
Pareto-optimal solutions is referred to as the Pareto-optimal solution set. The
image of the Pareto-optimal solution set onto the objective space is the Pareto
front. The dominance relation in 22.3 is also used to define non-dominated
solutions in a population of solutions. When there is no solution y in a pop-
ulation that dominates x, we refer to x as a non-dominated solution in that
population. The concept of non-dominated solutions is used to evaluate solu-
tions in EMO algorithms.

The task of EMO algorithms is to find all the Pareto-optimal solutions.
It is, however, impractical to try to find all the Pareto-optimal solutions of a
large-scale multiobjective optimization problem. In this case, EMO algorithms
try to find a number of well-distributed near Pareto-optimal solutions.

The dominance relation in 22.3 is modified when it is applied to each
of the three fuzzy rule selection problems in Section 22.1. For example, the
dominance relation is modified for P3 as follows: A rule set Sx is said to be
dominated by another rule set Sy (i.e., Sy dominates Sx: Sy is better than
Sx) when all the following inequalities hold:

f1(Sx) ≤ f1(Sy), f2(Sx) ≥ f2(Sy), f3(Sx) ≥ f3(Sy), (22.4)

and at least one of the following inequalities holds:

f1(Sx) < f1(Sy), f2(Sx) > f2(Sy), f3(Sx) > f3(Sy). (22.5)

Roughly speaking, when a rule set Sx has lower classification accuracy and
higher complexity than another rule set Sy, Sx is said to be dominated by
Sy in all the three fuzzy rule selection problems in Section 22.1. The task of
EMO algorithms is to find a number of non-dominated rule sets with different
interpretability-accuracy tradeoffs, which are Pareto-optimal or near Pareto-
optimal solutions of each fuzzy rule selection problem.
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22.2.2 NSGA-II Algorithm

The NSGA-II algorithm [9] is one of the most well-known and frequently used
EMO algorithms in the literature. We use this algorithm in our two-stage
fuzzy rule selection method since it has a number of advantages such as high
performance, algorithmic simplicity, and high popularity. An outline of the
NSGA-II algorithm is written as follows (for details, see [8, 9]):

Step 1 (Initialization): Generate an initial population withNpop solutions
where Npop is the population size.

Step 2 (Creation of Offspring Population): Generate an offspring popu-
lation by iterating the following procedures Npop times:

(1) Choose a pair of parent solutions from the current population using
binary tournament selection. Each solution is evaluated by Pareto ranking
and a crowding measure.

(2) Generate an offspring from the selected parent solutions by crossover
and mutation.

Step 3 (Generation Update): Combine the current population and the
offspring population into a merged one. Then choose the best Npop solutions
from the merged population to construct the next population. Each solution
is evaluated by Pareto ranking and a crowding measure in the same manner
as the selection phase of parent solutions in Step 2.

Step 4 (Termination Test): If a prespecified stopping condition is not
satisfied, return to Step 2. Otherwise terminate the execution of the algorithm.
In the latter case, we choose all the non-dominated solutions in the merged
population in Step 4 as the final solutions.

In Step 2 of the NSGA-II algorithm, each solution in the current pop-
ulation is evaluated in the following manner. First, Rank 1 is assigned to
all the non-dominated solutions in the current population. All solutions with
Rank 1 are tentatively removed from the current population. Next, Rank 2
is assigned to all the non-dominated solutions in the reduced current popu-
lation. All solutions with Rank 2 are tentatively removed from the reduced
current population. This procedure is iterated until all solutions are tenta-
tively removed from the current population. In this manner, a different rank
is assigned to each solution. Solutions with smaller ranks are viewed as being
better than those with larger ranks. Among solutions with the same rank,
an additional criterion called a crowding measure is taken into account. The
crowding measure for a solution calculates the distance between its adjacent
solutions with the same rank in the objective space (for details, see [8, 9]).
Less crowded solutions with larger values of the crowding measure are viewed
as being better than more crowded solutions with smaller values of the crowd-
ing measure. Solutions in the merged population in Step 4 of the NSGA-II
algorithm are evaluated in the same manner based on Pareto ranking and the
crowding measure.
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22.3 Heuristic Rule Extraction and Evolutionary
Multiobjective Rule Selection

In this section, we explain how a number of non-dominated fuzzy rule-based
classifiers with different interpretability-accuracy tradeoffs can be obtained by
our two-stage rule selection method.

22.3.1 Fuzzy Rule-Based Classifiers

Let us assume that we havem training patterns xp = (xp1, ..., xpn), p =
1, 2, ..., m from M classes where xpi is the attribute value of the p−th train-
ing pattern for the i−th attribute (i = 1, 2, ..., n). For our n-dimensional
M -class pattern classification problem, we use fuzzy rules of the following
form:

Rule Rq : If x1 is Aq1 and ... and xn is Aqn then Class Cq with CFq,
(22.6)

where Rq is the label of the q-th rule, x = (x1, ..., xn) is an n-dimensional
pattern vector, Aqi is an antecedent fuzzy set, Cq is a class label, and CFq is
a rule weight. We define the compatibility grade of each training pattern xp

with the antecedent part Aq = (Aq1, ..., Aqn) of the fuzzy rule Rq in 22.6
using the product operator as

µAq
(xp) = µAq1(xp1) · µAq2(xp2) · ... · µAqn

(xpn), p = 1, 2, ..., m, (22.7)

where µAqi
( · ) is the membership function of Aqi.

For determining the consequent class Cq and the rule weight CFq, we first
calculate the confidence of the fuzzy rule “Aq ⇒ Class h” for each class h as
follows (see the textbook on fuzzy data mining [17] for fuzzy versions of some
basic concepts in data mining such as confidence and support):

c(Aq ⇒ Class h) =
∑

xp ∈Class h

µAq
(xp)

/
m∑

p=1

µAq
(xp), h = 1, 2, ..., M.

(22.8)
The consequent class Cq is specified as the class with the maximum confidence:

c(Aq ⇒ Class Cq) = max {c(Aq ⇒ Class h) |h = 1, 2, ..., M}. (22.9)

Rule weights have a significant effect on the classification accuracy of a fuzzy
rule-based classifier. Several methods have been examined to determine the
rule weight of each fuzzy rule in the literature [25] where good results are
obtained from the following specification:

CFq = c(Aq ⇒ Class Cq)−
M∑

h = 1
h �= Cq

c(Aq ⇒ Class h). (22.10)
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We use this definition in this chapter.
Let S be a fuzzy rule-based classifier (i.e., a set of fuzzy rules). When an

input pattern xp is to be classified by the fuzzy rule-based classifier S, a single
winner rule Rw is chosen from S as follows:

µAw
(xp) · CFw = max{µAq

(xp) · CFq | Rq ∈ S}. (22.11)

The input pattern xp is assigned to the consequent class Cw of the winner
rule Rw. When multiple rules with different consequent classes have the same
maximum value in (17.7), the classification of the input pattern xp is rejected.
The classification of xp is also rejected when there is no compatible fuzzy rules
with positive compatibility grades for xp. In this case, all fuzzy rules have the
same maximum value of zero in the right-hand side in (17.7).

In this chapter, we use an ensemble of multiple fuzzy rule-based classifiers
to classify input patterns. First an input pattern is classified by each individual
fuzzy rule-based classifier using the single winner-based method in (17.7).
Then the final classification is performed through the simple majority vote
scheme based on the classification result by each individual classifier (see [15])
for various voting methods for fuzzy rule-based classifiers). When multiple
classes have the same maximum number of votes, one class is randomly chosen
among those classes with the maximum vote.

22.3.2 Heuristic Rule Extraction

Genetic rule selection was proposed for designing fuzzy rule-based classifiers
with high accuracy and high comprehensibility in [14, 15] where a scalar fitness
function was defined as the weighted sum of the first two objectives of our
fuzzy rule selection: to maximize the number of correctly classified training
patterns (i.e., to maximize f1(S)) and to minimize the number of fuzzy rules
(i.e., to minimize f2(S)). That is, fuzzy rule selection was handled in the
framework of single-objective optimization with the following scalar fitness
function:

fitness(S) = w1 · f1(S)− w2 · f2(S), (22.12)

where w1 and w2 are prespecified positive constants. As we have already
mentioned in Section 22.1, the single-objective formulation in (17.8) has been
extended to two-objective and three-objective formulations.

One difficulty in the design of fuzzy rule-based classifiers through rule
selection is that the number of possible candidate fuzzy rules exponentially
increases with the number of input variables. When we use K linguistic values
and “don’t care” as antecedent fuzzy sets for each of n attributes, the total
number of possible combinations of those (K + 1) antecedent fuzzy sets is
(K + 1)n. In the first stage of our two-stage fuzzy rule selection method, a
prespecified number of promising candidate fuzzy rules are generated from
those combinations in a heuristic manner using a data mining criterion. That
is, the first stage is the heuristic rule extraction phase. In the field of data
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mining, rules are often evaluated by two rule evaluation criteria: support and
confidence. In the same manner as the fuzzy version of the confidence in (17.4),
the support of the fuzzy rule “Aq ⇒ Class h” for each class h is defined as
follows:

s(Aq ⇒ Class h) =
1
m

∑

xp ∈Class h

µAq
(xp). (22.13)

Various rule evaluation criteria were examined in [23] where good results were
obtained from the following criterion:

fSLAVE(Rq) = s(Aq ⇒ Class Cq) −
M∑

h = 1
h �= Cq

s(Aq ⇒ Class h). (22.14)

This is a modified version of a rule evaluation criterion used in an it-
erative fuzzy GBML (Genetics-Based Machine Learning) algorithm called
SLAVE [13].

In the heuristic rule extraction phase (i.e., the first stage) of our two-stage
fuzzy rule selection method, a prespecified number of candidate fuzzy rules
with the largest values of the SLAVE criterion in (17.10) are found for each
class. For designing fuzzy rule-based classifiers with high comprehensibility,
only short fuzzy rules are examined as candidate fuzzy rules. This restriction
on the rule length is consistent with the third objective (i.e., f3(S): the total
rule length) of the three-objective rule selection problem (i.e., P3 in Section
22.1).

22.3.3 Evolutionary Multiobjective Fuzzy Rule Selection

The second stage of our two-stage method is evolutionary multiobjective fuzzy
rule selection where the NSGA-II algorithm is used to find a number of non-
dominated rule sets from candidate fuzzy rules extracted in the first stage.
Let us assume that N fuzzy rules (i.e., N/M fuzzy rules for each class where
M is the number of classes) have already been extracted as candidate fuzzy
rules using the SLAVE criterion in the first stage of our two-stage method.
A subset S of the N candidate fuzzy rules is handled as an individual in the
NSGA-II algorithm in the second stage. Each individual is represented by a
binary string of the length N as

S = s1s2 · · · sN , (22.15)

where sj = 1 and sj = 0 mean that the j-th candidate rule is included in S
and excluded from S, respectively. From this coding, we can see that the size
of the search space in the second stage is 2N , which depends on the number
of candidate fuzzy rules (i.e., N) extracted in the first stage.
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Since each individual is represented by a binary string, we can use stan-
dard genetic operations in the second stage (i.e., in the NSGA-II algorithm)
for multiobjective fuzzy rule selection. We use uniform crossover and bit-flip
mutation in our computational experiments.

In order to efficiently find non-dominated rule sets, we use two problem-
specific heuristic tricks in the NSGA-II algorithm. One trick is the use of
biased mutation where a larger probability is assigned to the mutation from
1 to 0 than that from 0 to 1. This is for efficiently decreasing the number
of fuzzy rules in each rule set. The other trick is the removal of unnecessary
rules, which is a kind of local search. Since each training pattern is classified
by the single winner-based method in the rule set S, some fuzzy rules in S
may be chosen as winner rules for no training patterns. We can remove those
fuzzy rules without degrading the first objective (i.e., f1(S): the number of
correctly classified training patterns). At the same time, the second objective
(i.e., f2(S): the number of fuzzy rules) and the third objective (i.e., f3(S):
the total rule length) are improved by removing unnecessary rules. Thus we
remove all fuzzy rules that are not selected as winner rules for any training
patterns from the rule set S. The removal of unnecessary rules is performed
after the first objective is calculated for each rule set and before the second
and third objectives are calculated.

The NSGA-II algorithm is applied to one of the three rule selection
problems in Section 22.1. A number of non-dominated rule sets (i.e., non-
dominated fuzzy rule-based classifiers) are obtained by its single run. Some
(or all) of the obtained non-dominated fuzzy rule-based classifiers are used to
construct an ensemble classifier. The performance of the constructed ensem-
ble classifier is examined by the classification accuracy on test patterns. In
this manner, the three formulations of multiobjective fuzzy rule selection are
compared with each other in terms of the performance of ensemble classifiers.

22.4 Computational Experiments

22.4.1 Data Sets

We used six data sets with many numerical attributes: Wisconsin breast can-
cer, Diabetes, Glass, Cleveland heart disease, Sonar, and Wine. These data
sets are available from the UCI ML repository (http://www.ics.uci.edu/∼
mlearn/). Table 22.1 shows the number of attributes, the number of patterns,
and the number of classes in each data set. Some data sets include incomplete
patterns with missing values. Those patterns were not used in our computa-
tional experiments.

In the last two columns of Table 22.1, we show benchmark results on
these data sets. They are error rates reported in [11] where six variants of the
C4.5 algorithm [33, 34] were examined. The six variants were different from



516 H. Ishibuchi and Y. Nojima

Table 22.1. Data sets used in our computer simulations.

Data set No. of attributes No. of patterns No. of classes C4.5
Best Worst

Breast W 9 683* 2 5.1 6.0
Diabetes 8 768 2 25.0 27.2

Glass 9 214 6 27.3 32.2
Heart C 13 297* 5 46.3 47.9
Sonar 60 208 2 24.6 35.8
Wine 13 178 3 5.6 8.8

∗ Incomplete patterns with missing values are not included.

each other in their discretization methods of continuous attributes. The per-
formance of each variant was evaluated by ten independent iterations (with
different data partitions) of the whole ten-fold cross-validation (10-CV) pro-
cedure (i.e., 10 × 10-CV) in [11]. We used the same performance evaluation
procedure in our computational experiments.

22.4.2 Experimental Conditions

All attribute values of each data set were normalized into real numbers in
the unit interval [0, 1]. As antecedent fuzzy sets, we used “don’t care” and
14 triangular fuzzy sets generated from four fuzzy partitions with different
granularities in Fig. 22.1. We generated 300 fuzzy rules for each class as can-
didate rules in a greedy manner using the SLAVE criterion in (17.10). Thus
the total number of candidate rules is 300M where M is the number of classes.
The upper bound on the length of candidate fuzzy rules is two for the sonar
data set with 60 attributes and three for the other data sets with 13 or less
attributes.
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Fig. 22.1. Four fuzzy partitions used in our computer simulations.



22 Fuzzy Ensemble Design 517

The NSGA-II algorithm was employed to find non-dominated rule sets
from 300M candidate fuzzy rules. We used the following parameter values in
the NSGA-II algorithm:

• Population size: 200 strings
• Crossover probability: 0.8
• Biased mutation probabilities: pm(0 → 1) = 1/300M and pm(1 → 0) =

0.1
• Stopping condition: 5000 generations

22.4.3 Illustrative Computational Experiments

Before comparing the three formulations of multiobjective fuzzy rule selection
by examining the generalization ability of ensemble classifiers on the six data
sets by the 10-CV procedure, we demonstrate how our two-stage fuzzy rule
selection method works through illustrative computational experiments on
the diabetes data set. For illustration purpose, we randomly divided the 768
patterns of this data set into 384 training patterns and 384 test patterns.
Using the SLAVE criterion, we generated 600 candidate fuzzy rules (300 rules
for each class) from the training patterns. In the heuristic extraction phase of
candidate fuzzy rules, we examined fuzzy rules of length 3 or less using “don’t
care” and 14 antecedent fuzzy sets in Fig. 22.1.

The NSGA-II algorithm was employed for multiobjective fuzzy rule selec-
tion from the generated 600 candidate fuzzy rules. We applied the NSGA-
II algorithm to P1 with the two objectives: maximize f1(S) and minimize
f2(S). After 5000 generations, we obtain 9 non-dominated rule sets (i.e., non-
dominated fuzzy rule-based classifiers). It should be noted that these 9 non-
dominated rule sets were obtained by a single run of the NSGA-II algorithm.
This result clearly demonstrates that EMO algorithms can find a number
of non-dominated solutions by their single run. One of the obtained 9 non-
dominated rule sets was an empty rule set (i.e., S = φ, f1(S) = 0, f2(S) = 0).
Since no patterns are classifiable by an empty rule set, it is always excluded
from ensemble classifiers. An ensemble classifier was constructed by combining
the other 8 rule sets.

Each pattern was classified by each rule set (i.e., each individual fuzzy
rule-based classifier) using the single winner-based fuzzy reasoning method
to calculate the error rates on the training patterns and the test patterns.
The performance of each rule set is shown in Fig. 22.2 where the rejection of
classification is counted as an error (i.e., strictly speaking the vertical axis is
the sum of the error rate and the rejection rate). It should be noted that some
non-dominated rule sets are overlapping in Fig. 22.2. The second smallest rule
set with only a single fuzzy rule is not shown in Fig. 22.2 because its error rates
are out of the range of the vertical axis (i.e., 34.0% on the training patterns and
36.8% on the test patterns). Experimental results by the ensemble classifier
are shown by the solid line in Fig. 22.2. For comparison, the reported results
by the C4.5 algorithm in [11] are also shown in Fig. 22.2 (see Table 22.1).
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We can observe a clear tradeoff structure between the error rate on the
training patterns and the number of fuzzy rules in Fig. 22.2(a). That is, the
interpretability-accuracy tradeoff structure is clearly shown in Fig. 22.2 (a)
with respect to the classification accuracy of fuzzy rule-based classifiers on the
training patterns. Such a tradeoff structure is not clear in Fig. 22.2(b) with
respect to the generalization ability for the test patterns. The generalization
ability is somewhat degraded by the increase in the number of fuzzy rules due
to the overfitting to the training patterns in Fig. 22.2(b). We can see from
Fig. 22.2(b) that the performance of the ensemble classifier is better than
almost all the individual fuzzy rule-based classifiers. It should be noted that
the computational experiments in this subsection were performed using 50%
training patterns and 50% test patterns for illustration purpose. Thus we can
not directly compare between the reported results by the C4.5 algorithm based
on the 10-CV procedure and our experimental results in Fig. 22.2(b). In the
next subsection, we use the 10-CV procedure for the performance evaluation
of fuzzy rule-based classifiers and their ensemble classifiers.
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Fig. 22.2. Experimental results of a single run of the NSGA-II algorithm on the
diabetes data set. The NSGA-II algorithm was applied to P1 with 50% training
patterns and 50% test patterns. (a) Error rates on training patterns. (b) Error rates
on test patterns.

In the same manner as Fig. 22.2, we also applied the NSGA-II algorithm to
P2 with the two objectives: f1(S) and f3(S). Experimental results are shown
in Fig. 22.3. The horizontal axis in Fig. 22.3 is the total number of antecedent
conditions (i.e., f3(S): the total rule length) while it was the number of fuzzy
rules (i.e., f2(S)) in Fig. 22.2. As in Fig. 22.2 (a), we can observe a clear
interpretability-accuracy tradeoff structure in Fig. 22.3(a). Such a tradeoff
structure is not clear in Fig. 22.3(b) with respect to the accuracy on the
test patterns. From the comparison between Fig. 22.2 and Fig. 22.3, we can
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see that more non-dominated rule sets were obtained in Fig. 22.3 from P2
than Fig. 22.2 from P1. More specifically, 9 rule sets and 10 rule sets were
obtained from P1 and P2, respectively (7 rule sets and 8 rule sets are shown
in Fig. 22.2 and Fig. 22.3, respectively). It should be noted again that some
rule sets are overlapping in Fig. 22.3. An ensemble classifier was constructed
using the obtained 9 non-dominated rule sets (excluding an empty rule set).
Error rates by the ensemble classifier are also shown in Fig. 22.3 by the solid
line. We can see from Fig. 22.2(b) that the ensemble classifier outperformed
all the individual fuzzy rule-based classifiers and the reported results in [11].

The NSGA-II algorithm was also applied to the three-objective fuzzy rule
selection problem (i.e., P3) in the same manner as Fig. 22.2 and Fig. 22.3.
From a single run of the NSGA-II algorithm, 20 non-dominated rule sets were
obtained. The classification performance of each rule set is shown in Fig. 22.4
together with that of their ensemble classifier. It should be noted that multiple
non-dominated rule sets with the same number of fuzzy rules were obtained in
Fig. 22.4. These non-dominated rule sets are different from each other in the
total number of antecedent conditions (i.e., the total rule length). More non-
dominated rule sets were obtained in Fig. 22.4 from the three-objective formu-
lation than Fig. 22.2 and Fig. 22.3 from the two-objective formulations. In gen-
eral, the number of obtained non-dominated solutions usually increases with
the number of objectives. We can observe a clear interpretability-accuracy
tradeoff structure in Fig. 22.4(a) with respect to the classification accuracy of
fuzzy rule-based classifiers on the training patterns. This tradeoff structure is
not clear in Fig. 22.4(b) with respect to the classification accuracy of fuzzy
rule-based classifiers for the test patterns.
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Fig. 22.3. Experimental results on the diabetes data set using P2. (a) Error rates
on training patterns. (b) Error rates on test patterns.
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Fig. 22.4. Experimental results on the diabetes data set using P3. (a) Error rates
on training patterns. (b) Error rates on test patterns.

Examples of non-dominated rule sets with the same number of fuzzy rules
are shown in Fig. 22.5 and Fig. 22.6. Fig. 22.5 shows the simplest rule set in
Fig. 22.4 with two fuzzy rules, a 25.6% error rate on the training patterns,
and a 25.4% error rate on the test patterns. The total number of antecedent
conditions (i.e., the total rule length) is 2 in Fig. 22.5. On the other hand,
Fig. 22.6 shows the most complicated rule set among those with two fuzzy
rules. This rule set corresponds to the left-bottom circle in Fig. 22.4(a) and
Fig. 22.4(b), which has a 24.5% error rate on the training patterns and a
25.2% error rate on the test patterns. The total rule length of this rule set is
4 excluding “don’t care” conditions.

Consequent

Class 1
(0.36)

Class 2
(0.45)

2x

1R

2R

Fig. 22.5. The simplest rule set with two fuzzy rules in Fig. 22.4.
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Consequent
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Class 2
(0.45)

8x2x

Fig. 22.6. The most complicated rule set with two fuzzy rules in Fig. 22.4.

22.4.4 Comparison of Three Formulations

In this subsection, we compare the three formulations in terms of the classifi-
cation ability of ensemble classifiers designed by each formulation. The gener-
alization ability of ensemble classifiers was evaluated by ten independent iter-
ations of the whole 10-CV procedure (i.e., 10× 10-CV) in our computational
experiments in this subsection. When we constructed ensemble classifiers from
non-dominated rule sets, we examined the following three strategies:

(i) The use of all the obtained non-dominated rule sets (excluding an empty
rule set).

(ii) The use of a prespecified number of the best non-dominated rule sets
in terms of their classification accuracy on training patterns. We examined
10 specifications of the number of classifiers in a single ensemble classifier:
1, 2, ..., 10. When the total number of obtained rule sets was less than the
prespecified number, all of them (excluding an empty rule set) were used.

(iii) The use of non-dominated rule sets that have lower error rates on
training patterns than a prespecified upper bound. We examined ten specifi-
cations of the upper bound on error rates: 5%, 10%, 15%, ..., 50%. In some
cases, there were no qualified rule sets that had lower error rates than the
prespecified upper bound. In those cases, we could not construct ensemble
classifiers. When we could not construct ensemble classifiers more than 50
runs among 100 runs in 10 × 10-CV, we do not report the corresponding
experimental results.

In the following, we report experimental results using each combination of
the three formulations and the three ensemble strategies on each data set.

Wisconsin Breast Cancer Data Set: In Table 22.2, we show the av-
erage number of obtained non-dominated rule sets (excluding an empty rule
set), the average error rates of those rule sets on training patterns and test
patterns. Error rates of ensemble classifiers on test patterns (i.e., generaliza-
tion ability of ensemble classifiers) are shown in Fig. 22.7. The horizontal axis
of Fig. 22.7(a) is the upper bound on the number of rule sets in each ensemble
classifier. The right-most label∞ of the horizontal axis means that there is no
upper bound on the number of rule sets (i.e., all the obtained non-dominated
rule sets were used in ensemble classifiers). On the other hand, the horizontal
axis of Fig. 22.7(b) is the upper bound on error rates on training patterns of
rule sets used in ensemble classifiers. The upper bound of 99% (i.e., the right-
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Table 22.2. Obtained rule sets by each formulation for the Wisconsin breast cancer
data set.

Formulation No. of rules Training error (%) Test error (%)
P1 9.50 6.04 7.84
P2 10.51 5.82 7.40
P3 11.96 6.23 7.84
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Fig. 22.7. Performance of ensemble classifiers on the Wisconsin breast cancer data
set. (a) Second strategy for constructing ensembles. (b) Third strategy for construct-
ing ensembles.

most label of the horizontal axis of Fig. 22.7(b)) means that all the obtained
non-dominated rule sets (except for an empty rule set) were used in ensemble
classifiers.

We can observe an improvement in error rates by combining more than
three fuzzy rule-based classifiers in the case of P3 in Fig. 22.7(a). We can
also see that the performance of individual fuzzy rule-based classifiers and
ensemble classifiers in Fig. 22.7 is much better than the best result of the
C4.5 algorithm (i.e., the best average error rate: 5.1%) reported in [11].

Diabetes Data Set: In the same manner as the case of the Wisconsin
breast cancer data set, we show experimental results on the diabetes data set
in Table 22.3 and Fig. 22.8. In Fig. 22.8, the effect of combining multiple fuzzy
rule-based classifiers into a single ensemble classifier is not clear. The best
results were obtained from P1 among the three formulations in Fig. 22.8. The
performance of individual fuzzy rule-based classifiers and ensemble classifiers
in Fig. 22.8 is slightly inferior to the best result of the C4.5 algorithm.

Glass Data Set: Experimental results on the glass data set are shown
in Table 22.4 and Fig. 22.9. In Fig. 22.9, the best results were obtained from
P3 among the three formulations. We can observe a slight improvement in
error rates by combining multiple fuzzy rule-based classifiers in the case of
P3 in Fig. 22.9(a). The performance of fuzzy rule-based ensemble classifiers
in Fig. 22.9 is inferior to even the worst result of the C4.5 algorithm. It may
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Table 22.3. Obtained rule sets by each formulation for the diabetes data set.

Formulation No. of rules Training error (%) Test error (%)
P1 8.94 24.03 26.90
P2 13.73 23.93 26.74
P3 16.46 23.90 26.39
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Fig. 22.8. Performance of ensemble classifiers on the diabetes data set. (a) Second
strategy for constructing ensembles. (b) Third strategy for constructing ensembles.

Table 22.4. Obtained rule sets by each formulation for the glass data set.

Formulation No. of rules Training error (%) Test error (%)
P1 25.08 26.43 42.19
P2 28.63 32.40 44.89
P3 36.40 33.43 44.50

suggest that the uniform fuzzy partitions of the input space in Fig. 22.1 did
not work well on the glass data set. That is, adjustment of antecedent fuzzy
sets seems to be necessary to obtain fuzzy rule-based classifiers with high
performance on the glass data set.

Cleveland Heart Disease Data Set: Experimental results on the Cleve-
land heart disease data set are shown in Table 22.5 and Fig. 22.10. In
Fig. 22.10, the best results were obtained from P3 among the three formu-
lations. We can observe a clear positive effect of combining multiple fuzzy
rule-based classifiers in Fig. 22.10 for all the three formulations. When an
ensemble classifier was constructed from all the non-dominated rule sets ob-
tained from P3, its performance was comparable to the best result of the C4.5
algorithm in Fig. 22.10.

Sonar Data Set: Experimental results on the sonar data set are shown
in Table 22.6 and Fig. 22.11. The best results were obtained from P3 in
Fig. 22.11. The effect of combining multiple fuzzy rule-based classifiers into
a single ensemble classifier is not clear in Fig. 22.11 (a) while it is clear in



524 H. Ishibuchi and Y. Nojima

Upper bound on the number of classifiers

E
rr

or
 r

at
e 

on
 te

st
 p

at
te

rn
s 

(%
)

Problem 1
Problem 2
Problem 3

C4.5 Best
C4.5 Worst

1 2 3 4 5 6 7 8 9 10 8

32

34

36

38

40

42

Upper bound on the error rates of classifiers (%)

E
rr

or
 r

at
e 

on
 te

st
 p

at
te

rn
s 

(%
)

Problem 1
Problem 2
Problem 3

C4.5 Best
C4.5 Worst

0 10 20 30 40 50 99

32

34

36

38

40

42

Fig. 22.9. Performance of ensemble classifiers on the glass data set. (a) Second
strategy for constructing ensembles. (b) Third strategy for constructing ensembles.

Table 22.5. Obtained rule sets by each formulation for the Cleveland heart disease
data set.

Formulation No. of rules Training error (%) Test error (%)
P1 83.33 30.15 47.86
P2 86.50 32.77 47.92
P3 87.04 33.34 47.60
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Fig. 22.10. Performance of ensemble classifiers on the Cleveland heart disease data
set. (a) Second strategy for constructing ensembles. (b) Third strategy for construct-
ing ensembles.
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Fig. 22.11(b). We can also see that the experimental results in Fig. 22.11 by
fuzzy rule-based classifiers and ensemble classifiers are better than the best
result of the C4.5 algorithm.

Wine Data Set: Experimental results on the wine data set are shown
in Table 22.7 and Fig. 22.12. The best results were obtained from P3 in
Fig. 22.12. The improvement in error rates by combining multiple fuzzy rule-
based classifiers is clear in Fig. 22.12 in the case of P3. Experimental results
from P3 are better than the best result of the C4.5 algorithm (i.e., the best
average error rate: 5.6%) in Fig. 22.12.

Table 22.6. Obtained rule sets by each formulation for the sonar data set.

Formulation No. of rules Training error (%) Test error (%)
P1 9.69 16.43 27.66
P2 13.02 16.54 25.96
P3 14.15 17.03 25.83

Table 22.7. Obtained rule sets by each formulation for the wine data set.

Formulation No. of rules Training error (%) Test error (%)
P1 6.23 14.87 19.10
P2 8.49 12.92 17.98
P3 10.94 15.59 18.95
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Fig. 22.11. Performance of ensemble classifiers on the sonar data sets. (a) Second
strategy for constructing ensembles. (b) Third strategy for constructing ensembles.
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Fig. 22.12. Performance of ensemble classifiers on the wine data set. (a) Second
strategy for constructing ensembles. (b) Third strategy for constructing ensembles.

22.4.5 Discussion on Experimental Results

In Table 22.8, we summarized the average number of obtained non-dominated
rule sets and the average error rate of their ensemble classifiers with all the
obtained non-dominated rule sets on test patterns for each data set. For com-
parison, we also cite the reported results by the C4.5 algorithm in [11] in
the same manner as Table 22.1. The largest average number of obtained non-
dominated rule sets and the smallest average error rate for each data set are
highlighted by boldface in Table 22.8. In Table 22.8, more non-dominated rule
sets were obtained from P3 with the three objectives than P1 and P2 with
the two objectives. The use of the total rule length (i.e., f3(S)) in P2 seems
to lead to more non-dominated rule sets than the use of the total number of
fuzzy rules (i.e., f2(S)) in P1. The best average error rates were obtained from
P3 among the three formulations on average while the difference in average
error rates of ensemble classifiers is not large among the three formulations
in Table 22.8. We can also see that the performance of ensemble classifiers is
comparable to the best results of the C4.5 algorithm except for the case of
the glass data set.

In Table 22.9, we compare the generalization ability between the ensemble
classifiers of all the obtained non-dominated rule sets and the single best
individual classifier (which was chosen from the obtained non-dominated rule
sets based on the classification accuracy on training patterns). Table 22.9
shows the average error rates on test patterns calculated by ten independent
iterations of the whole 10-CV procedure. Better results between the ensemble
classifiers and the single best individual classifier are highlighted by boldface
in Table 22.9. From this table, we can see that the effect of combining multiple
fuzzy rule-based classifiers depends on data sets and formulations. It improved
the generalization ability of fuzzy rule-based classifiers for some data sets while
it degraded the generalization ability for other data sets.
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Table 22.8. Summary of experimental results.

Data set
Number of non-

dominated rules

Error rates of ensem-

bles

C4.5

P1 P2 P3 P1 P2 P3 Best Worst

Breast

W

9.50 10.51 11.96 3.87 3.90 3.84 5.1 6.0

Diabetes 8.94 13.73 16.46 25.20 25.59 25.46 25.0 27.2

Glass 25.08 28.63 36.40 39.57 39.50 39.27 27.3 32.2

Heart

C

83.33 86.50 87.04 47.54 46.65 46.27 46.3 47.9

Sonar 9.69 13.02 14.15 23.95 22.26 21.93 24.6 35.8

Wine 6.23 8.49 10.94 6.74 6.57 5.11 5.6 8.8

Average 23.80 26.81 29.49 24.48 24.08 23.65 22.32 26.32

Table 22.9. Comparison in the generalization ability between individual and en-
semble classifiers. Average error rates were calculated by ten independent iterations
of the whole 10-CV procedure.

Data set
P1 P2 P3
Single
Best

Ensemble Single
Best

Ensemble Single
Best

Ensemble

Breast
W

3.87 3.87 3.65 3.90 4.06 3.84

Diabetes 25.26 25.20 25.56 25.59 25.22 25.46
Glass 39.71 39.57 39.59 39.50 39.52 39.27
Heart C 47.78 47.54 47.85 46.65 47.62 46.27
Sonar 23.81 23.95 22.07 22.26 20.97 21.93
Wine 4.91 6.74 6.30 6.57 5.28 5.11
Average 24.22 24.48 24.17 24.08 23.78 23.65

22.5 Concluding Remarks

In this chapter, we first demonstrated that a number of non-dominated rule
sets (i.e., non-dominated fuzzy rule-based classifiers) were obtained by a sin-
gle run of an EMO algorithm for each of the three fuzzy rule selection prob-
lems. Then we examined the effect of combining multiple non-dominated fuzzy
rule-based classifiers into a single ensemble classifier. Our experimental results
showed that the effect of combining multiple non-dominated fuzzy rule-based
classifiers depended on data sets and formulations. For some data sets, we ob-
served a clear improvement in average error rates on test patterns by the use
of ensemble classifiers. For other data sets, ensemble classifiers did not outper-
form the single best individual classifier (which was chosen from the obtained
non-dominated rule sets based on the classification accuracy on training pat-
terns) independent of the number of classifiers to be combined.

As we have demonstrated in this chapter, non-dominated rule sets ob-
tained by multiobjective fuzzy rule selection had a large diversity with respect
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to their classification rates on training patterns, the number of fuzzy rules,
and the total rule length. This diversity, however, does not always mean the
diversity of fuzzy rules in each rule set. Many non-dominated rule sets may
share the same fuzzy rules or the same subset of fuzzy rules. There may not
be a large diversity in classification results by non-dominated rule sets ob-
tained by multiobjective fuzzy rule selection. A promising research direction
is to combine a diversity-maintenance mechanism of rule sets (or their clas-
sification results) into evolutionary multiobjective search as in [4, 5] used for
the design of ensemble neural network classifiers. The use of fuzzy genetics-
based machine learning (e.g., [26, 35]) instead of fuzzy rule selection is also a
promising research direction because no prescreening stage of candidate fuzzy
rules is needed.
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